## **Supplementary Information for**

| <b>High-performance</b> | bifunctional | porous | non-noble | metal | phosphide | catalyst | for | overall |
|-------------------------|--------------|--------|-----------|-------|-----------|----------|-----|---------|
| water splitting         |              |        |           |       |           |          |     |         |

Yu et al.



**Supplementary Figure 1**. A typical TEM image of as-prepared FeP/Ni<sub>2</sub>P nanoparticles. Scale bar: 25 nm.



Supplementary Figure 2. Energy dispersive X-ray (EDX) spectrum of FeP/Ni<sub>2</sub>P nanoparticles.



**Supplementary Figure 3**. XPS analysis of the original FeP/Ni<sub>2</sub>P hybrid catalyst. **a** Fe  $2p^{3/2}$ . **b** Ni  $2p^{3/2}$ . **c** O 1s.



**Supplementary Figure 4**. XPS survey spectrum of the original FeP/Ni<sub>2</sub>P hybrid catalyst.



**Supplementary Figure 5**. A cyclic voltammetry (CV) curve (black) and corresponding average activity calculated from the CV curve (orange). **a** Ni<sub>2</sub>P and **b** FeP/Ni<sub>2</sub>P. Scan rate: 1 mV s<sup>-1</sup>.



**Supplementary Figure 6.** Detailed Tafel slope analysis with a wide range of OER overpotentials.



**Supplementary Figure 7**. Scan rate dependence of the current densities in the CV curves of different OER catalysts with scan rates ranging from 10 mV s<sup>-1</sup> to 100 mV s<sup>-1</sup> at intervals of 10 mV s<sup>-1</sup>. **a** Ni<sub>2</sub>P and **b** FeP/Ni<sub>2</sub>P.



**Supplementary Figure 8**. Nyquist plots of electrochemical impedance spectroscopy (EIS) for OER catalyzed by Ni<sub>2</sub>P and FeP/Ni<sub>2</sub>P at an overpotential of 300 mV.



**Supplementary Figure 9**. The catalytic activities of  $Ni_2P^*$  catalysts grown on Ni foam with different loadings by using different  $Ni(NO_3)_2$  precursor solutions. **a** HER polarization curves; **b** OER polarization curves.



**Supplementary Figure 10**. The modulation on the catalytic performances of FeP/Ni<sub>2</sub>P hybrids by tuning the loadings of FeP particles. It is found that 8 mg cm<sup>-2</sup> is an optimal catalyst loading for FeP/Ni<sub>2</sub>P hybrid grown on top of Ni foam. **a** HER polarization curves; **b** OER polarization curves.



**Supplementary Figure 11**. The polarization curves of different catalysts showing the effects of Ni<sub>2</sub>P and FeP order on the catalytic activities. **a** HER and **b** OER catalytic activities. Obviously, if Ni<sub>2</sub>P was grown on top of FeP/Ni<sub>2</sub>P (8.0 mg cm<sup>-2</sup>), the as-obtained Ni<sub>2</sub>P/FeP/Ni<sub>2</sub>P hybrid (13.5 mg cm<sup>-2</sup>) shows much poorer catalytic activities compared to that when FeP was grown on Ni<sub>2</sub>P\* (7.5 mg cm<sup>-2</sup>) surface forming FeP/Ni<sub>2</sub>P\* (13.4 mg cm<sup>-2</sup>). The hybrid FeP/Ni<sub>2</sub>P (8.0 mg cm<sup>-2</sup>) is the sample that we investigated in our main texts.



**Supplementary Figure 12**. XPS analysis of the post-OER samples. **a** Fe 2p region. **b** Ni 2p<sup>3/2</sup> region. **c** O 1s region. **d** P 2p region. From these XPS spectra, we can deduce that the real active sites for the OER are possibly the mixed NiFe oxides/oxyhydroxides on the surface.



Supplementary Figure 13. XRD patterns of the FeP/Ni<sub>2</sub>P nanoparticles after OER testing.



Supplementary Figure 14. Enlarged polarization curves of different HER electrocatalysts.



**Supplementary Figure 15.** Detailed Tafel slope analysis with a wide range of HER overpotentials.



**Supplementary Figure 16**. Scan rate dependence of the current densities in the CV curves of different HER catalysts with scan rates ranging from 1 mV s<sup>-1</sup> to 10 mV s<sup>-1</sup> at intervals of 1 mV s<sup>-1</sup>. **a** Ni<sub>2</sub>P/Ni foam and **b** FeP/Ni<sub>2</sub>P.



**Supplementary Figure 17**. Nyquist plots of Ni<sub>2</sub>P and FeP/Ni<sub>2</sub>P for HER measured at -150 mV vs RHE.



**Supplementary Figure 18**. Comparison of the catalytic HER activity with the same active surface area normalized by the double-layer capacitance ( $C_{\rm dl}$ ) difference between FeP/Ni<sub>2</sub>P hybrid and just Ni<sub>2</sub>P catalyst.



**Supplementary Figure 19**. CV curves recorded on the FeP/Ni<sub>2</sub>P hybrid and pure Ni<sub>2</sub>P electrodes in the potential ranges between -0.2 V vs RHE and 0.6 V vs RHE. The scan rate was 50 mV s<sup>-1</sup>. Electrolyte: 1 M phosphate buffered saline (PBS).



**Supplementary Figure 20**. Molecular structures of the systems calculated. **a** Ni<sub>2</sub>P(100); **b** FeP(001); **c** FeP(010); **d** Pt(111); **e** FeP(001) on Ni<sub>2</sub>P(100), side view; **f** FeP(010) on Ni<sub>2</sub>P(100), side view.



**Supplementary Figure 21**. A cyclic voltammetry (CV) curve (black) and corresponding average activity calculated from the CV curve (red) of  $FeP/Ni_2P$  as a bifunctional catalyst for overall water splitting. Scan rate: 1 mV s<sup>-1</sup>.



**Supplementary Figure 22**. Tafel analysis of the relevant polarization curve for overall water splitting.



**Supplementary Figure 23**. Measurements of gas products from overall water splitting by gas chromatography (GC). **a** GC signals for the FeP/Ni<sub>2</sub>P-based water alkaline electrolyzer after 20 and 40 min of overall water splitting. **b** The amounts of  $H_2$  and  $O_2$  gases versus time at a constant current density of 100 mA cm<sup>-2</sup>. It is shown that there is a stoichiometric ratio around 2:1 between generated  $H_2$  and  $O_2$ .

**Supplementary Table 1.** The distribution of surface oxidized species and metal phosphides quantified by the XPS survey spectrum, Fe  $2p^{3/2}$  and Ni  $3p^{3/2}$  XPS spectra of the original FeP/Ni<sub>2</sub>P hybrid catalyst.

| Elements | Fe   |                             | Ni   |                    |       |       |       |  |
|----------|------|-----------------------------|------|--------------------|-------|-------|-------|--|
|          | Fe-P | Fe-PO <sub>x</sub> or oxide | Ni-P | Ni-PO <sub>x</sub> | P     | 0     | C     |  |
| Ratio    | 1.88 | 5.60                        | 3.57 | 0.56               | 18.47 | 48.41 | 21.51 |  |

**Supplementary Table 2**. Comparison of catalytic performance with the most recently reported OER catalysts.  $\eta_{10,OER}$  corresponds to the overpotential of OER catalyzed at a current density of 10 mA cm<sup>-2</sup>, while  $j_{300,OER}$  corresponds to the current density at 300 mV overpotential for the OER.

| OER catalysts                                         | Electrolytes | η <sub>10,OER</sub> (mV) | Tafel (mV dec <sup>-1</sup> )               | Source    |
|-------------------------------------------------------|--------------|--------------------------|---------------------------------------------|-----------|
| FeP/Ni <sub>2</sub> P                                 | 1.0 M KOH    | 154                      | 22.7                                        | Our work  |
| Gelled FeCoW                                          | 1.0 M KOH    | 191                      | 37                                          | 1         |
| Ni <sub>x</sub> Fe <sub>1-x</sub> Se <sub>2</sub> -DO | 1.0 M KOH    | 195                      | 28                                          | 2         |
| NiCeO <sub>x</sub> -Au                                | 1.0 M NaOH   | 270                      | -                                           | 3         |
| Ni <sub>2</sub> P nanoparticles                       | 1.0 M KOH    | 290                      | 59                                          | 4         |
| Co <sub>4</sub> N                                     | 1.0 M KOH    | 257                      | 44                                          | 5         |
| h-NiS <sub>x</sub>                                    | 1.0 M KOH    | 180                      | 96                                          | 6         |
| FeP-rGO                                               | 1.0 M KOH    | 260                      | 49.6                                        | 7         |
| Bifunctional catalysts for the OER                    | Electrolytes | η <sub>10,OER (mV)</sub> | j <sub>300,OER</sub> (mA cm <sup>-2</sup> ) | Source    |
| FeP/Ni <sub>2</sub> P                                 | 1.0 M KOH    | 154                      | 1277                                        | This work |
| Porous MoO <sub>2</sub>                               | 1.0 M KOH    | 260                      | 41*                                         | 8         |
| Ni <sub>0.51</sub> Fe <sub>0.49</sub> P film          | 1.0 M KOH    | 239                      | 80*                                         | 9         |
| MoS <sub>2</sub> /Ni <sub>3</sub> S <sub>2</sub>      | 1.0 M KOH    | 218                      | 100*                                        | 10        |
| CoP <sub>2</sub> /rGO                                 | 1.0 M KOH    | 300                      | 10                                          | 11        |
| NiCo <sub>2</sub> S <sub>4</sub> nanowire array       | 1.0 M KOH    | 260                      | 19*                                         | 12        |
| Electrodeposited CoP film                             | 1.0 M KOH    | 345                      | 0.5*                                        | 13        |
| NiCo <sub>2</sub> O <sub>4</sub>                      | 1.0 M KOH    | 290                      | 24*                                         | 14        |
| EG/Co <sub>0.85</sub> Se/NiFe-LDH                     | 1.0 M KOH    | 206                      | 300*                                        | 15        |
| NiFe LDH                                              | 1.0 M KOH    | 240                      | 30*                                         | 16        |
| NiFe LDH@DG10                                         | 1.0 M KOH    | 201                      | 77.5 <sup>*</sup>                           | 17        |
| NiFe LDH/Cu NW                                        | 1.0 M KOH    | 199                      | 214*                                        | 18        |
| NiFeO <sub>x</sub> /CFP                               | 1.0 M KOH    | 230                      | 400*                                        | 19        |
| NiP/Ni                                                | 1.0 M KOH    | 247                      | 50*                                         | 20        |

**Supplementary Table 3.** Comparison of catalytic performance with the available non-noble HER catalysts in alkaline electrolytes.  $\eta_{10, \, \text{HER}}$  corresponds to the overpotential of HER catalyzed at 10 mA cm<sup>-2</sup>, and  $j_{200, \, \text{HER}}$  is related to the current density at 200 mV overpotential.

| HER catalysts                                               | Electrolytes | $\eta_{10,  \mathrm{HER}}  (\mathrm{mV})$ | Tafel (mV dec <sup>-1</sup> )               | Source    |
|-------------------------------------------------------------|--------------|-------------------------------------------|---------------------------------------------|-----------|
| FeP/Ni <sub>2</sub> P                                       | 1.0 M KOH    | 14                                        | 24.2                                        | This work |
| NiCo <sub>2</sub> P <sub>x</sub> Nanowires                  | 1.0 M KOH    | 58                                        | 34.3                                        | 21        |
| Ni <sub>1-x</sub> Co <sub>x</sub> Se <sub>2</sub> nanosheet | 1.0 M KOH    | 85                                        | 52.0                                        | 22        |
| CoP nanowire/CC                                             | 1.0 M KOH    | 209                                       | 129.0                                       | 23        |
| Co/CoP nanocrystals                                         | 1.0 M KOH    | 135                                       | 64.0                                        | 24        |
| FeP nanowire arrays                                         | 1.0 M KOH    | 194                                       | 75                                          | 25        |
| MoNi <sub>4</sub> /MoO <sub>2</sub> cuboids                 | 1.0 M KOH    | 15                                        | 30.0                                        | 26        |
| MoP crystals                                                | 1.0 M KOH    | ~ 140                                     | 48.0                                        | 27        |
| Ni <sub>5</sub> P <sub>4</sub> (pellet)                     | 1.0 M KOH    | 49                                        | 98.0                                        | 28        |
| Nanoporous Co <sub>2</sub> P                                | 1.0 M KOH    | 60                                        | 40.0                                        | 29        |
| Bifunctional catalysts for the HER                          | Electrolytes | $\eta_{10,\mathrm{HER}}(\mathrm{mV})$     | j <sub>200,HER</sub> (mA cm <sup>-2</sup> ) | Source    |
| FeP/Ni <sub>2</sub> P                                       | 1.0 M KOH    | 14                                        | 346*                                        | This work |
| Porous MoO <sub>2</sub>                                     | 1.0 M KOH    | 27                                        | 132*                                        | 8         |
| Ni <sub>0.51</sub> Fe <sub>0.49</sub> P film                | 1.0 M KOH    | 82                                        | 236*                                        | 9         |
| MoS <sub>2</sub> /Ni <sub>3</sub> S <sub>2</sub>            | 1.0 M KOH    | 110                                       | 92*                                         | 10        |
| CoP <sub>2</sub> /rGO                                       | 1.0 M KOH    | 88                                        | 84*                                         | 11        |
| NiCo <sub>2</sub> S <sub>4</sub> nanowire array             | 1.0 M KOH    | 210                                       | 7.4*                                        | 12        |
| Electrodeposited CoP film                                   | 1.0 M KOH    | 94                                        | 480*                                        | 13        |
| NiCo <sub>2</sub> O <sub>4</sub>                            | 1.0 M KOH    | 110                                       | 52*                                         | 14        |
| EG/Co <sub>0.85</sub> Se/NiFe-LDH                           | 1.0 M KOH    | 260                                       | 4.3*                                        | 15        |
| NiFe LDH                                                    | 1.0 M KOH    | 210                                       | 8.2*                                        | 16        |
| NiFe LDH@DG10                                               | 1.0 M KOH    | 66                                        | 60*                                         | 17        |
| NiFe LDH/Cu NW                                              | 1.0 M KOH    | 116                                       | 124*                                        | 18        |
| NiFeO <sub>x</sub> /CFP                                     | 1.0 M KOH    | 88                                        | 62*                                         | 19        |
| NiP/Ni                                                      | 1.0 M KOH    | 130                                       | 134*                                        | 20        |

## **Supplementary Table 4**. Calculated $\Delta G_{\rm H}$ in eV.

| $\Delta G_{\mathrm{H}}\left(\mathrm{eV}\right)$ | Acidic condition (pH=0) | Basic condition (pH=14) |
|-------------------------------------------------|-------------------------|-------------------------|
| Ni <sub>2</sub> P(100)                          | 0.399                   | 0.306                   |
| FeP(001)                                        | -0.059                  | -0.057                  |
| FeP(010)                                        | -0.221                  | -0.237                  |
| FeP(001)/Ni <sub>2</sub> P                      | -0.279                  | -0.255                  |
| FeP(010)/Ni <sub>2</sub> P                      | -0.238                  | -0.230                  |
| Pt                                              | -0.184                  | -0.135                  |

**Supplementary Table 5**. Comparison of the HER, OER and overall water splitting activities with available robust bifunctional catalysts.  $\eta_{10,\text{HER}}$ ,  $\eta_{10,\text{OER}}$ ,  $\eta_{10,\text{overall}}$ ,  $\eta_{100,\text{overall}}$  and  $j_{1.7,\text{overall}}$  correspond to the overpotentials of HER, OER catalyzed at 10 mA cm<sup>-2</sup>, the cell voltages at 10 and 100 mA cm<sup>-2</sup>, and current density at 1.7 V for the overall water splitting, respectively.

| Catalyst                                         | Electrolytes | η <sub>10, HER</sub> (mV) | η <sub>10, OER</sub> (mV) | η <sub>10, overall</sub> (V) | η <sub>100, overall</sub> (V) | <i>j</i> <sub>1.7, overall</sub> (mA cm <sup>-2</sup> ) | Source    |
|--------------------------------------------------|--------------|---------------------------|---------------------------|------------------------------|-------------------------------|---------------------------------------------------------|-----------|
| FeP/Ni <sub>2</sub> P                            | 1.0 M KOH    | 14                        | 154                       | 1.42                         | 1.602                         | 406                                                     | This work |
| Porous MoO <sub>2</sub>                          | 1.0 M KOH    | 27                        | 260                       | 1.53                         | 1.8*                          | 67*                                                     | 8         |
| $Ni_{0.51}Fe_{0.49}P$ film                       | 1.0 M KOH    | 82                        | 239                       | 1.57                         | 1.71*                         | 87*                                                     | 9         |
| MoS <sub>2</sub> /Ni <sub>3</sub> S <sub>2</sub> | 1.0 M KOH    | 110                       | 218                       | 1.56                         | 1.71*                         | 91.4*                                                   | 10        |
| CoP <sub>2</sub> /rGO                            | 1.0 M KOH    | 88                        | 300                       | 1.56                         | 1.912*                        | 31*                                                     | 11        |
| NiCo <sub>2</sub> S <sub>4</sub> nanowire array  | 1.0 M KOH    | 210                       | 260                       | 1.63                         | 2.097*                        | 16*                                                     | 12        |
| Electrodeposited Co-P film                       | 1.0 M KOH    | 94                        | 345                       | 1.64*                        | 1.745*                        | 42*                                                     | 13        |
| NiCo <sub>2</sub> O <sub>4</sub>                 | 1.0 M NaOH   | 110                       | 290                       | 1.65                         | 1.842*                        | 16*                                                     | 14        |
| EG/Co0.85Se/NiFe-LDH                             | 1.0 M KOH    | 260                       | 206                       | 1.67                         | 1.907*                        | 16.6*                                                   | 15        |
| NiFe LDH                                         | 1.0 M NaOH   | 210                       | 240                       | 1.7                          | 2.241*                        | 10                                                      | 16        |
| NiFe LDH@DG10                                    | 1.0 M KOH    | 66                        | 201                       | 1.44*                        | 1.87*                         | 60*                                                     | 17        |
| NiFe LDH/Cu NW                                   | 1.0 M KOH    | 116                       | 199                       | 1.54                         | 1.69*                         | 111*                                                    | 18        |
| NiFeO <sub>x</sub> /CFP                          | 1.0 M KOH    | 88                        | 230                       | 1.51                         | 1.73*                         | 70*                                                     | 19        |
| NiP/Ni                                           | 1.0 M KOH    | 130                       | 247                       | 1.61                         | 2.102*                        | 24*                                                     | 20        |

<sup>\*</sup>The data were calculated according to the curves given in the literature.

## **Supplementary Note 1: Calculation of turn over frequency (TOF).**

Supposing that every active site was accessible to the electrolyte, the TOF values can be calculated by the following formula:

$$TOF = \frac{1}{2} \frac{I}{nF} \qquad (1)$$

where these physical variables F, n, and I are corresponding to the Faraday constant ( $\sim$  96485 C/mol), the number of active sites (mol), and the current (A) during the LSV measurement in 1 M KOH, respectively. The factor 1/2 is due to fact that two electrons are required to form one hydrogen molecule from two protons.

The number of active sites was determined by an electrochemical method.  $^{30,31}$  The CV curves were measured in 1M PBS electrolyte (pH = 7). Due to the difficulty in assigning the observed peaks to a given redox couple, the number of active sites is nearly proportional to the integrated voltammetric charges (cathodic and anodic) over the CV curves. Supposing a one-electron process for both reduction and oxidation, we can get the upper limit of the number of active sites (n) based on the follow equation:

$$n = \frac{Q}{2F} \qquad (2)$$

where F and Q are the Faraday constant and the whole charge of CV curve, respectively. By this equation and the CV curves, we can obtain the number of active sites for the FeP/Ni<sub>2</sub>P hybrid is around  $3.71 \times 10^{-7}$  mol, while this value is changed to  $1.47 \times 10^{-7}$  mol for the pure Ni<sub>2</sub>P catalyst, meaning that the FeP/Ni<sub>2</sub>P hybrid has active sites 2.5 times that of just Ni<sub>2</sub>P catalyst.

## **Supplementary references**

- 1. Zhang, B. *et al.* Homogeneously dispersed multimetal oxygen-evolving catalysts. *Science* **352**, 333-337 (2016).
- 2. Xu, X., Song, F. & Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. *Nat. Commun.* 7, 12324 (2016).
- 3. Ng, J. W. D. *et al.* Gold-supported cerium-doped NiO<sub>x</sub> catalysts for water oxidation. *Nature Energy* **1**, 16053 (2016).
- 4. Stern, L. A., Feng, L. G., Song, F. & Hu, X. L. Ni<sub>2</sub>P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni<sub>2</sub>P nanoparticles. *Energy Environ. Sci.* **8**, 2347-2351 (2015).
- 5. Chen, P. Z. *et al.* Metallic Co<sub>4</sub>N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. *Angew. Chem. Int. Ed.* **54**, 14710-14714 (2015).
- 6. You, B. & Sun, Y. J. Hierarchically porous nickel sulfide multifunctional superstructures. *Adv. Energy Mater.* **6**, 1502333 (2016).
- 7. Masud, J., Umapathi, S., Ashokaan, N. & Nath, M. Iron phosphide nanoparticles as an efficient electrocatalyst for the OER in alkaline solution. *J. Mater. Chem. A* 4, 9750-9754 (2016).
- 8. Jin, Y. S. *et al.* Porous MoO<sub>2</sub> nanosheets as non-noble bifunctional electrocatalysts for overall Water Splitting. *Adv. Mater.* **28**, 3785-3790 (2016).
- 9. Yu, J. et al. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. *Adv. Funct. Mater.* **26**, 7644-7651 (2016).
- 10. Zhang, J. *et al.* Interface engineering of MoS<sub>2</sub>/Ni<sub>3</sub>S<sub>2</sub> heterostructures for highly enhanced electrochemical overall-water-splitting activity. *Angew. Chem. Int. Ed.* **55**, 6702-6707 (2016).

- 11. Wang, J. M., Yang, W. R. & Liu, J. Q. CoP<sub>2</sub> nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. *J. Mater. Chem. A* **4**, 4686-4690 (2016).
- 12. Sivanantham, A., Ganesan, P. & Shanmugam, S. Hierarchical NiCo<sub>2</sub>S<sub>4</sub> nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. *Adv. Funct. Mater.* **26**, 4661-4672 (2016).
- 13. Jiang, N., You, B., Sheng, M. L. & Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. *Angew. Chem. Int. Ed.* 54, 6251-6254 (2015).
- 14. Gao, X. H. *et al.* Hierarchical NiCo<sub>2</sub>O<sub>4</sub> hollow microcuboids as bifunctional electrocatalysts for overall water splitting. *Angew. Chem. Int. Ed.* **55**, 6290-6294 (2016).
- 15. Hou, Y. et al. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. *Energy Environ. Sci.* **9**, 478-483 (2016).
- 16. Luo, J. S. *et al.* Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earthabundant catalysts. *Science* **345**, 1593-1596 (2014).
- 17. Jia, Y. *et al.* A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. *Adv. Mater.* **29**, 1700017 (2017).
- 18. Yu, L. *et al.* Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. *Energy Environ. Sci.* **10**, 1820-1827 (2017).

- 19. Wang, H. T. *et al.*, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. *Nat. Commun.* **6**, 7261 (2015).
- 20. Chen, G. F. et al. Efficient and stable bifunctional electrocatalysts Ni/Ni<sub>x</sub>M<sub>y</sub> (M = P, S) for overall water splitting. *Adv. Funct. Mater.* **26**, 3314-3323 (2016).
- 21. Zhang, R. *et al.* Ternary NiCo<sub>2</sub>P<sub>x</sub> Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. *Adv. Mater.* **29**, 1605502 (2017).
- 22. Liu, B. *et al.* Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: an all-pH highly efficient integrated electrocatalyst for hydrogen evolution. *Adv. Mater.* **29**, 1606521 (2017).
- 23. Tian, J. Q., Liu, Q., Asiri, A. M. & Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. *J. Am. Chem. Soc.* **136**, 7587-7590 (2014).
- 24. Wang, H. *et al.* Nitrogen-doped nanoporous carbon membranes with Co/CoP Janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. *ACS Nano* **11**, 4358-4364 (2017).
- 25. Son, C. Y., Kwak, I. H., Lim, Y. R. & Park, J. FeP and FeP<sub>2</sub> nanowires for efficient electrocatalytic hydrogen evolution reaction. *Chem. Commun.* **5**2, 2819-2822 (2016).
- 26. Zhang, J. *et al.* Efficient hydrogen production on MoNi<sub>4</sub> electrocatalysts with fast water dissociation kinetics. *Nat. Commun.* **8**, 15437 (2017).
- 27. Xiao, P. et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. *Energy Environ. Sci.* 7, 2624-2629 (2014).
- 28. Laursen, A. B. *et al.* Nanocrystalline Ni<sub>5</sub>P<sub>4</sub>: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. *Energy Environ. Sci.* **8**, 1027-1034

(2015).

- 29. Tan, Y. W. *et al.* 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production. *Adv. Mater.* **28**, 2951-2955 (2016).
- 30. Merki, D., Fierro, S., Vrubel, H. & Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. *Chem. Sci.* **2**, 1262-1267 (2011).
- 31. Chen, Y. Y. et al. Self-templated fabrication of MoNi<sub>4</sub>/MoO<sub>3-x</sub> nanorod arrays with dual active components for highly efficient hydrogen evolution. *Adv. Mater.* **29**, 1703311 (2017).