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In this supplementary material, we provide the supporting information about
the Hall coefficient measurements, the electrical conductivity fitting, the lattice
thermal conductivity calculations and measurements.

S.1 Hall coefficient measurements.

In Fig. S1, we show the experimental data for the Hall effect resistance Rxy as
a function of an applied external magnetic field B in the temperature range 200
K ≤ T ≤ 400 K. The Hall coefficient RH can be extracted from the slope of the
Rxy(B) curve as

RH(T ) =
Rxy(T )

B
l (S.1)

where l is the sample thickness. The net carrier concentration and electron
mobilities can be found from the Hall coefficient data as

n(T ) =
1

eRH(T )
(S.2)

µe(T ) =
RH(T )

Rl
(S.3)

and are shown in Fig. S2 and Fig. S3 respectively. Here e is an elementary
charge, R is the resistance of the sample without magnetic field.
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S.2 Electrical conductivity fitting.

The electrical conductivity can be found using the following expression

σ(T, µ) =
1

Vcell

∫
σ(E)

[
−∂fµ(T,E)

∂E

]
dE (S.4)

where Vcell is a unit cell volume, E is energy, µ is the chemical potential, fµ is
the Fermi-Dirac distribution function and σ(E) is the differential conductivity

σ(E) = e2τ(E)g(E)v2g(E) (S.5)

where g(E) is the density of states, vg(E) is a group velocity and τ(E) = 1/Γ(E)
is the total relaxation time that is inversely proportional to the total scattering
rate Γ(E). In our calculations we use g(E) and vg obtained with the HSE06
exchange-correlation functional. In the constant relaxation time approximation
(CRTA), one assumes that τ(E) is constant and energy independent.

In this work, we consider the energy dependent scattering rates. We con-
sider 3 types of carrier scattering including acoustic deformation potential scat-
tering Γac(E), ionized impurity scattering Γimp(E) and polar optical scattering
Γpop(E) [3]. As follows from the Matthiessen’s rule, the total scattering rate
Γ(E) is a sum of all three contributions. Overall, we have 4 fitting parameters
A1, A2, A3 and phonon energy h̄ω.

Acoustic deformation potential scattering rate is

Γac(E) = A1g(E) (S.6)

Ionized impurity scattering rate is

Γimp(E) = A2nCTE
−3/2 (S.7)

where nC is the net carrier concentration obtained from the Hall coefficient
measurements (see Fig. S2)

nC(T ) = n0 exp(−Td/T ) (S.8)

where Td = 450.9 K and n0 = 16.01 · 1017 cm−3.
Polar optical scattering rate is

Γpop(E) = A3
h̄ω

vg

[
nBE

√
1 +

h̄ω

E
− nBE

h̄ω

E
sinh−1

(√
E

h̄ω

)
+

+(nBE + 1)

√
1− h̄ω

E
+ (nBE + 1)

h̄ω

E
sinh−1

(√
E

h̄ω
− 1

)]
(S.9)

where nBE is the Bose-Einstein distribution function, vg is the group velocity.
The first two terms represent the polar-optical absorption while the last two
terms describe the emission.

The energy dependent scattering rates obtained from the fitting to exper-
imental electrical conductivity for the samples before and after annealing are
shown in Fig. S4.
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S.3 Thermal conductivity measurements.

To obtain the thermal conductivity κ, we use the following formula

κ(T ) = ρcp(T )D(T ) (S.10)

where ρ is the measured density of a sample, D(T ) is the measured thermal
diffusivity and cp(T ) is the theoretical specific heat capacity. The measured
thermal diffusivity for the original ingot sample and the sample after the SPS
is shown in Fig. S5. The ingot sample has an excess of Te atoms, and a lower
density, ρ =7.82 ± 0.04 g/cm3, comparing to ρ = 7.98 ± 0.17 g/cm3 after the
SPS. The thermal diffusivity is higher for the ingot samples (black circles) than
in the SPS samples (blue triangles), but does not change after the annealing of
the SPS sample. The theoretical heat capacity is

cp = cv + V
α2

βT
T (S.11)

where α is the coefficient of thermal expansion, βT is the isothermal diffusivity,
cV can be found from the Debye model

cv = 9NAkB

(
T

TD

)3 ∫ xD

0

dx
x4ex

(ex − 1)2
(S.12)

where TD = 140 K is the Debye temperature. For the second term in Eq. S.11,
we use the experimental values from Ref. [2] and get the following expression
for the specific heat

cp(T ) = cV (T ) + 1.01 · 10−2T (S.13)

The obtained heat capacity cp(T ) linearly changes from 0.158 JK−1g−1 at T =
250 K to 0.171 JK−1g−1 at T = 700 K

S.4 Isotopic scattering for phonons.

In this work, we perform ab initio calculations solving the Boltzmann Transport
Equation (BTE). The algorithm we use is described in details in Ref. [1]. Apart
from the intrinsic three-phonon scattering processes, we include the isotopic
disorder scattering processes with rates given by

P isoqj =
π

2Nq
ωqjωq′j′δ(h̄ωqj−h̄ωq′j′)

[
nqjnq′j′ +

nqj + nq′j′

2

]∑
s

gs2

∣∣∣∣∣∑
α

zsαqj z
sα
q′j′

∣∣∣∣∣
2

(S.14)
where q - phonon wave vector, j - phonon branch index, ωqj - frequency of
phonon (q, j), nqj - Bose-Einstein distribution function, α - Cartesian coordi-
nate, s - atom type, zsαqj - phonon eigenmode, gs2 - isotopic fluctuation parameter

gs2 =

∑
i ciM

2
i − (

∑
i ciMi)

2

(
∑
i ciMi)

2 (S.15)

We use the natural isotopic composition of Hg and Te as summarized in Table 1.
The resulting isotopic fluctuation parameters are gs2 = 6.5 · 10−5 for Hg and
gs2 = 28.4 · 10−5 for Te.
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MHg, amu % MTe, amu %
195.966 0.15 119.904 0.09
197.967 9.97 121.903 2.55
198.968 16.87 122.904 0.89
199.968 23.10 123.903 4.74
200.970 13.18 124.904 7.07
201.971 29.86 125.903 18.84
203.973 6.87 127.904 31.74

129.906 34.08

Table 1: List of natural isotopes of Hg and Te.

S.5 Accumulated thermal conductivity.

The lattice thermal conductivity can be written as

κL =
1

kBT 2VcellNq

∑
ν

nν(1 + nν)ω2
νcνFν (S.16)

where Vcell is the unit cell volume, ν = {q, j}, cν is the group velocity, Fν is
the linear deviation of the out-of-equilibrium phonon distribution noutν from its
equilibrium value nν

noutν = nν − Fν · ∇T
∂nν
∂T

(S.17)

It can be found from the solution of the Boltzmann Transport Equation. In
the relaxation time approximation (RTA) FRTAν = ΛRTAν = τνcν . In the exact
solution it plays a role of a vectorial mean free-path displacement. To find a
scalar mean-free path Λexactν , one needs to project it onto velocity direction

Λexactν =
Fν · cν
|cν |

(S.18)

The lattice thermal conductivity can be rewritten as a function of one single
variable Λ as

κL =
∑
ν

κL(Λν) =

∫
dΛκaccL (Λ) (S.19)

where the accumulated thermal conductivity is defined as

κaccL (Λ) =
∑
ν

κL(Λ)δ(Λ− Λν) (S.20)

In Fig. S6 we show the difference in the accumulated thermal conductivities
in the two approaches discussed above. As one can see, the mean free path
distribution in the exact approach is shifted toward the longer values.

S.6 Summary of experimental results

In Fig. S7, we summarize the experimental data on electrical conductivity (top
panel), Seebeck coefficient (middle panel) and thermal conductivity (bottom
panel) in the temperature range between 300 K and 500 K. The measurements
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performed on ingot and coarse powder samples (black filled circles and red empty
squares correspondingly) show essentially the same thermoelectric properties.
While measurements performed on annealed fine powder samples (blue filled
triangles), show the similar Seebeck coefficient and thermal conductivity but
not the electrical conductivity. The latter is revealed to be extremely sensitive
to the number of external impurities such as excess Te atoms. One can get rid
of the impurities by annealing of the samples in the presence of Hg gas. The
results from the literature indicate that in this case the electrical conductivity
could be enhanced almost twice. For instance, Dziuba et al. reported σ = 1590
S/cm [4] for the intrinsic samples (concentration is not mentioned) at T = 300
K and Whitsett et al. reported σ = 1700 S/cm at p = 5.0 · 1016 cm3 and
σ = 1300 S/cm at p = 3.5 · 1017 cm3 [5]. Thus, the increase of the electrical
conductivity via purification of intrinsic HgTe samples should be considered as
the route to enhance the thermoelectric properties of bulk HgTe.

S.7 Seebeck coefficient convergence

In Fig. S8, we show the theoretical Seebeck coefficient of HgTe as a func-
tion of carrier concentration for n− and p−type samples of HgTe calculated
at different initial DFT k-point grids in the CRTA. We use the GGA exchange-
correlation functional and the interpolated grid 20 times denser than DFT grid
for this demonstration. While the full convergence is achieved at very dense
grid 40x40x40 (black solid line), the coarser grid 20x20x20 has a maximum er-
ror of about ±12µV/K at concentrations corresponding to the maximum of the
Seebeck coefficient. This coarser grid also reproduces well the positions of the
Seebeck coefficient maxima as well as the overall Seebeck coefficient profile as
a function of a carrier concentration. We note that our converged GGA results
are consistent with the ones from the literature Ref. 15 where WIEN2K +
GGA functional + BoltzTraP were used to calculate the transport properties
of HgTe in the CRTA. The use of a coarser grid 20x20x20 for the calculations
with HSE06 functional is enforced by its high computational cost.
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Figure S1: The Hall effect resistance Rxy measured as a function of magnetic
field B at different temperatures.
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Figure S2: The net carrier concentration obtained from the Hall coefficient mea-
surements as a function of temperature for the samples before (blue diamonds)
and after (red diamonds) annealing. The samples are found to be n-type.

7



Figure S3: The experimental carrier mobilities as a function of temperature for
the samples before (blue diamonds) and after (red diamonds) annealing. The
mobilities are improved after annealing. In both samples, the mobilities decrease
with temperature.

Figure S4: Acoustic deformation potential (yellow curves), polar optical (ma-
roon curves) and charged impurity (blue curves) scattering rates obtained from
the fitting of experimental electrical conductivities in the samples after anneal-
ing.
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Figure S5: The temperature-dependent thermal diffusivity of HgTe ingot and
SPS samples. The thermal diffusivity decreases after the SPS process, and both
of ingot and SPS samples’ thermal diffusivity reduce with increased temperature.
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Figure S6: Accumulated thermal conductivity calculated within the RTA
(dashed lines) and from the exact solution of the BTE (solid lines).
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Figure S7: The summary of experimental electrical conductivity (top panel),
Seebeck coefficient (middle panel) and thermal conductivity (bottom panel) as
a function of temperature. Our measurements in the ingot, SPS coarse and SPS
fine (annealed) samples are shown as black filled circles, red unfilled squares
and blue filles triangles. The data from Ref. [11] and Ref. [12] from the main
text are shown as green and cyan crosses and magenta pluses correspondingly.
Yellow cross shows the data from Ref. [14] of the main text.

11



Figure S8: The Seebeck coefficient as a function of a carrier concentration for
n− and p−type samples calculated with the GGA functional in the CRTA.
Different curves represent different initial DFT k-point grids: red curve - 8x8x8,
blue curve - 20x20x20, green curve - 30x30x30, black curve - 40x40x40. The
interpolated k-point grid is set to be 20 times more dense than the initial grid.
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