

Figure S6. Linker histone H1.2 inhibits DNA damage repair and cell survival

a WT and H1.2 KO (1# and 2#) HeLa cell were seeded into 6-well plates (500 cells per well) and subjected to colony formation assay. b WT and H1.2 KO (1#) HeLa cells were subjected to micrococcal nuclease (MNase) sensitivity assay. c WT, H1.3 KO (1# and 2#) and H1.4 KO (1# and 2#) HeLa cells were subjected to comet assay. The cells were collected at the indicated times after treatment with 40 µM etoposide for 2 h. The tail moment of WT cells at 10 min post treatment was normalized to 1 and the quantification results are shown. The data represent the mean ± SD. d WT, H1.3 KO (1# and 2#) and H1.4 KO (1# and 2#) HeLa cells were subjected to colony formation assay after treatment with different doses of etoposide for 2 h. The data represent the mean \pm SD. e HeLa cells were stably transfected with shRNAs targeting H1.2 and several clones (1-5#) were selected for immunoblotting to determine the knockdown efficiency. f H1.2 stable-knockdown (1-3#) or non-specific knockdown HeLa cells were treated with the indicated dose of etoposide for 2 h and subjected to colony formation assay. g HeLa cells with stably over-expressed FLAG-H1.2, H1.3, H1.4 or an empty vector were subject to comet assay. The tail moment of the empty vector cells at 10 min post treatment was normalized to 1. The data represent the mean \pm SD. **h** HeLa cells were transfected with FLAG-H1.2 or an empty vector and were separately treated with 40 µM etoposide for 1 h and released at the indicated times. i, j Immunoblots for H1.2 and GAPDH in WT or H1.2 KO DR-GFP and pEJ5-GFP cells. k DR-GFP U2OS cells were transfected with the indicated plasmids and subjected to DR-GFP assay. The data represent the mean \pm SD.