
Supplementary Material for
“Group testing case identification with biomarker information”

Dewei Wang1, Christopher S. McMahan2, Joshua M. Tebbs1,∗, and Christopher R. Bilder3
1Department of Statistics, University of South Carolina, Columbia, SC 29208, U.S.A.

2Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, U.S.A.
3Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A.

∗email : tebbs@stat.sc.edu

Web Appendix A. Efficiency derivation from Section 3.1. The efficiency of an S-stage
hierarchical algorithm H(n1 : n2 : · · · : nS) is given by

EFF =
1

n1

+
S−1∑
s=1

1

ns+1

pr

(
s∏

s′=1

ZPs′1
= 1

)
, (A.1)

an expression known in the case identification literature (see, Kim et al., 2007 and the ref-
erences therein). Under classical assumptions; i.e., (a) the sensitivity and specificity are
unaffected by pool size and (b) testing outcomes on pools containing common individuals are
independent conditional on the true pool statuses, the probability in Equation (A.1) is

pr

(
s∏

s′=1

ZPs′1
= 1

)
= qn1(1− Sp)s +

s−1∑
s′=1

(qns′+1 − qns′ )Ss
′

e (1− Sp)s−s
′
+ (1− qns)Sse ;

see Kim et al. (2007). Within our biomarker framework, calculating this probability is much
more difficult. For any pool Ps′1, recall that the corresponding testing response ZPs′1

is related
to the measured biomarker level CPs′1

through ZPs′1
= I(CPs′1

> τPs′1
). Therefore,

pr

(
s∏

s′=1

ZPs′1
= 1

)
= pr(CPs1 > τPs1 , CPs−1,1 > τPs−1,1 , ..., CP11 > τP11). (A.2)

The density function of CPs′1
depends on the number of positive individuals in Ps′1. Because

of the nested structure Ps1 ⊂ Ps−1,1 ⊂ · · · ⊂ P11 in a hierarchical algorithm, we can calculate
the probability in Equation (A.2) by going through all possible numbers of positive individuals
that could be contained in Ps1, Ps−1,1 \ Ps1, ..., P11 \ P21. This probability equals

ns∑
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· · ·
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Ti = ms−1

 · · · pr

 ∑
i∈P11\P21

Ti = m1

 . (A.3)
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Conditioning on the event {
∑

i∈Ps1
Ti = ms,

∑
i∈Ps−1,1\Ps1

Ti = ms−1, ...,
∑

i∈P11\P21
Ti = m1};

i.e., there are ms positive individuals in Ps1 and
∑s

s′′=s′ms′′ positive individuals in Ps′1 for
s′ = s−1, s−2, ..., 1, we denote the joint probability density function of (CPs1 , CPs−1,1 , ..., CP11)

′

by fCPs1 ,CPs−1,1
,...,CP11 (us, us−1, ..., u1|ms,ms−1, ...,m1), which can be written as

∫
Rn1

s∏
s′=1

fε

(
us′

∣∣∣∣ 1

ns′

ns′∑
i=1

vi

)
ms∏
i=1

fC̃+(vi)
ns∏

i=ms+1

fC̃−(vi)

ns+ms−1∏
i=ns+1

fC̃+(vi)

ns−1∏
i=ns+ms−1+1

fC̃−(vi)

· · ·
n2+m1∏
i=n2+1

fC̃+(vi)

n1∏
i=n2+m1+1

fC̃−(vi)dv1dv2 · · · dvn1 ,

where, as in the manuscript, it is understood that products like
∏b

i=a fC̃+(vi) and
∏b

i=a fC̃−(vi),
a > b, are vacuous. Consequently, the conditional probability in (A.3) is equal to∫ ∞

τP11

∫ ∞
τP21

· · ·
∫ ∞
τPs1

fCPs1 ,CPs−1,1
,...,CP11 (us, us−1, ..., u1|ms,ms−1, ...,m1)dusdus−1 · · · du1.

The s unconditional probabilities in (A.3) are pr(
∑

i∈Ps1
Ti = ms) =

(
ns

ms

)
pmsqns−ms and

pr

 ∑
i∈Ps′1\Ps′+1,1

Ti = ms′

 =

(
ns′ − ns′+1

ms′

)
pms′qns′−ns′+1−ms′

for s′ = 1, 2, ..., s− 1. This completes the derivation of EFF{H(n1 : n2 : · · · : nS)}.

Web Appendix B. Derivations of PSE and PSP from Section 3.2; closed-form calcula-
tions under normality. In an S-stage hierarchical algorithm H(n1 : n2 : · · · : nS), the pool-
ing sensitivity and pooling specificity are given by PSE = pr(

∏S
s=1 ZPs1 = 1|T1 = 1) and

PSP = 1 − pr(
∏S

s=1 ZPs1 = 1|T1 = 0), respectively. For mS ∈ {0, 1}, note that we can write

pr(
∏S
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(
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i∈PS1

Ti = mS,

∑
i∈PS−1,1\PS1

Ti = mS−1, ...,
∑

i∈P11\P21

Ti = m1


× pr

 ∑
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Ti = mS−1

 · · · pr
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i∈P11\P21

Ti = m1

 .

The conditional probability above is a special case of the conditional probability in (A.3). The
unconditional probabilities are the same binomial calculations as in Web Appendix A.

Simulation details: In an S-stage hierarchical algorithm H(n1 : n2 : · · · : nS), the efficiency
(EFF), the pooling sensitivity (PSE), and the pooling specificity (PSP) can be calculated
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exactly when fC̃+ , fC̃− , and fε are all normal densities. Otherwise, the integral expressions in
Web Appendix A are very likely to be intractable. Instead of implementing high-dimensional
numerical integration, we use Monte Carlo simulation to estimate EFF, PSE, and PSP. Esti-
mates of PPV and NPV in Section 3.2 can then be constructed easily.

Estimating PSE and PSP in an S-stage hierarchical algorithm H(n1 : n2 : · · · : nS) involves a
simple modification to our simulation algorithm presented in Section 3.1 in the manuscript:

SIMULATION PROCEDURE TO ESTIMATE PSE AND PSP

1. Set T1 = 1(0) if estimating PSE (PSP). Generate T2, T3, ..., Tn1 ∼ iid Bernoulli(p). Gen-

erate C̃i ∼ fC̃i|Ti=t(u) = tfC̃+(u) + (1− t)fC̃−(u), i = 1, 2, ..., n1.

2. (Stage 1). Calculate C̃P11 = n−11

∑
i∈P11

C̃i and generate CP11 from fε(·|C̃P11).

(a) If ZP11 = I(CP11 > τP11) = 0, stop and classify the first individual in P11 as negative.

(b) If ZP11 = I(CP11 > τP11) = 1, continue to the next stage.

3. (Stage 2). Calculate C̃P21 = n−12

∑
i∈P21

C̃i and generate CP21 from fε(·|C̃P21).

(a) If ZP21 = I(CP21 > τP21) = 0, stop and classify the first individual in P11 as negative.

(b) If ZP21 = I(CP11 > τP21) = 1, continue to the next stage.

4. (Stage 3). Calculate C̃P31 = n−13

∑
i∈P31

C̃i, generate CP31 from fε(·|C̃P31), and calculate
ZP31 = I(CP31 > τP31). Continue this overall process until individual testing is performed
in stage S.

5. (Stage S). Set C̃PS1
= C̃1, generate CPS1

from fε(·|C̃PS1
). If ZPS1

= I(CPS1
> τPS1

) = 0,
stop and classify the first individual in P11 as negative; otherwise, stop and classify the
first individual in P11 as positive.

We implement this procedure B times and estimate PSE and PSP using

P̂SE =
1

B

B∑
b=1

Db,

when T1
set
= 1 and

P̂SP =
1

B

B∑
b=1

(1−Db),

when T1
set
= 0, respectively. In these expressions, Db = 1(0) if the first individual in P11 is

classified as positive (negative) in the bth implementation, b = 1, 2, ..., B.

Exact calculations under normality: We show how to calculate EFF, PSE, and PSP
exactly for an S-stage hierarchical algorithm H(n1 : n2 : · · · : nS) under normal biomarker
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and measurement error assumptions. Suppose C̃+ ∼ N (µ+, σ
2
+), C̃− ∼ N (µ−, σ

2
−), and C|C̃ ∼

N (C̃, σ2
ε ). For individuals in the master pool P11, collect the true biomarker levels and the

true disease statuses into C̃ = (C̃1, C̃2, ..., C̃n1)
′ and T = (T1, T2, ..., Tn1)

′, respectively, so that

C̃|T = t ∼ Nn1(µ(t),Σ(t)), where t is a binary vector, µ(t) is an n1 × 1 vector whose ith
component is tiµ+ + (1 − ti)µ−, and Σ(t) is an n1 × n1 diagonal matrix with ith diagonal

element equal to tiσ
2
+ + (1 − ti)σ

2
−. For s = 1, 2, ..., S, let C̃s = (C̃P11 , C̃P21 , ..., C̃Ps1)

′ and
Cs = (CP11 , CP21 , ..., CPs1)

′ denote the true and measured biomarker levels of P11,P21, ...,Ps1,
respectively. We now derive the distribution of Cs|T = t. Let ds be a vector whose first ns
elements are 1/ns and whose remaining elements are 0. Set Ds = (d1,d2, ...,ds). Then we

can write C̃Psl
= d′sC̃ and C̃s = D′sC̃. Thus, C̃s|T = t ∼ Ns(D′sµ(t),D′sΣ(t)Ds) and

Cs|T = t ∼ Ns(D′sµ(t),D′sΣ(t)Ds + σ2
ε Is), (B.1)

where Is is the s-dimensional identity matrix.

Calculating the efficiency in an S-stage hierarchical algorithm H(n1 : n2 : · · · : nS), in general,
is not possible because of the difficult conditional probability in Equation (A.3); i.e.,

pr

(
CPs1 > τPs1 , CPs−1,1 > τPs−1,1 , ..., CP11 > τP11

∣∣∣∣∣ ∑
i∈Ps1

Ti = ms,

∑
i∈Ps−1,1\Ps1

Ti = ms−1, ...,
∑

i∈P11\P21

Ti = m1

 .

(B.2)

However, under normal biomarker and measurement error assumptions, the probability in
(B.2) can be calculated using the multivariate normal distribution in (B.1). After setting

ts = (1′ms
,0′ns−ms

,1′ms−1
,0′ns−1−ns−ms−1

, ...,1′m1
,0′n1−n2−m1

)′,

where 1a (0a) is an a-dimensional vector of ones (zeros), one can integrate the conditional
density in (B.1) over the set (τPs1 ,∞)× (τPs−1,1 ,∞)× · · ·× (τP11 ,∞). This can be done easily
using the R package mvtnorm. Because PSE and PSP involve the same type of conditional
probability as in (B.2), these can be calculated exactly as well. Our R programs available
at www.chrisbilder.com/grouptesting will calculate EFF, PSE, and PSP exactly under
normal biomarker and measurement error assumptions. In non-normal biomarker and/or
measurement error applications, our programs use simulation to estimate these quantities.

As a small example, we have calculated EFF, PSE, and PSP exactly as described above and
also using the simulation approach described in Section 3.1 in the manuscript when p = 0.10 for
H(4 : 1) and H(6 : 3 : 1), the most efficient two- and three-stage hierarchial algorithms under
classical assumptions when p = 0.10. Our biomarker and measurement error assumptions
are the same as in Figure 2 in the manuscript; i.e., C̃− ∼ N (3, 0.25), C̃+ ∼ N (6, 1), and

C|C̃ ∼ N (C̃, 0.0025). Table B.1 (next page) contains the exact calculations and the estimated
calculations using our simulation algorithms with B = 1,000,000 Monte Carlo data sets. Exact
and estimated values are close as one might expect.
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Table B.1: Exact and simulated operating characteristics when p = 0.10 for two- and three-
stage hierarchical algorithms. A description of these calculations is given on the previous
page.

H(4 : 1) H(6 : 3 : 1)
Exact Simulated Exact Simulated

EFF 0.613 0.613 0.587 0.589
PSE 0.900 0.900 0.860 0.862
PSP 0.992 0.992 0.994 0.994
PPV 0.928 0.927 0.940 0.937
NPV 0.989 0.989 0.985 0.985

Web Appendix C. Two-dimensional array testing. We extend our simulation methodology
to estimate the operating characteristics of two-dimensional array testing as described in
Section 3.3 in the manuscript. A two-dimensional array testing algorithm with R rows and C
columns is denoted by A(R× C).

SIMULATION PROCEDURE TO ESTIMATE EFF{A(R× C)}

1. Generate {Tr,c : r = 1, 2, ..., R, c = 1, 2, ..., C} ∼ iid Bernoulli(p). Generate C̃r,c ∼
fC̃r,c|Tr,c=t(u) = tfC̃+(u) + (1− t)fC̃−(u), r = 1, 2, ..., R, c = 1, 2, ..., C.

2. (Stage 1). Calculate C̃Pr+ = C−1
∑C

c=1 C̃r,c, generate CPr+ from fε(·|C̃Pr+), and compute

ZPr+ = I(CPr+ > τPr+), r = 1, 2, ..., R. Calculate C̃P+c = R−1
∑R

r=1 C̃r,c, generate CP+c

from fε(·|C̃P+c), and compute ZP+c = I(CP+c > τP+c), c = 1, 2, ..., C.

(a) If the set

M =

{
(r, c) : ZPr+ = ZP+c = 1 or ZPr+ = 1,

C∑
c′=1

ZP+c′
= 0

or
R∑

r′=1

ZPr′+
= 0, ZP+c = 1

}

is empty, stop and classify all individuals in the array as negative.

(b) If M is not empty, classify all individuals not in M as negative and continue to
the next stage.

3. (Stage 2). For each (r, c) ∈M, generate Cr,c from fε(·|C̃r,c).

(a) If Zr,c = I(Cr,c > τ) = 0, classify the (r, c)th individual in the array as negative.

(b) If Zr,c = I(Cr,c > τ) = 1, classify the (r, c)th individual in the array as positive.
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We implement this procedure B times and estimate the efficiency of A(R× C) using

ÊFF =
1

RCB

B∑
b=1

Mb

where Mb is the number of tests observed in the bth replication. The variance of the number
of tests per individual, which we denote by var{A(R×C)}, can be estimated using the sample
variance of M1/RC,M2/RC, ...,MB/RC. Unlike hierarchical algorithms, EFF{A(R × C)}
cannot be calculated exactly even under normality. We estimate the pooling sensitivity (PSE)
and pooling specificity (PSP) of A(R× C) using the following simulation procedure:

SIMULATION PROCEDURE TO ESTIMATE PSE AND PSP

1. Set T1,1 = 1(0) if estimating PSE (PSP). Generate

{Tr,c : r = 1, 2, ..., R, c = 1, 2, ..., C, (r, c) 6= (1, 1)} ∼ iid Bernoulli(p).

Generate C̃r,c ∼ fC̃r,c|Tr,c=t(u) = tfC̃+(u) + (1− t)fC̃−(u), r = 1, 2, ..., R, c = 1, 2, ..., C.

2. (Stage 1). Calculate C̃Pr+ = C−1
∑C

c=1 C̃r,c, generate CPr+ from fε(·|C̃Pr+), and compute

ZPr+ = I(CPr+ > τPr+), r = 1, 2, ..., R. Calculate C̃P+c = R−1
∑R

r=1 C̃r,c, generate CP+c

from fε(·|C̃P+c), and compute ZP+c = I(CP+c > τP+c), c = 1, 2, ..., C.

(a) If ZP1+ = ZP+1 = 1, or ZP1+ = 1,
∑C

c′=1 ZP+c′
= 0, or

∑R
r′=1 ZPr′+

= 0, ZP+1 = 1,
continue to the next stage.

(b) Otherwise, stop and classify the (1, 1)th individual in the array as negative.

3. (Stage 2). Generate C1,1 from fε(·|C̃1,1). Classify the (1, 1)th individual in the array as
positive if Z1,1 = I(C1,1 > τ) = 1; otherwise, classify the (1, 1)th individual as negative.

We implement this procedure B times and estimate PSE and PSP using

P̂SE =
1

B

B∑
b=1

Db,

when T1,1
set
= 1 and

P̂SP =
1

B

B∑
b=1

(1−Db),

when T1,1
set
= 0, respectively. In these expressions, Db = 1(0) if the (1, 1)th individual is clas-

sified as positive (negative) in the bth implementation, b = 1, 2, ..., B.

Web Appendix D. Additional tables in Section 5. The following tables accompany Table
1 in the manuscript for the Wein and Zenios (1996) and Zenios and Wein (1998) application
and the May et al. (2010) application in Section 5. Table D.1 is constructed for p = 0.01;
Table D.2 is constructed for p = 0.10.
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Table D.1: Operating characteristics for Application 1 (Zenios and Wein, 1998) and Applica-
tion 2 (May et al., 2010) when p = 0.01. Efficiency (EFF), standard deviation of the number
of tests per individual (SD), and accuracy probabilities (PSE, PSP, PPV, and NPV) are pro-
vided. The threshold τ ∗ maximizes Youden’s index for individual testing. The threshold τ ∗P
is calculated as in Section 4. Classical operating characteristics are calculated exactly from
Kim et al. (2007). Biomarker-based characteristics are estimated using B = 1,000,000 Monte
Carlo data sets. For each application, individual testing values of Se and Sp are provided.

Biomarker-based evaluations
τ∗ τ∗/pool size τ∗P Classical

A
p
p
li
ca
ti
on

1
S
e
>

0
.9
99

;S
p
>

0.
99

9

H(11 : 1)

EFF (SD) 0.191 (0.301) 0.808 (0.450) 0.196 (0.307) 0.196 (0.306)
PSE 0.962 0.999 0.984 >0.999
PSP >0.999 >0.999 >0.999 >0.999
PPV >0.999 >0.999 >0.999 >0.999
NPV >0.999 >0.999 >0.999 >0.999

H(14 : 7 : 1)

EFF (SD) 0.152 (0.219) 0.646 (0.441) 0.156 (0.223) 0.158 (0.226)
PSE 0.936 0.998 0.973 >0.999
PSP >0.999 >0.999 >0.999 >0.999
PPV >0.999 >0.999 >0.999 >0.999
NPV >0.999 >0.999 >0.999 >0.999

A(25× 25)

EFF (SD) 0.120 (0.030) 0.763 (0.091) 0.135 (0.036) 0.135 (0.038)
PSE 0.779 0.991 0.910 >0.999
PSP >0.999 >0.999 >0.999 >0.999
PPV >0.999 >0.999 >0.999 >0.999
NPV 0.998 >0.999 >0.999 >0.999

A
p
p
li
ca
ti
on

2
S
e
=

0.
98

9;
S
p
=

0.
98

0

H(11 : 1)

EFF (SD) 0.131 (0.196) 0.756 (0.472) 0.261 (0.376) 0.212 (0.326)
PSE 0.393 0.988 0.901 0.978
PSP >0.999 0.981 0.993 0.98
PPV 0.837 0.343 0.574 0.820
NPV 0.994 >0.999 >0.999 >0.999

H(16 : 8 : 1)

EFF (SD) 0.091 (0.134) 0.629 (0.374) 0.181 (0.257) 0.160 (0.232)
PSE 0.310 0.988 0.843 0.966
PSP >0.999 0.982 0.996 0.999
PPV 0.874 0.353 0.705 0.881
NPV 0.993 >0.999 0.998 >0.999

A(24× 24)

EFF (SD) 0.092 (0.013) 1.068 (0.025) 0.165 (0.046) 0.141 (0.039)
PSE 0.225 0.989 0.767 0.967
PSP >0.999 0.981 0.997 >0.999
PPV 0.940 0.339 0.720 0.913
NPV 0.992 >0.999 0.998 >0.999
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Table D.2: Operating characteristics for Application 1 (Zenios and Wein, 1998) and Applica-
tion 2 (May et al., 2010) when p = 0.10. Efficiency (EFF), standard deviation of the number
of tests per individual (SD), and accuracy probabilities (PSE, PSP, PPV, and NPV) are pro-
vided. The threshold τ ∗ maximizes Youden’s index for individual testing. The threshold τ ∗P
is calculated as in Section 4. Classical operating characteristics are calculated exactly from
Kim et al. (2007). Biomarker-based characteristics are estimated using B = 1,000,000 Monte
Carlo data sets. For each application, individual testing values of Se and Sp are provided.

Biomarker-based evaluations
τ∗ τ∗/pool size τ∗P Classical

A
p
p
li
ca
ti
on

1
S
e
>

0.
99

9;
S
p
>

0
.9
99

H(4 : 1)

EFF (SD) 0.593 (0.475) 0.821 (0.495) 0.594 (0.475) 0.594 (0.475)
PSE 0.998 >0.999 0.999 >0.999
PSP >0.999 >0.999 >0.999 >0.999
PPV >0.999 >0.999 >0.999 >0.999
NPV >0.999 >0.999 >0.999 >0.999

H(6 : 3 : 1)

EFF (SD) 0.591 (0.472) 0.780 (0.460) 0.592 (0.472) 0.594 (0.472)
PSE 0.994 >0.999 0.997 >0.999
PSP >0.999 >0.999 >0.999 >0.999
PPV >0.999 >0.999 >0.999 >0.999
NPV >0.999 >0.999 >0.999 >0.999

A(7× 7)

EFF (SD) 0.578 (0.178) 0.928 (0.185) 0.581 (0.179) 0.583 (0.180)
PSE 0.986 >0.999 0.994 >0.999
PSP >0.999 >0.999 >0.999 >0.999
PPV >0.999 >0.999 >0.999 >0.999
NPV 0.999 >0.999 >0.999 >0.999

A
p
p
li
ca
ti
on

2
S
e
=

0.
98

9;
S
p
=

0.
98

0

H(4 : 1)

EFF (SD) 0.487 (0.425) 0.692 (0.497) 0.614 (0.481) 0.603 (0.478)
PSE 0.725 0.987 0.963 0.978
PSP 0.996 0.994 0.990 0.994
PPV 0.952 0.950 0.913 0.950
NPV 0.970 0.998 0.996 0.998

H(6 : 3 : 1)

EFF (SD) 0.424 (0.419) 0.703 (0.474) 0.600 (0.476) 0.594 (0.470)
PSE 0.626 0.985 0.944 0.968
PSP 0.998 0.986 0.993 0.996
PPV 0.966 0.887 0.935 0.966
NPV 0.960 0.998 0.994 0.996

A(7× 7)

EFF (SD) 0.408 (0.107) 0.774 (0.203) 0.587 (0.177) 0.586 (0.179)
PSE 0.533 0.988 0.926 0.968
PSP 0.998 0.982 0.992 0.995
PPV 0.970 0.859 0.930 0.960
NPV 0.951 0.999 0.992 0.996
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Web Appendix E. Sensitivity analysis described in Section 6. We illustrate how to per-
form a sensitivity analysis to investigate the impact of model misspecification. Recall that
our simulation-based approach to calculate the operating characteristics of case identification
algorithms requires one to specify fC̃+ , fC̃− , and fε. It is therefore natural to wonder what
happens when one or more of these distributions is misspecified.

Performing a sensitivity analysis within our framework is easy, because Monte Carlo simulation
is used to incorporate biomarker and measurement error information. To illustrate, suppose

C̃+ ∼ G(10, 20)

C̃− ∼ G(1, 0.25)

CP |C̃P ∼ N (C̃P , 0.01),

where G(µ, σ2) denotes a two-parameter gamma distribution with mean µ and variance σ2.

Note that the model for CP |C̃P assumes additive mean-zero error. For this collection of dis-
tributions, the threshold that maximizes Youden’s index for individual testing is τ ∗ = 2.671,
which provides values of Se = 0.988 and Sp = 0.994.

To examine the impact of model misspecification, suppose C̃+ is wrongly specified to have
a G(10 − δ, 20) distribution where δ ≥ 0. We consider values δ ∈ {0, 0.1, 0.2, ..., 1.9, 2} and

assume that the models for C̃− and CP |C̃P are correct (obviously, these could be misspecified
too). Note that when δ = 0, there is no model misspecification, and, as δ increases, the
violation becomes more severe. For example, when δ = 2, Se = 0.948 and Sp = 0.982.

In this illustration, we consider Dorfman’s two-stage hierarchical algorithm H(5 : 1) when
the population prevalence is p = 0.05. Similar results would be expected for other algorithms
and for other values of p. For each value of δ, we first calculated our Youden-index type
threshold for pools τ ∗P , defined in Section 4. We then estimated the expected number of tests
per individual (EFF) and the standard deviation of the number of tests per individual (SD)
for H(5 : 1) using the simulation procedure described in Section 3.1 with B = 1,000,000 Monte
Carlo data sets. The pooling sensitivity (PSE) and pooling specificity (PSP) were estimated
using the simulation procedure in Web Appendix B, and predictive values PPV and NPV
were estimated using the formulas in Section 3.2.

Figure E.1 (next page) shows the results of our sensitivity analysis. Recall that our goal is to
assess the impact of model misspecification (i.e., when δ > 0) on the operating characteristics
EFF, SD, and the four classification accuracy probabilities. The horizontal lines in each
subfigure denote the values under no misspecification; i.e., when δ = 0. One notes that the
values of EFF and SD are largely unaffected by model misspecification in this example. In
addition, PSP and NPV are largely unaffected, likely because the distribution for C̃− is not
misspecified. The biggest impact is seen in the values of PSE and PPV, which decrease as
model misspecification becomes more severe.

Our research web site www.chrisbilder.com/grouptesting contains the R programs we
used to perform this sensitivity study. Our programs can be easily altered to consider other
case identification algorithms, other values of p, and other choices for the biomarker and
measurement error distributions.
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Figure E.1: Sensitivity analysis results (see description on the last page). Estimated operating
characteristics of H(5 : 1) when p = 0.05. Values of δ > 0 correspond to model misspecification

for C̃+.
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