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ABSTRACT Cells in vivo can reside in diverse physical and biochemical environments. For example, epithelial cells typically
live in a two-dimensional (2D) environment, whereas metastatic cancer cells can move through dense three-dimensional
matrices. These distinct environments impose different kinds of mechanical forces on cells and thus potentially can influence
the mechanism of cell migration. For example, cell movement on 2D flat surfaces is mostly driven by forces from focal adhesion
and actin polymerization, whereas in confined geometries, it can be driven by water permeation. In this work, we utilize a two-
phase model of the cellular cytoplasm in which the mechanics of the cytosol and the F-actin network are treated on an equal
footing. Using conservation laws and simple force balance considerations, we are able to describe the contributions of water
flux, actin polymerization and flow, and focal adhesions to cell migration both on 2D surfaces and in confined spaces. The theory
shows how cell migration can seamlessly transition from a focal adhesion- and actin-based mechanism on 2D surfaces to a wa-
ter-based mechanism in confined geometries.
INTRODUCTION
Animal cell migration is a complex process orchestrated by
actin dynamics, focal adhesions, and also water flux (1,2).
However, how these elements are added together to obtain
the observed cell speed is less clear. For example, cell
migration on two-dimensional (2D) surfaces is mostly
driven by forces from actin polymerization and focal adhe-
sions (3), and there has been extensive work on modeling
actin-driven cell migration on 2D surfaces (4–6), whereas
cells in confined geometries can be driven by water perme-
ation (7). Moreover, cells in confined channels show a di-
versity of behavior: some cells such as MDA-MB-231
(human breast cancer cell line) show reduced migration
speed when actin is disrupted (8,9), whereas for others
such as S180 (mouse sarcoma cell line), the migration
speed is unaffected (7). In addition to varying responses
to actin inhibition, cell movement in confinement appears
to be sensitive to hydraulic resistance (10). Even more
complex are cells in three-dimensional (3D) collagen
matrices, where they develop long protrusions that interact
with the collagen fibers, pores, and interstitial fluid
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(11–15). Depending on the cell shape, the nucleus may
also play a significant role in propelling the cell (16).
Thus, there are diverse mechanisms driving cell migration
(17). We would like to understand whether there are unified
physical principles and mechanisms giving rise to the wide
range of observed cell behavior. Can we explain the impact
of the physical environment on the speed of cell migration?
In this work, by focusing on the combined contributions
from actin dynamics and water flow, we develop a general
model to understand mechanisms of cell migration in 3D,
2D, and one-dimensional (1D) environments (Fig. 1,
A–C). In all these cases, we examine an effective one-
dimensional volume element of a cell and compute the
leading-edge cell speed for different actin- and water-
flow dynamics. We find that the hydraulic environment of
the cell potentially has a counterintuitive impact on the
cell speed and determines the contribution of actin and wa-
ter to the observed cell movement. In particular, cells
can speed up if the coefficient of external hydraulic resis-
tance increases, even when there is no change in the molec-
ular elements driving migration. These results explain the
diversity of observed cell-migration mechanisms and
suggest that cells moving in 3D matrices are not only
influenced by collagen fibers but also the hydrodynamic
environment.
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FIGURE 1 A two-fluid-phase cell-migration model. (A) The schematics of a cell in a 3D collagen gel are shown. The thin protrusion can be regarded as a

1D structure. (B) The schematics of a cell on a 2D substrate are shown. A strip of a cell on a 2D substrate can be regarded a 1D structure. (C) The schematics

of a cell in a confined space are shown. In this case, the cell is essentially 1D. The model represents a cell (or a strip) with length L and width b. (D) A diagram

of the relevant forces that contribute to cell migration is given. vn;c is the actin network and cytosol phase velocity, respectively. vtk is the possible vesicle
trafficking rate from the back to the front. The actin phase forms focal adhesion with the environment, resulting in a frictional drag force hstvn. Membrane

movement also generates frictional force ðxmvmÞ. As the cell displaces external water, the hydraulic resistance can be expressed as dgðv0 � JwaterÞ, where v0 is
the cell boundary velocity. (E) A unit cross-sectional area of the cell leading edge is given. An exact kinematic relation for two-phase cell migration from time

t to tþDt can be derived frommass balance. Each phase is attached to the cell leading edge (no void space) so that the cell velocity is related to the velocity of

each phase. Jfactin is the actin polymerization rate at the leading edge. Jfwater is the water influx rate at the leading edge. qc;n is the volume fraction of the cytosol

actin network phase, respectively. vfc and vfn are the intracellular fluid velocities at the leading edge for the cytosol and actin phase, respectively. (F) The

computed intracellular hydrostatic pressure field (left axis) and cytosol velocity field with respect to the cell frame (right axis) are shown. v0c ¼ vc � v0.
(G) The computed intracellular actin velocity field with respect to the cell frame (left axis) and its volume fraction (right axis) are shown. v0n ¼ vn � v0.

(H) A diagram of the actin retrograde flow predicted by the model is given. To see this figure in color, go online.
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MATERIALS AND METHODS

A two-phase model of cell migration

To avoid complications associated with cell geometry, in this work, we

mainly discuss a 1D-volume element of a moving cell. For example, for

cells in 3D collagen matrices (Fig. 1 A), the thin protrusions can be regarded

as 1D structures. For cells on 2D substrates (Fig. 1 B), we model a 1D strip

of the cell. In this case, we only consider velocities and forces perpendicular

to the cell leading edge. The effect of external bulk fluid flow in 2D is not

considered in the model. For cells in a confined space (Fig. 1 C), the actin

network and water flows can be directly modeled in 1D. In this case, the cell

nucleus provides additional drag forces on the cytoplasm as the flows pass

around or through (for the water phase) the nucleus. Within the 1D frame-

work, the cell boundary is reduced to a front (‘‘f’’) and a back (‘‘b’’). We use

superscripts ‘‘f’’ and ‘‘b’’ to denote quantities associated with the cell front

(leading edge) and back (trailing edge), respectively. In the following, we

discuss briefly the 1D two-phase model of cell migration; more details

and explanations can be found in the Supporting Materials and Methods.

In our model, we treat the cytosol (c, which is essentially water) and the

actin network (n) as two fluid phases interacting with each other (18) and

with the environment. The essential elements in the model are illustrated

in Fig. 1 D. The volume fraction and velocity of the cytosol (actin network)

phase are qcðqnÞ and vcðvnÞ, respectively. In the frame of the cell body when

the flow is steady, mass conservation conditions of the two phases are

d

dx

�
qnv

0
n

� ¼ 0 (1)

and

d

dx

�
qcv

0
c

� ¼ 0; (2)
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where v0n ¼ vn � v0 and v0c ¼ vc � v0 are the velocities of the two phases in

the frame of the moving cell and v0 is the steady migration velocity of the

leading edge and the cell.

For moving cells, new actin filaments are polymerized at the cell bound-

ary with a rate J
f=b
actin. Similarly, water influx, J

f=b
water, also occurs at the cell

boundary. In this model, J
f=b
actin is a parameter, and J

f=b
water is calculated from

the chemical potential difference of water, i.e., J
f=b
water ¼ � af=bðDPf=b �

DPf=bÞ, where DPf=b and DPf=b are, respectively, the hydrostatic and

osmotic pressure differences across the cell membrane and af=b is a coeffi-

cient of membrane water permeability. The cell can control DPf=b by

generating ion fluxes at the cell boundary, and therefore we take it as a

parameter. DPf=b must be computed from mechanical considerations.

Because there are no void spaces, the cell boundary velocity is closely

related to the boundary velocity of each phase. At the leading edge of the

cell, as illustrated in Fig. 1 E, boundary kinematic relations read as

qfcv
f
c þ Jfwater ¼ v0q

f
c and qfnv

f
n þ Jfactin ¼ v0q

f
n. Therefore, the velocity of

the cell boundary is

v0 ¼ Jfwater þ Jfactin þ qfnv
f
n þ qfcv

f
c; (3)

where we have used qc þ qn ¼ 1. Eq. 3 suggests that both water flux

and actin polymerization can potentially contribute to cell migration (19).

In a steady state with constant cell volume, Jfactin ¼ �Jbactin and Jfwater ¼
� Jbwater; we thus use the notations Jactin ¼ Jfactin and Jwater ¼ Jfwater to repre-

sent the magnitude of these fluxes in the cell.

During cell migration, the cell membrane has a translational velocity,

vm, with respect to the surroundings. This motion leads to a frictional

force between the cell and the surroundings. This force can be expressed

as fm ¼ � xmvm, where xm is the coefficient of frictional drag. vm and v0
are typically equivalent, but they can also be different if we include the

velocity of membrane growth or extension from vesicle trafficking (20),

vtk. In this case, the apparent velocity of the cell boundary, v0, is
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formally a sum of the translational velocity of the lipid membrane and

the velocity from vesicle trafficking, i.e., v0 ¼ vm þ vtk. vtk depends

on the cell membrane tension, t (21,22). Note that vesicle trafficking

does not affect Eq. 3, which is only based on the assumption that the

actin network phase is always attached to the membrane. This assump-

tion holds during typical tissue-cell migration. One violation of such a

condition is blebbing motility (23), in which the membrane extends

without actin. Although blebbing motility can be analyzed within the

two-phase framework, the details are more complicated. We will not

discuss this case here.

If we regard the actin network as isotropic, it then also has an effective

pressure that is different from the cytosol phase because of active contrac-

tions from myosin. The actin network is linked to the underlying substrate

through focal adhesions and integrins (24). As the actin network flows, this

linkage transmits a force from the environment to the actin network and

thus onto the entire cell. For low actin-flow velocities, the force from focal

adhesions is approximately proportional to the velocity of actin flow (25),

i.e., fst ¼ � hstvn, where hst is the coefficient of focal adhesion friction.

Factors that can influence hst include the substrate stiffness (26,27) and

the size (28) and density (29) of adhesions. In this work, we restrict our-

selves to understanding the mechanism of cell migration for a linear

force-velocity relation for the focal adhesions. Experiments (25) and theory

(27,30,31) have shown that the adhesion force-velocity relationship is

generally complex and nonlinear. This can be incorporated into our model,

but the details are not analyzed here.

To predict the cell velocity from Eq. 3, we need to know intracellular ve-

locities vfn and vfc. These must be solved from mechanical force balance.

When all of the forces are considered, the conservation of momentum for

the two cytoplasmic fluid phases are

0 ¼ �qc
d

dx
Pc þ hqnqc

�
v0n � v0c

�� zcqcv
0
c (4)

and

0 ¼ �qn
d

dx
Pc � hnqn

�
v0n þ ðv0 � vmÞ

�þ hqnqc
�
v0c � v0n

�

d � 0 � 0
�
dx

ðqnfnÞ � hstqn vn þ v0 � znqnvn; (5)

where h is the coefficient of interphase viscous drag, hn is the effective

viscosity of the actin phase, and zcðxÞ and znðxÞ are the coefficients of

frictional drag from the nucleus on the cytosol and on the actin phases,

respectively; these are only defined in the region where the nucleus is

present. Pc and Pn ¼ Pc þ fn are the cytosol and network phase pres-

sures, respectively. We write the excess pressure in the network phase

as qnfn, which is also related to active contraction generated by

myosin.

As the cell boundary moves at velocity v0, the cell may experience an

extracellular hydraulic resistance (in units of pressure, because this force

is exerted on an area element). When v0sJwater, the cell boundary must

push the external fluid at velocity v� ¼ v0 � Jwater. In the extreme case of

a cell in a confined channel, the cell must push the complete column of

water in front of the cell at the velocity v�, and the friction between the

extracellular fluid and the channel wall generates a large hydraulic resis-

tance. This hydraulic resistance can be expressed as a linear function of

v�, i.e., P� ¼ dgðv0 � JwaterÞ, where dg is a coefficient to be determined by

the extracellular geometry and flow properties. In addition, the cell may

experience external forces from extracellular objects such as mounted

cantilever (32). We use fext to account for this effective force per unit

area (again in units of pressure). Therefore, the force balance of the

cell membrane is
b
��
Pf
in � Pf

�
�� �

Pb
in � Pb

�
��þ bf fext � bf bext

¼ �bhn

Z L

0

qn
�
v0n þ ðv0 � vmÞ

�
dx þ 2xmvmL: (6)

The cell boundary velocity v0 can be solved by integrating the sum of

Eqs. 4 and 5 and adding that to Eq. 6. In the limit of vm ¼ v0, v0 can be

solved analytically as follows (see Supporting Materials and Methods for

more information):

v0 ¼ LhstJactin þ f fext � f bext
LhstQn þ 2xmL=bþ dg

þ LzðzcJwater þ znJactinÞ þ dgJwater
LhstQn þ 2xmL=bþ dg

; (7)

where L and b are the length and width of the cell (or a strip of cell), respec-

tively, Lz is the length of the nucleus (Fig. 1 C), and Qn is the average vol-

ume fraction of the actin phase, satisfying
R L
0
qnðxÞdx ¼ LQn. The

approximation vm ¼ v0 is valid when the net flux of vesicle trafficking is

negligible. This can occur when the membrane-tension gradient across

the cell is negligible or when the rate of vesicle formation is low. We

will show that the membrane-tension gradient is indeed very small for

the underlying physics included in the model. In this work, we also have

not considered membrane blebbing and thus also neglect any membrane-

tension changes due to blebbing (33).

The numerical values of parameters for the model are listed in Table 1.

Unless otherwise specified or varied, these parameters are used throughout

the work. More details on the physical interpretation of each parameter can

be found in the Supporting Materials and Methods.
RESULTS AND DISCUSSION

The nucleus can increase the intracellular
pressure difference

Fig. 1, F and G show a typical distribution of the intracel-
lular hydrostatic pressure, volume fraction of the actin
phase, and velocities of the two phases for a migrating
cell with respect to the cell moving frame (see Supporting
Materials and Methods for parameters). The velocity of
the cell edge and the membrane translation are predicted
to be the same, v0 ¼ vm ¼ 12 nm/s. Therefore, in this
case, vesicle trafficking has a negligible effect. This is
because the membrane tension difference between the cell
front and back is negligible (see Supporting Materials and
Methods and a later section). For the assumed osmotic pres-
sure gradient, the water flux into the cell at the front is
Jwater ¼ 31 nm/s, whereas the actual cell velocity is much
smaller. Because v0sJwater, the cell displaces the extracel-
lular fluid as it migrates.

The average intracellular hydrostatic pressure, Pc, is
determined by the average osmolarity difference across
the cell. In confined channels, the nucleus also influences
Pc, giving rise to a piece-wise linear pressure profile. Larger
effective drag from the nucleus on the cytosol, i.e., larger zc,
induces higher pressure difference between the front and
back of the cell. When zc ¼ 0, then Pc is a smooth function
over the entire cell length, and the difference of Pc across the
Biophysical Journal 114, 2965–2973, June 19, 2018 2967



TABLE 1 Parameters Used in the Models

Parameters Description Values Sources

R (J/mol K) ideal gas constant 8.31451 constant

T (K) absolute temperature 300 room temperature

L (mm) cell length 50 generic

Lz (mm) nucleus length L/2 generic

b (mm) cell width 3 generic

h (mm) membrane thickness 0.5 (48)

h (Pa , s/mm2) drag coefficient between two phases 1 (49)

hn (Pa , s/mm2) effective viscosity in the actin phase 1.3 see text

zc (Pa , s/mm2) effective drag coefficient from the nucleus to the cytosol phase 10 assumed

zn (Pa , s/mm2) effective drag coefficient from the nucleus to the actin network phase 100 assumed

xm (Pa , s/mm) coefficient of friction of the channel wall 1 (7)

hst (Pa , s/mm2) coefficient of drag from focal adhesion 1 � 104 (25)

dg (Pa , s/mm) coefficient of hydraulic pressure 1 � 103 see text

f fext (Pa) external force per unit area at the front 0 generic

f bext (Pa) external force per unit area at the back 0 generic

af (mm/(Pa , s)) water permeability constant at the front 1.0 � 10�4 (7)

ab (mm/(Pa , s)) water permeability constant at the back 1.0 � 10�4 (7)

g0
tk (nm/s) maximal rate of vesicle trafficking 10 assumed

tmax (Pa m) maximal membrane tension when vesicle trafficking stops 5 � 10�2 assumed

Qn average volume fraction of the actin phase 0.02 (50)

fn (Pa) excess pressure in the actin network �1000 (back) to �5000 (front) assumed

Jactin (nm/s) actin flux at the two boundaries 10Qn assumed

Pf
0 (Pa) extracellular hydrostatic pressure at the front 0 generic

Pb
0 (Pa) extracellular hydrostatic pressure at the back 0 generic

cf0 (mM) extracellular ion concentration at the front 340 (7)

cb0 (mM) extracellular ion concentration at the back 340 (7)

cfin (mM) intracellular ion concentration at the front 340.75 generic

cbin (mM) intracellular ion concentration at the back 340.5 generic

These are the default parameters unless otherwise specified.
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cell is reduced (see Fig. S2). This result is consistent with the
‘‘nuclear piston’’ mode of migration, in which the pressure
gradient of the nucleus can influence cell speed (16).
With the nucleus, the model predicts the same average intra-
cellular cytosol pressure as the case without the nucleus;
only DPc ¼ Pf

c � Pb
c is different. The relative velocity

of the cytosol, v0c ¼ vc � v0 (shown in Fig. 1 F), is
determined mostly by the boundary condition, i.e., v0cðLÞ ¼
� Jwater=qcðLÞ. Higher

��v0c
�� at the back of the cell is consis-

tent with the lower cytosolic volume fraction, because the
product qcv

0
c must be a constant from the mass conservation.
Retrograde flow is prominent at the cell leading
edge

The relative velocity of the actin network, v0n ¼ vn � v0
(shown in Fig. 1 G), is largely determined by the rate of
actin (de)polymerization at the boundaries, i.e., v0nðLÞ ¼
� Jactin=qnðLÞ. In this example, the actin velocity at the
cell front in the fixed frame is vfn ¼ v0fn þ v0 ¼ �6 nm/s.
This negative velocity pointing inwards is the actin retro-
grade-flow motion commonly seem during cell migration
(34). Our model also predicts a decrease of the retrograde
velocity toward the back of the cell (Fig. 1 G) as seen in ex-
periments (35). A cartoon depiction of actin retrograde flow
is shown in Fig. 1 H. Because of the boundary condition
2968 Biophysical Journal 114, 2965–2973, June 19, 2018
specified in the model, we do not consider an anterograde
actin flow at the back of the cell (6).
Cell migration on 2D substrates relies on actin
dynamics and focal adhesion

For cells on 2D substrates, the coefficient of hydraulic resis-
tance is negligible (d2Dg ¼ 0; see the Supporting Materials
and Methods for more information), and the effective drag
from the nucleus on the two phases can be neglected as
well (zc ¼ zn ¼ 0). Hence, Eq. 7 is reduced to a simpler
form in which v0 is independent of Jwater. The model pre-
dicts that v0 scales with the rate of actin polymerization,
Jactin=Qn, and the coefficient of focal adhesions, hst
(Fig. 2 A). In the limit of large hst (for example, along the
line hst ¼ 104 Pa , s/mm2), the effect of xm and f

f=b
ext dimin-

ishes and v0xJactin=Qn, suggesting that when the strength
of focal adhesion is high (no slip), the cell velocity is deter-
mined by the rate of actin polymerization. On the other
hand, when the force from focal adhesions is abolished
(along the line hst ¼ 1 Pa , s/mm2), v0 does not increase
as Jactin increases. This is consistent with the finding that
for actin polymerization to be effective, there must be suffi-
cient focal adhesion friction (24).

Fig. 2 B shows the predicted relation between v0 and actin
retrograde velocity as Jactin varies for different hst. A higher
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FIGURE 2 Cell migration on 2D substrates. (A) The contours of the cell boundary velocity, v0, are shown as functions of actin polymerization rate Jactin and
focal adhesion friction coefficient hst. Jactin=Qn is a measure of actin velocity at the cell boundary generated by actin polymerization. In the calculation, Jactin
varies and Qn remains unchanged. (B) The cell boundary velocity v0 is given as a function of vfn for different coefficient of focal adhesion hst. (C) The con-

tours of v0 as Jactin and Jwater vary as shown. In 2D, Jwater does not influence cell boundary velocity. (D) The contours of v0 as xm and f fext vary as shown. (E) The
contours of v0 as f

f
ext and hst vary as shown. (F) The stall force per unit area for different hst is given. As expected, the magnitude of the stall force increases

with increasing coefficients of focal adhesion friction or the rate of actin polymerization. To see this figure in color, go online.
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rate of actin polymerization results in a higher cell velocity
and also a higher magnitude of actin retrograde flow,
because

��vfn
�� increases faster than v0. For the same actin ve-

locity vn, the model predicts a higher v0 for higher hst.
Although the cell boundary velocity is in general influ-

enced by the water flux through the membrane (Eq. 3), the
model predicts that under negligible hydraulic resistance
ðd2Dg ¼ 0Þ, the boundary velocity is independent of Jwater.
This can also be seen from Eq. 7, in which Jwater does not
contribute to v0 when dg ¼ 0. More discussion is given in
a later section.
Influence of external force on cell migration

The cell boundary moves faster if the membrane friction
with the environment, xmvm, is low or the combination of
the external forces (per unit area), f fext � f bext, points in the di-
rection of cell migration (Fig. 2 D). Contour plots of v0 as a
function of hst and f fext show a similar story (Fig. 2 E). We
predict that when the friction force from focal adhesion is
small (low hst), v0 scales linearly with f fext; when the force
from focal adhesion is large (high hst), then the external
forces have a negligible effect on cell velocity. Therefore,
Fig. 2 E also implies an external force-cell velocity relation
for cell migration. Similar calculations can be obtained for
different rates of actin polymerization. We can extract the
stall force when v0 ¼ 0 for each hst and Jactin. As expected,
the magnitude of the stall force increases as hst or Jactin in-
creases (Fig. 2 F). For a 2D cell’s boundary element of
3 mm width and 200 nm height, the predicted stall force is
on the order of 1 nN, which is of the same order as the stall
force for cell boundary lamellipodium (32).

The spatial variation of the cell-membrane tension is set
partially by the membrane friction with the environment
and partially by the external force: larger xm and f fext � f bext
can generate a membrane tension difference up to 10%
from the back to the front of the cell (see Fig. S3). In other
cases, the membrane tension is almost uniform across the
cells, and thus the velocity contributed by the membrane
trafficking is negligible. This result validates the assumption
of vm ¼ v0 that is used to approximate v0 in Eq. 7. The vis-
cosity of each phase or the friction between two phases
has little contribution to v0 (see Fig. S3), showing that for
cells on 2D substrates, migration is mostly driven by actin
polymerization, focal adhesion, and external forces acting
on the cell.
Confined 1D cells migrate faster under higher
coefficients of hydraulic resistance

For cells in confined channels (Fig. 3 A), the coefficient of
hydraulic resistance is d1Dg ¼ 12mf ‘0=b

2, where ‘0 is the
total length of the channel and mf is the extracellular
fluid viscosity in the channel (see the Supporting Materials
and Methods for more information). A longer channel or
a higher extracellular fluid viscosity leads to a higher
Biophysical Journal 114, 2965–2973, June 19, 2018 2969
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FIGURE 3 Confined 1D cells migrate faster under higher coefficients of hydraulic resistance. (A) A diagram of the cell and the external fluid flow in a 1D

channel is shown. (B) A model prediction of the cell boundary velocity v0 as d
1D
g varies is shown. Here, cfin ¼ 340:7mM, which corresponds to a water flux of

Jwater ¼ 82 m m/h. (C) The velocity of the cell edge v0 as Jwater and d1Dg vary as shown. We let cfin vary from 340.6 to 341 mM and obtain Jwater accordingly.
Cell velocity increases with increasing Jwater and d

1D
g . (D) The contours of v0 as Jactin and hst vary as shown. Here, d

1D
g ¼ 106 Pa,s/mm. For confined channels

with high hydraulic resistance, neither actin polymerization nor focal adhesion friction influence the cell speed significantly. (E) Stall force per unit area

increases with d1Dg . To see this figure in color, go online.
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coefficient of hydraulic resistance. In a typical channel in this
work or in (7), for example, b ¼ 5 m m, ‘0 ¼ 500 m m, and
mf ¼ 10�3 Pa , s, then d1Dg is about 2.5� 10�1 Pa , s/mm. In
reality, d1Dg can be much higher than this estimate because
the channel walls are not smooth. Fig. 3 B shows the model
prediction that v0 increases with d1Dg while the other param-
eters remain the same. The cell velocity saturates at low and
high d1Dg . For intermediate d1Dg , one order of magnitude
change of d1Dg —for example, from 5 � 103 Pa , s/mm to
5 � 104 Pa , s/mm—results in an increase in cell velocity
(from �54 mm/h to �75 mm/h) by �40%.

This prediction, showing that cells move faster in an envi-
ronment with a higher coefficient of hydraulic resistance, is
rather counterintuitive. This result can be understood by
considering the flow of the extracellular fluid. In Fig. 3 B,
with constant Jwater, v0 increases as d

1D
g increases, meaning

that the cell utilizes more of the water flux in v0. This means
the fluid velocity in the channel, v� ¼ v0 � Jwater, decreases
with d1Dg , which is expected under higher hydraulic resis-
tance. In addition, the cytosol velocity vc must be contin-
uous with extracellular fluid velocity and decrease for
larger d1Dg . Therefore, the cell boundary velocity increases.

On the other hand, increased velocity of cell migration
under a higher coefficient of hydraulic resistance, d1Dg , helps
to reduce the otherwise high hydraulic resistance, d1Dg v�:
although the coefficient of hydraulic resistance varies
from 102 to 106 Pa , s/mm, as shown in Fig. 3 C, the actual
hydraulic resistance experienced by the cell remains in the
same order of magnitude when the cell velocity v0 increases
(see Fig. S4). Note that in this work, we have assumed that
the network phase is always attached to the cell boundary
2970 Biophysical Journal 114, 2965–2973, June 19, 2018
during continuous (de)polymerization, and the velocity of
polymerization Jactin is constant. Experiments have shown
that actin polymerization can adapt against mechanical
resistance to grow at a constant velocity (36), which justifies
this assumption, although, in principle, any dependence of
Jactin on force can be incorporated in our model.
Transition between actin-driven and flow-driven
cell migrations depends on the external
coefficient of hydraulic resistance

Equation 3 suggests that v0 increases with Jwater; indeed, the
model predicts that the cell migrates faster under larger wa-
ter flux. Fig. 3 C shows the dependence of v0 with Jwater and
d1Dg . When d1Dg is small (d1Dg < 102 Pa , s/mm), the cell ve-
locity is low and is almost independent of Jwater, suggesting
that water flux does not contribute to cell migration in this
regime. This is the situation for cells on a 2D substrate
(also see Fig. 2 C). When d1Dg is large (d1Dg > 105 Pa ,
s/mm), the cell velocity equals to Jwater; this is the situation
for a cell in a confined space where cell migration is mostly
facilitated by water flux, i.e., an osmotic engine model (7).
In this regime, the boundary velocity saturates with d1Dg .

For a high coefficient of hydraulic resistance, for
example, d1Dg ¼ 106 Pa , s/mm, the predicted cell velocity
v0 is independent of Jactin or hst (Fig. 3 D). This result,
together with Fig. 3 C, indicates that under a high coefficient
of hydraulic resistance, v0 is dominated by water flux, not
the actin network, whereas under a low coefficient of hy-
draulic resistance, v0 is dominated by the actin network,
not water flux. Our model shows that the transition from
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actin-driven cell migration to water-driven cell migration
can result from the physical effects of fluid flow, not from
a change in the mechanism of migration signaled by the cell.

Similar to the 2D case in which higher external forces are
needed to stop cell migration under higher strength of focal
adhesion (Fig. 2 F), in 1D, higher external forces are needed
to stop cell migration under a higher coefficient of hydraulic
resistance (Fig. 3 E). The magnitude of the stall force is
therefore also a measure of the strength of the ‘‘driving
force,’’ which is focal adhesion and actin polymerization
in 2D and water flux in 1D.
Hydraulic resistance in 3D matrices

The model can be extended to understand the influence of
the hydraulic environment on cell migration in 3D matrices
(hydrogels such as collagen) (Fig. 4 A). The front of the pro-
trusion interacts with the matrix and the interstitial fluid. As
the protrusion extends, it exerts a force on its environment
and changes the hydrodynamic pressure distribution in the
matrix. The extracellular matrix is a viscoelastic material
with high porosity. The gel component, i.e., the collagen-fi-
ber network, deforms as the cell protrudes and therefore ex-
erts an external force on the migrating cell. In the case of
collagen gels, the matrix is also disassembled as the cell
migrates and secretes matrix metalloproteinases (37). We
have seen in the previous sections that the coefficients of hy-
draulic resistance can vary significantly in 1D versus 2D.
This difference can determine the relative contribution
of different mechanisms of cell migration. In vivo, the me-
chanical properties of the collagen matrix are complex.
Although much has been studied to understand the visco-
elastic property and the porosity of the collagen matrix, it
remains unclear what types of hydraulic resistance the cell
experiences in 3D matrices and how this compares to the
dg in 1D and 2D. In this section, we explore how dg in 3D
depends on the mechanical properties of the collagen
matrix.

Using a poroelastic theory, we estimate the effective co-
efficient of hydraulic resistance to be d3Dg ¼ mf b=2k (see
the Supporting Materials and Methods for more informa-
tion), where mf is the effective viscosity of the fluid phase
in the collagen matrix, k is the permeability of the collagen
A B
matrix, and b is still the width of the cell protrusion. To
differentiate the notation used in 1D, we will add ‘‘3D’’ or
‘‘1D’’ to the corresponding quantities in each geometry,
i.e., d3Dg ¼ m3D

f b3D=2k and d1Dg ¼ 12m1D
f ‘0=ðb1DÞ2. We as-

sume m3D
f ¼ m1D

f . Depending on the values of b3D=2k and
12‘0=ðb1DÞ2, the coefficient of hydraulic resistance in 3D
can be either larger or smaller than that in 1D. For example,
when k ¼ 10�16 m2 (38), b3D ¼ b1D ¼ 3 m m, and ‘0 ¼
103 mm, then d3Dg > d1Dg . But when k ¼ 10�12 m2, then
d3Dg < d1Dg . Fig. 4 B shows the phase diagram of the ratio
lnðd1Dg =d3Dg Þ as the 1D channel length ‘0 and the perme-
ability of the collagen matrix k vary. The line
lnðd1Dg =d3Dg Þ ¼ 0 indicates d1Dg ¼ d3Dg .

Depending on the viscosity of the interstitial fluid in the
collagen matrix and the matrix hydraulic permeability,
which is related to the collagen density, the coefficient of
hydraulic resistance in 3D can be comparable to 1D
(Fig. 4 B). This suggests that the hydraulic effects could
play an important role in 3D cell protrusion, including
morphogenesis and cancer cell metastasis. In experiments,
it is found that cell velocity has a biphasic dependence on
the collagen density (13), which may be attributed to
collagen fiber alignment, matrix pore size (13), cell-matrix
biochemical interaction, or the effect of the hydraulic resis-
tance, which can occur when there is a large water flux
through the cell surface and the hydraulic resistance starts
to dominate at low matrix permeability. To fully study 3D
cell migration, other matrix properties should be considered,
including strain-stiffening (39), stress relaxation (40),
collagen fiber alignment, matrix pore size, and production
of matrix metalloproteinases (13). More extensive studies,
both experimental and theoretical, are needed to address
this complexity.
CONCLUSIONS

Understanding the mechanism of cell migration in
different physical environments helps to uncover patho-
physiological mechanisms. Using a two-phase modeling
framework, we derived a general expression that is appli-
cable to a wide range of physical conditions to compute
the cell boundary velocity as a function of actin polymeri-
zation rate and water influx rate. The model incorporates
FIGURE 4 Cell movement in 3D collagen ma-

trix. (A) A diagram of a cell protrusion and the sur-

rounding collagen matrix is shown. Collagen fibers

are distributed in the matrix. The tip of the protru-

sion has a radius r0 ¼ b=2, where b is the width

of the protrusion. (B) The contour of lnðd1Dg =d3Dg Þ
as the 1D channel length ‘0 and the permeability

of the collagen matrix k vary is shown. The line

is where d1Dg ¼ d3Dg . To see this figure in color,

go online.
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known mechanics of important motility components and
includes effects of focal adhesion and membrane friction
force as well as hydraulic resistance from flow outside of
the cell. Depending on the environmental properties, the
coefficient of hydraulic resistance can be substantial, espe-
cially in 1D channels and 3D matrices. The coefficient of
hydraulic resistance can influence the relative contribution
of water influx to migration speed. In 2D environments, the
hydraulic resistance is negligible so that even if the water
influx is large, it does not contribute to cell speed as long
as the cell maintains constant volume. In 1D confined
channels with a high coefficient of hydraulic resistance,
water influx enhances migration speed. In 3D matrices,
the hydraulic resistance depends on the local environment
of the cell and can be as large as the 1D case. This result
suggests that in 3D, knocking out the cell components
responsible for water flux would have major effects in
cell motility.

In this work, we mainly focus on how cell migration may
perturb the extracellular fluid environment and generate a
hydraulic resistance back onto the cell; we have not consid-
ered bulk fluid flow from the environment, which can be
relevant for cell migration on a 2D surface, e.g., endothelial
cells in blood flow. When this bulk flow is in a confined ge-
ometry such as a blood vessel, we also expect a pressure
drop in the flow and also across the cell. This hydrodynamic
pressure difference across the cell can also influence cell
migration. In unconfined geometries, the pressure drop
across the cell is negligible during bulk flow. Instead, fluid
shear stress on the cell surface is more important. This shear
stress on the cell will activate membrane channels and
further promote cell migration (41). A complete model
incorporating effects from external bulk flow has not been
developed.

Our results express the cell speed for given actin-poly-
merization and water-influx rates. However, exactly how
these fluxes are controlled is not addressed and requires
additional study and modeling. For example, the contraction
of the actomyosin network is mediated by the strength of the
focal adhesion. Biochemical feedback among the focal
adhesion, actin flow, and actomyosin contraction can also
generate traction oscillations within the adhesion (42,43).
To resolve these effects, a more complicated model is
needed to couple the contraction in the actomyosin network,
actin flow, and the strength of adhesions. In addition, there is
likely substantial cross talk between actin polymerization
and water flux. Actin polymerization is linked to the polarity
of the cell (44) and likely influences ion channels and pumps
that set up the osmotic gradient (45). There are also direct
interactions between ion channels and the cytoskeleton
(46). Water and ion fluxes could also reorganize the cyto-
skeleton. This is especially true for calcium, which is impli-
cated in activating myosin contraction (47). Therefore,
examining the interplay between actin dynamics and water
flux would yield new insights.
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1 Mathematical Model

Let v0 be the steady velocity of a 1D cell, the leading edge velocity of a 1D strip of a cell on a substrate, or a

1D protrusion of a cell in 3D collagen gel. For simplicity, we will just call the model a 1D cell, as illustrated

in Fig. S1A. The cell has length L and all the variables only vary in the x direction. A nucleus of length

Lζ is at the middle of the cell. Two intracellular fluid phases, one for the cytosol (c) and one for the actin

network (n), are modeled. We denote the volume fraction of the actin network and the cytosol as θn(x) and

θc(x), respectively. The two volume fractions satisfy θn + θc = 1. The cytosol, which is mostly water, can

have influx and efflux at the boundaries (x = 0 and x = L). The actin network is constrained within the cell

and its average volume fraction, Θn, is constant under steady-state, i.e.,

1

L

∫ L

0
θn(x)dx = Θn . (S1)

Without blebbing, each phase is effectively attached to the cell boundary (no void space) so that the boundary

velocity is related to the velocity of each phase. At the front edge of the cell, as illustrated in Fig. S1B, the

kinematic relations read as

θf
cv

f
c + J f

water = v0θ
f
c , (S2)

θf
nv

f
n + J f

actin = v0θ
f
n , (S3)

where the superscript ‘f’ indicates the front edge of the cell (x = L) and we will use the superscript ‘b’

to represent the back edge of the cell (x = 0). vn(x) and vc(x) are the velocities of the actin network

and the cytosol, respectively, in a fixed frame (absolute velocities). Because of the lateral wall and cell

membrane, vc and vn are functions in the cross-sectional directions as well; we incorporate this effect by

taking vc and vn as the cross-sectional averaged velocities of the approximated quadratic profiles for the two

1



phases. Similarly, the shear stress present due to the quadratic velocity profiles are also implicitly included

in the frictional force terms in the force balance equations below. Jactin in E. S3 is the given rate of actin

(de)polymerization. In this model, we lump the effective actin (de)polymerization to the cell boundaries. It is

possible to incorporate actin polymerization or depolymerization in the interior of the cell, and the results of

cell migration velocity do not change qualitatively. Under steady-state conditions, J f
actin = −Jb

actin = Jactin.

Jwater in Eq. S2 is the water flux across the cell boundary and satisfies

J f
water = −Jb

water = Jwater (S4)

under steady-state. The combination of Eqs. S2 and S3 implies the velocity of the cell or cell boundary

v0 = J f
water + J f

actin + θf
nv

f
n + θf

cv
f
c . (S5)

Equation S5 suggests that both water flux and actin polymerization, in principle, can contribute to cell

migration, i.e., the actual observed cell speed depends on the cytoplasmic velocity fields as well as boundary

fluxes.

x0 L

z

b

Figure S1: (A) Diagram of the coordinate system and dimension of the cell. (B) A unit cross-sectional

area of the front leading edge. A generic kinematic relation for a two-phase cell migration from time t to

t+ ∆t. Each phase is attached to the cell leading edge (no void space) so that the cell velocity is related to

the velocity of each phase and its boundary condition. θc: volume fraction of the cytosol phase. θn: volume

fraction of the actin network. (C) Diagram of the cell and the external fluid flow in a 1D channel.

We solve the system in the frame of the moving cell. The relative velocities of the two phases with

respect to the cell are v′c = vc− v0 and v′n = vn− v0. In the frame of the cell body, Eqs. S2 and S3 becomes

θf
cv
′f
c + J f

water = 0 , (S6)

and

θf
nv
′f
n + J f

actin = 0 , (S7)

respectively. As long as Eqs. S6 and S7 are enforced, the relation for cell velocity in Eq. S5 is implied.
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Water fluxes at the cell boundaries are proportional to the chemical potential difference of water across

the membrane and is defined positive inward,

J f/b
water = −αf/b [(P f/b

c − P f/b
∗
)
−RT

(
cf/b

in − cf/b
0

)]
, (S8)

where α is the coefficient of water permeability of the cell membrane, P∗ is the extracellular hydrostatic

pressure at the cell boundaries (see Fig. S1C), Pc is the hydrostatic pressure of the cytosol phase, and cin

and c0 are the intracellular and extracellular ionic concentrations, respectively. In this work, without loss of

generality, cin and c0 will be given; however, we can always extent the model to incorporate intracellular ion

dynamics as been done in [1, 2].

The extracellular pressure at the front of the cell, P f
∗, can be different from the farfield pressure at the

front of the channel, P f
0 (see Fig. S1B), if the moving cell generates extracellular fluid flow and pressure

gradient. When the velocity of the cell boundary equals to the water flux across the cell membrane, i.e.,

v0 = Jwater, the cell does not push the external fluid so that all of the water flux contributes to v0.; this is the

case of an osmotic engine model [1, 2]. However, when v0 6= Jwater, the cell pushes the external fluid and

experiences hydraulic resistance from the extracellular environment; this force is proportional to v0−Jwater.

We can express P f
∗ as

P f
∗ = P f

0 + df
g(v0 − J f

water) , (S9)

P b
∗ = P b

0 − db
g(v0 + Jb

water) , (S10)

where dg is the coefficient of hydraulic resistance and is related to the viscosity and geometrical properties

of the extracellular space (see later sections for derivations).

The velocity of the cell leading edge is also the result of membrane movement, which has two contribu-

tions: the translational velocity of the membrane, vm, and the velocity from membrane trafficking, vtk. vm
is the velocity of membrane in the lab frame. The surrounding extracellular matrix or channel walls exerts

a frictional force on the membrane proportional to vm and the cell length. vtk is the movement of the cell

leading edge due to vesicle trafficking from the back to the front of a cell because as more membrane is

added from the back to the front, the cell membrane must extend forward. We thus have

v0 = vm + vtk . (S11)

In general, vesicle trafficking occurs at both ends of the cell, the difference of which determines vtk, i.e.,

vtk = vb
tk − vf

tk. The rate of vesicle trafficking should depend on membrane tension, τ . We approximate this

rate as a linear function in τ such that when τ = 0 the rate of trafficking reaches the maximum, γ0tk, and

when the membrane tension reaches the maximum, τmax, the trafficking stops. Therefore, vtk can be written

as

vtk = γ0tk

(
1− τ b

τmax

)
− γ0tk

(
1− τ f

τmax

)
. (S12)
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The membrane tension at the two ends, τ b/f, is obtained through force balances, i.e.,

2τ f/b = b
(
P f/b

in − P f/b
∗
)

+ bf f/b
ext , (S13)

where Pin is the volume-weighted average intracellular pressure given by Pin = θcPc + θnPn, in which

Pn is the effective pressure in the actin phase. fext, defined positive outwards the cell, is the sum of all the

external applied or structural forces per unit area. These forces can come various reasons including applied

bead attraction or repulsion.

In principle there is phase exchange between the cytosol phase and the F-actin phase because during actin

polymerization and depolymerization, some of the volume of the cytosol, in the form of G-actin monomers,

is converted to the actin network phase [3]. Since the volume fraction of G-actin monomers in the cytosol

is very small compared to the overall cytosol volume fraction, this phase interchange can be neglected. At

steady-state the volume conservation of the two phases are

d

dx
(θnv

′
n) = 0 , (S14)

d

dx
(θcv

′
c) = 0 . (S15)

The vanishing right hand sides is consistent with our modeling approximations that (i) there are no sink or

source in the interior of the cell, (ii) Jwater and Jactin only serve as boundary conditions for the two phases,

and (iii) no inter-phase volume exchange occurs in the cell.

We now consider the force balance equations of the two phases. Since the viscosity of the cytosol is

close to that of water and is small (10−3 Pa·s), the viscous effect within the cytosol phase is thus negligible.

Depending on the geometry of the cell, the nucleus may restrict cytosol fluid flow. We model this restriction

by adding additional friction terms when flow passes through the nucleus. We also consider the focal adhe-

sion friction force between the actin network and the substrate, which is effectively a body force in the actin

phase. The force balance can then be written as

0 = −θc
d

dx
Pc + ηθnθc(v

′
n − v′c)− ζcθcv′c , (S16)

0 =− θn
d

dx
Pc − ηnθn[v′n + (v0 − vm)] + ηθnθc(v

′
c − v′n)

− d

dx
(θnφn)− ηstθn(v′n + v0)− ζnθnv′n , (S17)

where η is the coefficient of inter-phase viscous drag. ηn is the effective viscosity of the actin phase.

For a quadratic flow profile in z, ηn = 12µn/b
2, where b is the width of the cell and µn is the dynamic

viscosity of the actin phase, which is typically 103 times the viscosity of water [4]. The term (v0 − vm)

corrects the viscous force if there is any vesicle trafficking. The effective pressure in the actin phase can be

written as Pn = Pc + φn, where φn is the excess pressure in the actin network. This pressure comes from

4



expansion/contraction of the actin gel and myosin contraction. ηst is the coefficient of focal adhesion force

between the actin dynamics and the external matrix of the cell. The force from focal adhesion is proportional

to the absolute velocity of the actin network, vn = v′n + v0, when the network velocity is low [5]. ζc(x) and

ζn(x) are the coefficients of frictional drag from the nucleus on the cytosol and actin phases, respectively;

these are only defined in the region of the nucleus.

With all the forces considered, we can write the force balance on the entire cell membrane as

b
[(
P f

in − P f
∗
)
−
(
P b

in − P b
∗
)]

= −bηn
∫ L

0
θn[v′n + (v0 − vm)]dx+ 2ξmvmL− bf f

ext + bfb
ext . (S18)

On the right hand side of Eq. S18, the first term is the viscous drag on the lateral membrane from the actin

network. The second term is the frictional drag between the cell membrane and the surroundings, where ξm
is the drag coefficient. In both terms we count for two surfaces z = 0 and z = b as shown in Fig. S1A. The

exact drag may vary depending on the geometry; for example, a strip of a cell on 2D may only experience

frictional drag at the lower surface. This difference does not qualitatively change the results of the model,

and we will keep the two terms in the current form.

In this system of equations, we have six unknowns: Pc, v′c, v
′
n, θn, v0, and vm. The the six equations to

solve the unknowns are Eqs. S14, S15, S16, S17, S11, and S18. Equations S14, S15, S16, and S17 are four

first-order differential equations and the four boundary conditions come from Eqs. S1, S4, S6, and S7.

Here we make a few notes on this system. Adding Eq. S16 to Eq. S17 and using Eqs. S9 and S10

rewrites Eq. S18 as

− b
∫ L

0
(ζcθcv

′
c + ζnθnv

′
n)dx− bηst

∫ L

0
θn(v′n + v0)dx

= 2ξmvmL+ bdg (v0 − Jwater)− bf f
ext + bfb

ext , (S19)

where we have used P f
0 = P b

0 and dg = df
g + db

g (see below). With Eqs. S1, S7, and S14, Eq. S19 can be

simplified as

bLζ(ζcJwater + ζnJactin) + bLηst(Jactin −Θnv0)

= 2ξmvmL+ bdg (v0 − Jwater)− bf f
ext + bfb

ext . (S20)

Here we can clearly see the dominant contributions to the velocity of the cell leading edge. In the limit of

vm = v0, the velocity v0 can be expressed as

v0 =
Lζ(ζcJwater + ζnJactin) + LηstJactin + dgJwater + f f

ext − fb
ext

LηstΘn + 2ξmL/b+ dg
. (S21)

These simple expressions provide an easy way to estimate the order of magnitude of contribution from each

physical quantities. We will explore the quantities in more detail in the later sections and also in the main

text.
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1.1 Approximate dgdgdg in 1D and 2D

The hydraulic resistance experienced by a cell is also the extracellular pressure on the cell. The motion of

the extracellular fluid is governed by Stokes flow,

0 = −∇P∗ + µf∇2v∗ , (S22)

where µf is the extracellular fluid viscosity and the subscript ‘*’ denotes the extracellular space. The

Laplacian term is on the order of v∗/λ
2, where λ is the characteristic length scale of the extracellular

space.

For cells in 1D channels, dg can be solved explicitly. Let `0 be the total length of a 1D channel and

denote `b
0 and `f

0 as the extracellular fluid length in the channel behind and in front of the cell, respectively

(see Fig. S1C). In most cases L� `0 so that `b
0+`f

0 ' `0. As an example, we solve the fluid field at the front

side of the cell. Since the flow is only one-dimensional, we let v∗ be the height-averaged x−component of

v∗. From the Stoke’s equation we have

v∗(z) =
1

2µf

∂P∗
∂x

(z2 − bz) . (S23)

Then the cross-sectional averaged velocity of v∗ is

v̄∗ =
1

b

∫ b

0
v∗(z)dz = − b2

12µf

∂P∗
∂x

. (S24)

Since v̄∗ = v0 − J f
water, we can write

P f
∗ − P f

0 =
12µf `

f
0

b2
(v0 − J f

water) . (S25)

Comparing Eqs. S25 with S9, the coefficient of hydraulic resistance at the front is given by df
g = 12µf `

f
0/b

2.

Similarly, the coefficient of hydraulic resistance at the back is db
g = 12µf `

b
0/b

2. The total hydraulic resis-

tance on the cell is the combined effect of the pressure at the front and the back. Hence, the net coefficient

of hydraulic resistance for a 1D channel is d1D
g = db

g + df
g = 12µf `0/b

2. When, for example, b = 5 µm,

`0 = 500 µm, and µf = 10−3 Pa·s, then dg is about 2.5 × 10−1 Pa·s/µm. If the viscosity or length of the

extracellular fluid increases, d1D
g will scale accordingly.

Eq. S25 shows that the characteristic length scale of a 1D channel is b, the width of the channel. For cells

migrating on a 2D substrate, the extracellular space is infinite compared to the size of the cell and thus the

pressure difference across the extracellular space is negligible. As an approximation, we thus let d2D
g ' 0 in

this study.

For comparison, when a sphere of radius b is placed in a flow of viscosity µf , the viscous drag acting on

the sphere is 6πµfbu, where u is the velocity of the flow [6]. Based on our definition of the coefficient of

hydraulic resistance, the effective dg in this case is 6µf/b, which is 2`0/b times smaller than the hydraulic

resistance coefficient in a 1D channel.

6



1.2 Effect of dgdgdg on JwaterJwaterJwater

Eq. S8 shows that the water flux depends on the external fluid pressure, P∗, and thus on the coefficient of

hydraulic resistance, dg. Here we discuss the effect of dg on Jwater. Let us take the front end of the cell as

an example. Substituting Eq. S9 into Eq. S8 yields

J f
water = − αf

1 + αfdf
g

[
(P f

c − P f
0)−RT (cf

in − cf
in)
]

+
αfdf

g

1 + αfdf
g

v0 . (S26)

Since df
g + db

g = dg, then df
g < dg is always true. Without loss of generality, we may let df

g = dg/2. When

df
g is small such as df

g = 102 Pa·s/µm, then αfdf
g � 1 given that αf is around 10−6 µm/(Pa·s) (Tab. ??). The

cell boundary velocity v0 is on the order of 10 nm/s so that df
gv0 ∼ 1 Pa, which is much smaller than Pc.

Hence, Eq. S26 is reduced to

J f
water = −αf [(P f

c − P f
0)−RT (cf

in − cf
in)
]
, (S27)

which is the same as the case without considering the hydraulic resistance. On the other hand, when

df
g is large such as df

g = 106 Pa·s/µm, then df
gv0 ∼ 104 Pa, which is much larger than Pc. The ratio

αfdf
g/(1 + αfdf

g) approaches to 1 when αfdf
g � 1. Hence, J f

water = v0 for large dfg ; this is consistent with

the approximated expression of v0 in Eq. S21 as dg approaches to infinity, i.e.,

lim
dg→∞

v0 = Jwater . (S28)

Similarly, at the back of the cell the water flux is expressed as

Jb
water = − αb

1 + αbdb
g

[
(P b

c − P b
0 )−RT (cb

in − cb
in)
]
−

αbdb
g

1 + αbdb
g

v0 , (S29)

and the similar conclusion is drawn.

1.3 Approximate dgdgdg in 3D

For cells in 3D collagen matrix, we consider the resistance at the front of cell protrusions as the protrusions,

which are effectively 1D structures, extend in space. We approximate a long protrusion as a sphero-cylinder

with radius r0 (see Fig. 4A in the main text). Let θ∗ be the porosity of the collagen matrix. The force balance

of the cell membrane at the front of the protrusion is

2τ f = r0
(
P f

in − σf
∗
)

+ r0f
f
ext , (S30)

where σf
∗ is the effective pressure of the matrix at the front of the protrusion,

σf
∗ = θ∗P

f
∗ + (1− θ∗)P f

col , (S31)

where P f
∗ is the fluid pressure in the pores and P f

col is the pressure from the collagen fibers, both evaluated at

the front of the protrusion. θ∗P f
∗ is the hydraulic resistance to the protrusion. The combination of (1−θ∗)P f

col

7



and f f
ext can be regarded as the total external force at the front of the protrusion. The pressure, Pcol, in the

collagen fibers comes from cell protrusion, which deforms the collagen and introduces a stress field within

the collagen. The collagen matrix is a nonlinear, viscoelastic, porous material exhibiting strain-stiffening

[7] and stress relaxation [8]. The collagen fiber alignment, matrix pore size, and the expression of the matrix

metalloproteinases on the cell protrusion [9] all affect the interaction between the cell protrusion and the

collagen matrix, and thus the pressure Pcol. In this work, we are primarily interested in approximating the

coefficient of hydraulic resistance in 3D collagen matrix and comparing it to the coefficients in 1D and 2D;

we will therefore not solve Pcol in detail.

Due to high porosity of the collagen hydrogel matrix and the fact that cells can actively cut collagen

fibers, we can approximate the fluid pressure in the pores by solving the uncoupled consolidation equation

∂P∗
∂t
− c∇2P∗ = 0 , (S32)

where c is the coefficient of consolidation.

The cell front protrudes at velocity v0, which acts as a continuous pressure source in space and time that

pushes the fluid in the collagen matrix. To simplify the matter, we may focus on each instantaneous moment

where the pressure source is spatially fixed. In this case, the pressure source at the front of the protrusion can

be considered as a Dirac delta function in time with the amplitude P f
∗ that serves as a boundary condition

for the pore pressure in the matrix. Since the dimension of the protrusion is much smaller than that of the

collagen matrix, we may assume that the existence of the protrusion does not significantly influence the

pressure field in space and the pressure field propagates freely in the matrix. In this case, the pressure field

radiated from the tip of the protrusion is spherically symmetric, i.e.,

1

r2
∂

∂r

(
r2
∂P∗
∂r

)
− 1

c

∂P∗
∂t

= 0 , (S33)

which can be rewritten as

∂2

∂r2
(rP∗)−

1

c

∂

∂t
(rP∗) = 0 . (S34)

The consolidation equation is best solved in the frequency domain with a harmonic time form of the solution,

i.e., P∗ = P̃∗ exp(iωt), where the tilde denotes a quantity in the frequency domain. Eq. S34 then becomes

∂2

∂r2

(
rP̃∗

)
− iω

c
(rP̃∗) = 0 . (S35)

An infinite domain implies that there is no wave reflection. Therefore, the solution to Eq. S35 is

P̃∗ = P̃ f
∗
r0
r
e

√
iω
c
(r0−r) = P̃ f

∗
r0
r
e
√

ω
2c

(1+i)(r0−r) , (S36)

where P̃ f
∗ is the pore pressure at the front of the cell associated with frequency ω. P̃ f

∗ and P f
∗ have the same

value in number since the pressure source is a delta function in time. From the decay rate in Eq. S36, the

length scale of the pressure wave propagation is Lp =
√

2c/ω, which decreases with increasing frequency.

8



The fluid flow in the porous collagen matrix follows Darcy’s Law, i.e.,

0 = −∇P∗ −
µf
κ
v∗ , (S37)

where κ is the permeability of the collagen matrix. In the spherical coordinate the fluid velocity can be

solved as

v∗ = − κ

µf

∂P∗
∂r

. (S38)

The boundary condition of the velocity is

v∗
∣∣
r=r0

= − κ

µf

∂P∗
∂r

∣∣
r=r0

= v0 − J f
water , (S39)

which can also be written in the frequency domain. The combination of Eqs. S36 and S39 yields

ṽf
∗ = ṽ0 − J̃ f

water =
µf
κ

[
1

r0
+

√
ω

2c
(1 + i)

]−1
P̃ f
∗ . (S40)

Equation S40 gives the coefficient of hydraulic pressure in the frequency domain

d̃g =
µf
κ

[
1

r0
+

√
ω

2c
(1 + i)

]−1
. (S41)

The dominant ones are those of low frequencies. Indeed, as seen in Eq. S36, components of high frequen-

cies are unable to propagate through long distance. On the first order of approximation, the coefficient of

hydraulic resistance in 3D collagen matrix is d3D
g = µfr0/κ, which is equivalent to assuming that the fluid

in the pore is incompressible such that the consolidation equation (Eq. S32) is replaced by∇2P∗ = 0. Thus,

the coefficient of hydraulic resistance in a 3D collagen matrix depends on the permeability, and thus the

pore size, of the matrix.

2 Supplementary Figures
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Figure S3: (A) Contour of the ratio of membrane tension at the back to the front, τ b/τf , as ξm and f f
ext vary.

The tension difference across the cell can be up to 10% under some friction on the channel wall and the

external forces. (B) Contour of the ratio of membrane tension at the back to the front, τ b/τf , as Jactin and ηst

vary. (C) Contour of the ratio of membrane tension at the back to the front, τ b/τf , as η and ηn vary. From

(B) and (C) we can see that large variation of Jactin, ηst, η, or ηn does not lead to a non-uniform distribution

of the membrane tension. (D) Contour of the v0 as η and ηn vary. We can see that v0 does not vary with η

or ηn.
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Figure S4: Effective hydraulic resistance experienced by a cell as Jwater and d1D
g vary. When a cell migrates

in a confined channel, the effective hydraulic resistance experienced by the cell can be computed from

d1D
g (v0 − Jwater). Note that as v0 increases towards the velocity of water flux, the difference, v0 − Jwater,

reduces accordingly. Although the coefficient of hydraulic resistance has varied over four orders of magni-

tudes from 102 to 106 Ps·s/µm, the actual hydraulic resistance remains in the same order of magnitude. This

shows that the cell increases its velocity to reduce the hydraulic resistance which would otherwise increase

by several orders of magnitude.
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