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Supporting Material 

Derivation of Equation (1) in the main text 
According to the chain rule of differentiating a function with multiple variables,  
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Substitute 
d[G]

d[S]
 in equation (2) with equation (3) and we get: 
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After rearrangement, we can get: 
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Substituting 
d[G]

d[R]
 in equation (4) with equation (5) results in:  
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Then we substitute 
∂Prob

∂[G]

∂[G]

∂[R]
+

∂Prob

∂[R]
 in the third term of the right-hand-side of equation (6) with equation 

(7) and get equation (1) in the main text as below:  
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Mean First Passage Time (MFPT) 

 

Fig. S1. Sketch of the double-well potential U(x). 

 

The diffusion process in an external potential U(x) can be described by the quasilinear Fokker-Planck 

equation:  
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If the potential U(x) is bistable with shape like that in Fig. S1, the MFPT from point “a” to “c” is (1): 
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If the shape of U(x) satisfies that e
U(x′)

σ2  is large when x′ is near b and otherwise exponentially smaller, it 

can be replaced with exp [
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σ2  −  
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(x′ − b)2] in the first integral. Similarly, in the second integral, 

as x′ ≈ b, the main contribution comes from the neighborhood x′′ ≈ a and may be approximated with: 
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So, the MFPT τca ≈
2π

√U′′(a)|U′′(b)|
exp [

U(b)−U(a)

σ2 ]. This is the Kramers approximation.  

If the shape of U(x) does not satisfy the above prerequisite, we numerically calculate the double integrals 

for MFPT. The time cost for numerical integrations is large if we repeatedly implement this for every set 

of parameters and every state transition (total number is 64 × 64). We can make significant savings by 

applying the Kramers approximation where appropriate, and where the prerequisite for the approximation 

is not satisfied, by pre-computing a table of these rates numerically. We find that the MFPT only directly 

depends on [R]s, Ptot and y (a function of [R]s, [S] and [G]s). The superscript s here means the steady 

state. So, we make a table of the numerical computation results of the double integrals on a three-



dimensional 25 × 200 × 200 grid of [R]s, Ptot and y and use linear interpolation to get the MFPTs when 

needed.   

Fitting procedure 
Our model contains 10 parameters to be fitted with two of them being PA and PI which only are relevant 

in light-treatment condition. We use simulated annealing as our method of fitting. During the fitting, this 

method accepts a trial step with some probability dependent on an artificial temperature T, even when this 

step does not improve the fit. This can help avoid being trapped in a local minimum (2). The initial 

temperature is usually high to have a larger searching area and then, the temperature is gradually 

decreased, leading to more selective sampling towards the error decreasing direction. We use the 

simulannealbnd function in MATLAB (R2015b, The MathWorks, Natick, MA) with default settings.  

Even with the simulated annealing method, it is still not guaranteed that the samplings are not trapped in 

the local minima. So, we run three rounds of fitting for each network. In the first round, the error function 

we use is:  
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Here, H is the Heaviside step function ensuring that only a directionality that is not significantly positive 

(smaller than 0.1) increases the error function. Specifically, when Dirwild
sim > 0.1, Dirwild

sim ’s value is not 

important at all as the whole term is zero and when Dirwild
sim < 0.1, the term (Dirwild

sim − Dirwild
exp

)
2
gives a 

bias towards larger Dirwild
sim  during the fitting. As there are no data for light-treatment experiment in the 

first round, we only fit for the eight parameters except for PA and PI. We randomly choose 100 starting 

points in the parameter space and run 100 fittings with Tinitial = 100. Then we pick the first five fitting 

results with the smallest error functions and then use them as the starting points for the next round of 

fitting. The error function used in the second round includes the data for light-treatment conditions:  
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In the second round, we keep the eight parameters in the first round constant and only fit for PA and PI 

and Tinitial = 1. Then we put all the ten parameters together for the third round of fitting with the five 

results from the second round as the new starting points. Then, error3 = 100 × error2 and Tinitial =
error3(starting point) for the third round and among the five results, we choose the one with the 

smallest error function as the final fitting result. The fitting results are listed in the Table S1 and Table S2.  



Other sampling results 
In Figs. S2-4 we present additional sampling results. Specifically, Fig. S2 and Fig. S3 show the results for 

networks with five interactions while Fig. S4 shows the sampling outcomes for networks with six 

interactions. Note that all networks in Figs. S2 and S3 can be excluded even though the network in the 

black box in Fig. S3 appears to work well for both experiments. But in fact, this network should be 

excluded. In this network, R is only positively dependent on S and R is the only entrance of the external 

signal. This means that 
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dependence on R is not necessarily equivalent to P’s dependence on S. So, for these networks it is 

possible that 
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Table S2. Parameter fitting results for two examples of seven-link networks 

 Network 1 Network 2 

Sgrad 0.04922 0.1402 

Smean 23.26 0.5970 

basalAR 19.63 2.696 

kRP 0.7761 8.232 

Ptot 137.9 2.723 

k1 kSG 0.2138 kSG 0.3587 

k2 kRG 154.7 kPG 0.3165 

k3 k−GP 0.008102 kRG 2.324 

k4 k−GR 205.00 k−GP 1.397 

PI 98.64 4.583 

PA 0.01032 0.1249 

σ 0.1 (not fitted but fixed) 

 

Table S1. Parameter fitting results for six-link networks 

 Network A Network B Network C Network D Network E Network F 

Sgrad 0.4109 0.4814 0.8746 0.5147 0.1590 0.2290 

Smean 3.982 0.01205 0.1686 0.06754 0.02587 0.01093 

basalAR 2.064 0.04961 0.5324 0.01124 0.7171 0.02782 

kRP 52.40 9.356 3.825 6.417 0.2470 9.535 

Ptot 0.8892 2.411 7.475 5.097 96.32 5.223 

k1 kSG 0.1228 k−SG 0.05322 kRG 47.81 k−RG 2.897 kRG 62.25 k−RG 77.79 

k2 kRG 1.490 k−RG 92.65 k−GR 0.8540 kGR 0.09783 k−GP 0.1259 kGP 0.7983 

k3 k−GP 2.125 kGP 5.101 k−SP 1.159 k−SP 8.702 k−SP 1.229 k−SP 10.22 

PI 1034 4.939 7561 4580 0.05685 27.14 

PA 0.2777 0.02406 0.05794 0.1339 0.004729 0.01876 

σ 0.1 (not fitted but fixed) 



 

 

Fig. S2. The first ten sampling results for networks with five interactions. The other twelve are in Fig. S3.  



 

Fig. S3. The other twelve sampling results for networks with five interactions. The first ten are in Fig. S2. It’s worth 

noting that the network in the black box appears to fit both experiments. However, it can be ruled out when 

considering the ReceptorDN experiments and the 
dProb

d[R]
> 0 prerequisite together. The details are in the 

supplementary text.  

 

 



 

Fig. S4. The sampling results for networks with six interactions. The upper row corresponds to the networks B-F of 

Fig. 2c that are not excluded by the qualitative selection. The lower row shows examples of networks that are not 

consistent with the experimental data.  

 



 

Fig. S5. The role of cell-cell communication. (a) The number of protrusions and cluster velocity for wildtype 

clusters with and without cell-cell communication for network A-F of Fig. 2c. Simulations were carried out using 

the fitted parameters. (b) Comparison of velocity between wildtype clusters with (x-axis) and without cell-cell 

communication (y-axis) using a large sample of randomly chosen parameters that result in positive cluster velocities 

in the presence of cell-cell communication. Each blue dot represents the result for one set of parameters. All blue 

dots are below the y=x line, indicating that the cluster velocity is always reduced when cell-cell communication is 

blocked.     

 

 



 

Fig. S6. Simulation results for two networks with 7 interactions. 
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