Supplementary Information for | High-performance | bifunctional | porous | non-noble | metal | phosphide | catalyst | for | overall | |-------------------------|--------------|--------|-----------|-------|-----------|----------|-----|---------| | water splitting | | | | | | | | | Yu et al. **Supplementary Figure 1**. A typical TEM image of as-prepared FeP/Ni₂P nanoparticles. Scale bar: 25 nm. Supplementary Figure 2. Energy dispersive X-ray (EDX) spectrum of FeP/Ni₂P nanoparticles. **Supplementary Figure 3**. XPS analysis of the original FeP/Ni₂P hybrid catalyst. **a** Fe $2p^{3/2}$. **b** Ni $2p^{3/2}$. **c** O 1s. **Supplementary Figure 4**. XPS survey spectrum of the original FeP/Ni₂P hybrid catalyst. **Supplementary Figure 5**. A cyclic voltammetry (CV) curve (black) and corresponding average activity calculated from the CV curve (orange). **a** Ni₂P and **b** FeP/Ni₂P. Scan rate: 1 mV s⁻¹. **Supplementary Figure 6.** Detailed Tafel slope analysis with a wide range of OER overpotentials. **Supplementary Figure 7**. Scan rate dependence of the current densities in the CV curves of different OER catalysts with scan rates ranging from 10 mV s⁻¹ to 100 mV s⁻¹ at intervals of 10 mV s⁻¹. **a** Ni₂P and **b** FeP/Ni₂P. **Supplementary Figure 8**. Nyquist plots of electrochemical impedance spectroscopy (EIS) for OER catalyzed by Ni₂P and FeP/Ni₂P at an overpotential of 300 mV. **Supplementary Figure 9**. The catalytic activities of Ni_2P^* catalysts grown on Ni foam with different loadings by using different $Ni(NO_3)_2$ precursor solutions. **a** HER polarization curves; **b** OER polarization curves. **Supplementary Figure 10**. The modulation on the catalytic performances of FeP/Ni₂P hybrids by tuning the loadings of FeP particles. It is found that 8 mg cm⁻² is an optimal catalyst loading for FeP/Ni₂P hybrid grown on top of Ni foam. **a** HER polarization curves; **b** OER polarization curves. **Supplementary Figure 11**. The polarization curves of different catalysts showing the effects of Ni₂P and FeP order on the catalytic activities. **a** HER and **b** OER catalytic activities. Obviously, if Ni₂P was grown on top of FeP/Ni₂P (8.0 mg cm⁻²), the as-obtained Ni₂P/FeP/Ni₂P hybrid (13.5 mg cm⁻²) shows much poorer catalytic activities compared to that when FeP was grown on Ni₂P* (7.5 mg cm⁻²) surface forming FeP/Ni₂P* (13.4 mg cm⁻²). The hybrid FeP/Ni₂P (8.0 mg cm⁻²) is the sample that we investigated in our main texts. **Supplementary Figure 12**. XPS analysis of the post-OER samples. **a** Fe 2p region. **b** Ni 2p^{3/2} region. **c** O 1s region. **d** P 2p region. From these XPS spectra, we can deduce that the real active sites for the OER are possibly the mixed NiFe oxides/oxyhydroxides on the surface. Supplementary Figure 13. XRD patterns of the FeP/Ni₂P nanoparticles after OER testing. Supplementary Figure 14. Enlarged polarization curves of different HER electrocatalysts. **Supplementary Figure 15.** Detailed Tafel slope analysis with a wide range of HER overpotentials. **Supplementary Figure 16**. Scan rate dependence of the current densities in the CV curves of different HER catalysts with scan rates ranging from 1 mV s⁻¹ to 10 mV s⁻¹ at intervals of 1 mV s⁻¹. **a** Ni₂P/Ni foam and **b** FeP/Ni₂P. **Supplementary Figure 17**. Nyquist plots of Ni₂P and FeP/Ni₂P for HER measured at -150 mV vs RHE. **Supplementary Figure 18**. Comparison of the catalytic HER activity with the same active surface area normalized by the double-layer capacitance ($C_{\rm dl}$) difference between FeP/Ni₂P hybrid and just Ni₂P catalyst. **Supplementary Figure 19**. CV curves recorded on the FeP/Ni₂P hybrid and pure Ni₂P electrodes in the potential ranges between -0.2 V vs RHE and 0.6 V vs RHE. The scan rate was 50 mV s⁻¹. Electrolyte: 1 M phosphate buffered saline (PBS). **Supplementary Figure 20**. Molecular structures of the systems calculated. **a** Ni₂P(100); **b** FeP(001); **c** FeP(010); **d** Pt(111); **e** FeP(001) on Ni₂P(100), side view; **f** FeP(010) on Ni₂P(100), side view. **Supplementary Figure 21**. A cyclic voltammetry (CV) curve (black) and corresponding average activity calculated from the CV curve (red) of FeP/Ni_2P as a bifunctional catalyst for overall water splitting. Scan rate: 1 mV s⁻¹. **Supplementary Figure 22**. Tafel analysis of the relevant polarization curve for overall water splitting. **Supplementary Figure 23**. Measurements of gas products from overall water splitting by gas chromatography (GC). **a** GC signals for the FeP/Ni₂P-based water alkaline electrolyzer after 20 and 40 min of overall water splitting. **b** The amounts of H_2 and O_2 gases versus time at a constant current density of 100 mA cm⁻². It is shown that there is a stoichiometric ratio around 2:1 between generated H_2 and O_2 . **Supplementary Table 1.** The distribution of surface oxidized species and metal phosphides quantified by the XPS survey spectrum, Fe $2p^{3/2}$ and Ni $3p^{3/2}$ XPS spectra of the original FeP/Ni₂P hybrid catalyst. | Elements | Fe | | Ni | | | | | | |----------|------|-----------------------------|------|--------------------|-------|-------|-------|--| | | Fe-P | Fe-PO _x or oxide | Ni-P | Ni-PO _x | P | 0 | C | | | Ratio | 1.88 | 5.60 | 3.57 | 0.56 | 18.47 | 48.41 | 21.51 | | **Supplementary Table 2**. Comparison of catalytic performance with the most recently reported OER catalysts. $\eta_{10,OER}$ corresponds to the overpotential of OER catalyzed at a current density of 10 mA cm⁻², while $j_{300,OER}$ corresponds to the current density at 300 mV overpotential for the OER. | OER catalysts | Electrolytes | η _{10,OER} (mV) | Tafel (mV dec ⁻¹) | Source | |---|--------------|--------------------------|---|-----------| | FeP/Ni ₂ P | 1.0 M KOH | 154 | 22.7 | Our work | | Gelled FeCoW | 1.0 M KOH | 191 | 37 | 1 | | Ni _x Fe _{1-x} Se ₂ -DO | 1.0 M KOH | 195 | 28 | 2 | | NiCeO _x -Au | 1.0 M NaOH | 270 | - | 3 | | Ni ₂ P nanoparticles | 1.0 M KOH | 290 | 59 | 4 | | Co ₄ N | 1.0 M KOH | 257 | 44 | 5 | | h-NiS _x | 1.0 M KOH | 180 | 96 | 6 | | FeP-rGO | 1.0 M KOH | 260 | 49.6 | 7 | | Bifunctional catalysts for the OER | Electrolytes | η _{10,OER (mV)} | j _{300,OER} (mA cm ⁻²) | Source | | FeP/Ni ₂ P | 1.0 M KOH | 154 | 1277 | This work | | Porous MoO ₂ | 1.0 M KOH | 260 | 41* | 8 | | Ni _{0.51} Fe _{0.49} P film | 1.0 M KOH | 239 | 80* | 9 | | MoS ₂ /Ni ₃ S ₂ | 1.0 M KOH | 218 | 100* | 10 | | CoP ₂ /rGO | 1.0 M KOH | 300 | 10 | 11 | | NiCo ₂ S ₄ nanowire array | 1.0 M KOH | 260 | 19* | 12 | | Electrodeposited CoP film | 1.0 M KOH | 345 | 0.5* | 13 | | NiCo ₂ O ₄ | 1.0 M KOH | 290 | 24* | 14 | | EG/Co _{0.85} Se/NiFe-LDH | 1.0 M KOH | 206 | 300* | 15 | | NiFe LDH | 1.0 M KOH | 240 | 30* | 16 | | NiFe LDH@DG10 | 1.0 M KOH | 201 | 77.5 [*] | 17 | | NiFe LDH/Cu NW | 1.0 M KOH | 199 | 214* | 18 | | NiFeO _x /CFP | 1.0 M KOH | 230 | 400* | 19 | | NiP/Ni | 1.0 M KOH | 247 | 50* | 20 | **Supplementary Table 3.** Comparison of catalytic performance with the available non-noble HER catalysts in alkaline electrolytes. $\eta_{10, \, \text{HER}}$ corresponds to the overpotential of HER catalyzed at 10 mA cm⁻², and $j_{200, \, \text{HER}}$ is related to the current density at 200 mV overpotential. | HER catalysts | Electrolytes | $\eta_{10, \mathrm{HER}} (\mathrm{mV})$ | Tafel (mV dec ⁻¹) | Source | |---|--------------|---|---|-----------| | FeP/Ni ₂ P | 1.0 M KOH | 14 | 24.2 | This work | | NiCo ₂ P _x Nanowires | 1.0 M KOH | 58 | 34.3 | 21 | | Ni _{1-x} Co _x Se ₂ nanosheet | 1.0 M KOH | 85 | 52.0 | 22 | | CoP nanowire/CC | 1.0 M KOH | 209 | 129.0 | 23 | | Co/CoP nanocrystals | 1.0 M KOH | 135 | 64.0 | 24 | | FeP nanowire arrays | 1.0 M KOH | 194 | 75 | 25 | | MoNi ₄ /MoO ₂ cuboids | 1.0 M KOH | 15 | 30.0 | 26 | | MoP crystals | 1.0 M KOH | ~ 140 | 48.0 | 27 | | Ni ₅ P ₄ (pellet) | 1.0 M KOH | 49 | 98.0 | 28 | | Nanoporous Co ₂ P | 1.0 M KOH | 60 | 40.0 | 29 | | Bifunctional catalysts for the HER | Electrolytes | $\eta_{10,\mathrm{HER}}(\mathrm{mV})$ | j _{200,HER} (mA cm ⁻²) | Source | | FeP/Ni ₂ P | 1.0 M KOH | 14 | 346* | This work | | Porous MoO ₂ | 1.0 M KOH | 27 | 132* | 8 | | Ni _{0.51} Fe _{0.49} P film | 1.0 M KOH | 82 | 236* | 9 | | MoS ₂ /Ni ₃ S ₂ | 1.0 M KOH | 110 | 92* | 10 | | CoP ₂ /rGO | 1.0 M KOH | 88 | 84* | 11 | | NiCo ₂ S ₄ nanowire array | 1.0 M KOH | 210 | 7.4* | 12 | | Electrodeposited CoP film | 1.0 M KOH | 94 | 480* | 13 | | NiCo ₂ O ₄ | 1.0 M KOH | 110 | 52* | 14 | | EG/Co _{0.85} Se/NiFe-LDH | 1.0 M KOH | 260 | 4.3* | 15 | | NiFe LDH | 1.0 M KOH | 210 | 8.2* | 16 | | NiFe LDH@DG10 | 1.0 M KOH | 66 | 60* | 17 | | NiFe LDH/Cu NW | 1.0 M KOH | 116 | 124* | 18 | | NiFeO _x /CFP | 1.0 M KOH | 88 | 62* | 19 | | NiP/Ni | 1.0 M KOH | 130 | 134* | 20 | ## **Supplementary Table 4**. Calculated $\Delta G_{\rm H}$ in eV. | $\Delta G_{\mathrm{H}}\left(\mathrm{eV}\right)$ | Acidic condition (pH=0) | Basic condition (pH=14) | |---|-------------------------|-------------------------| | Ni ₂ P(100) | 0.399 | 0.306 | | FeP(001) | -0.059 | -0.057 | | FeP(010) | -0.221 | -0.237 | | FeP(001)/Ni ₂ P | -0.279 | -0.255 | | FeP(010)/Ni ₂ P | -0.238 | -0.230 | | Pt | -0.184 | -0.135 | **Supplementary Table 5**. Comparison of the HER, OER and overall water splitting activities with available robust bifunctional catalysts. $\eta_{10,\text{HER}}$, $\eta_{10,\text{OER}}$, $\eta_{10,\text{overall}}$, $\eta_{100,\text{overall}}$ and $j_{1.7,\text{overall}}$ correspond to the overpotentials of HER, OER catalyzed at 10 mA cm⁻², the cell voltages at 10 and 100 mA cm⁻², and current density at 1.7 V for the overall water splitting, respectively. | Catalyst | Electrolytes | η _{10, HER} (mV) | η _{10, OER} (mV) | η _{10, overall} (V) | η _{100, overall} (V) | <i>j</i> _{1.7, overall} (mA cm ⁻²) | Source | |--|--------------|---------------------------|---------------------------|------------------------------|-------------------------------|---|-----------| | FeP/Ni ₂ P | 1.0 M KOH | 14 | 154 | 1.42 | 1.602 | 406 | This work | | Porous MoO ₂ | 1.0 M KOH | 27 | 260 | 1.53 | 1.8* | 67* | 8 | | $Ni_{0.51}Fe_{0.49}P$ film | 1.0 M KOH | 82 | 239 | 1.57 | 1.71* | 87* | 9 | | MoS ₂ /Ni ₃ S ₂ | 1.0 M KOH | 110 | 218 | 1.56 | 1.71* | 91.4* | 10 | | CoP ₂ /rGO | 1.0 M KOH | 88 | 300 | 1.56 | 1.912* | 31* | 11 | | NiCo ₂ S ₄ nanowire array | 1.0 M KOH | 210 | 260 | 1.63 | 2.097* | 16* | 12 | | Electrodeposited Co-P film | 1.0 M KOH | 94 | 345 | 1.64* | 1.745* | 42* | 13 | | NiCo ₂ O ₄ | 1.0 M NaOH | 110 | 290 | 1.65 | 1.842* | 16* | 14 | | EG/Co0.85Se/NiFe-LDH | 1.0 M KOH | 260 | 206 | 1.67 | 1.907* | 16.6* | 15 | | NiFe LDH | 1.0 M NaOH | 210 | 240 | 1.7 | 2.241* | 10 | 16 | | NiFe LDH@DG10 | 1.0 M KOH | 66 | 201 | 1.44* | 1.87* | 60* | 17 | | NiFe LDH/Cu NW | 1.0 M KOH | 116 | 199 | 1.54 | 1.69* | 111* | 18 | | NiFeO _x /CFP | 1.0 M KOH | 88 | 230 | 1.51 | 1.73* | 70* | 19 | | NiP/Ni | 1.0 M KOH | 130 | 247 | 1.61 | 2.102* | 24* | 20 | ^{*}The data were calculated according to the curves given in the literature. ## **Supplementary Note 1: Calculation of turn over frequency (TOF).** Supposing that every active site was accessible to the electrolyte, the TOF values can be calculated by the following formula: $$TOF = \frac{1}{2} \frac{I}{nF} \qquad (1)$$ where these physical variables F, n, and I are corresponding to the Faraday constant (\sim 96485 C/mol), the number of active sites (mol), and the current (A) during the LSV measurement in 1 M KOH, respectively. The factor 1/2 is due to fact that two electrons are required to form one hydrogen molecule from two protons. The number of active sites was determined by an electrochemical method. 30,31 The CV curves were measured in 1M PBS electrolyte (pH = 7). Due to the difficulty in assigning the observed peaks to a given redox couple, the number of active sites is nearly proportional to the integrated voltammetric charges (cathodic and anodic) over the CV curves. Supposing a one-electron process for both reduction and oxidation, we can get the upper limit of the number of active sites (n) based on the follow equation: $$n = \frac{Q}{2F} \qquad (2)$$ where F and Q are the Faraday constant and the whole charge of CV curve, respectively. By this equation and the CV curves, we can obtain the number of active sites for the FeP/Ni₂P hybrid is around 3.71×10^{-7} mol, while this value is changed to 1.47×10^{-7} mol for the pure Ni₂P catalyst, meaning that the FeP/Ni₂P hybrid has active sites 2.5 times that of just Ni₂P catalyst. ## **Supplementary references** - 1. Zhang, B. *et al.* Homogeneously dispersed multimetal oxygen-evolving catalysts. *Science* **352**, 333-337 (2016). - 2. Xu, X., Song, F. & Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. *Nat. Commun.* 7, 12324 (2016). - 3. Ng, J. W. D. *et al.* Gold-supported cerium-doped NiO_x catalysts for water oxidation. *Nature Energy* **1**, 16053 (2016). - 4. Stern, L. A., Feng, L. G., Song, F. & Hu, X. L. Ni₂P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni₂P nanoparticles. *Energy Environ. Sci.* **8**, 2347-2351 (2015). - 5. Chen, P. Z. *et al.* Metallic Co₄N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. *Angew. Chem. Int. Ed.* **54**, 14710-14714 (2015). - 6. You, B. & Sun, Y. J. Hierarchically porous nickel sulfide multifunctional superstructures. *Adv. Energy Mater.* **6**, 1502333 (2016). - 7. Masud, J., Umapathi, S., Ashokaan, N. & Nath, M. Iron phosphide nanoparticles as an efficient electrocatalyst for the OER in alkaline solution. *J. Mater. Chem. A* 4, 9750-9754 (2016). - 8. Jin, Y. S. *et al.* Porous MoO₂ nanosheets as non-noble bifunctional electrocatalysts for overall Water Splitting. *Adv. Mater.* **28**, 3785-3790 (2016). - 9. Yu, J. et al. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. *Adv. Funct. Mater.* **26**, 7644-7651 (2016). - 10. Zhang, J. *et al.* Interface engineering of MoS₂/Ni₃S₂ heterostructures for highly enhanced electrochemical overall-water-splitting activity. *Angew. Chem. Int. Ed.* **55**, 6702-6707 (2016). - 11. Wang, J. M., Yang, W. R. & Liu, J. Q. CoP₂ nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. *J. Mater. Chem. A* **4**, 4686-4690 (2016). - 12. Sivanantham, A., Ganesan, P. & Shanmugam, S. Hierarchical NiCo₂S₄ nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. *Adv. Funct. Mater.* **26**, 4661-4672 (2016). - 13. Jiang, N., You, B., Sheng, M. L. & Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. *Angew. Chem. Int. Ed.* 54, 6251-6254 (2015). - 14. Gao, X. H. *et al.* Hierarchical NiCo₂O₄ hollow microcuboids as bifunctional electrocatalysts for overall water splitting. *Angew. Chem. Int. Ed.* **55**, 6290-6294 (2016). - 15. Hou, Y. et al. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. *Energy Environ. Sci.* **9**, 478-483 (2016). - 16. Luo, J. S. *et al.* Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earthabundant catalysts. *Science* **345**, 1593-1596 (2014). - 17. Jia, Y. *et al.* A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. *Adv. Mater.* **29**, 1700017 (2017). - 18. Yu, L. *et al.* Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. *Energy Environ. Sci.* **10**, 1820-1827 (2017). - 19. Wang, H. T. *et al.*, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. *Nat. Commun.* **6**, 7261 (2015). - 20. Chen, G. F. et al. Efficient and stable bifunctional electrocatalysts Ni/Ni_xM_y (M = P, S) for overall water splitting. *Adv. Funct. Mater.* **26**, 3314-3323 (2016). - 21. Zhang, R. *et al.* Ternary NiCo₂P_x Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. *Adv. Mater.* **29**, 1605502 (2017). - 22. Liu, B. *et al.* Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: an all-pH highly efficient integrated electrocatalyst for hydrogen evolution. *Adv. Mater.* **29**, 1606521 (2017). - 23. Tian, J. Q., Liu, Q., Asiri, A. M. & Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. *J. Am. Chem. Soc.* **136**, 7587-7590 (2014). - 24. Wang, H. *et al.* Nitrogen-doped nanoporous carbon membranes with Co/CoP Janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. *ACS Nano* **11**, 4358-4364 (2017). - 25. Son, C. Y., Kwak, I. H., Lim, Y. R. & Park, J. FeP and FeP₂ nanowires for efficient electrocatalytic hydrogen evolution reaction. *Chem. Commun.* **5**2, 2819-2822 (2016). - 26. Zhang, J. *et al.* Efficient hydrogen production on MoNi₄ electrocatalysts with fast water dissociation kinetics. *Nat. Commun.* **8**, 15437 (2017). - 27. Xiao, P. et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. *Energy Environ. Sci.* 7, 2624-2629 (2014). - 28. Laursen, A. B. *et al.* Nanocrystalline Ni₅P₄: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. *Energy Environ. Sci.* **8**, 1027-1034 (2015). - 29. Tan, Y. W. *et al.* 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production. *Adv. Mater.* **28**, 2951-2955 (2016). - 30. Merki, D., Fierro, S., Vrubel, H. & Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. *Chem. Sci.* **2**, 1262-1267 (2011). - 31. Chen, Y. Y. et al. Self-templated fabrication of MoNi₄/MoO_{3-x} nanorod arrays with dual active components for highly efficient hydrogen evolution. *Adv. Mater.* **29**, 1703311 (2017).