Supplementary Information for:

Cancer cell specific inhibition of Wnt/β-catenin signaling by forced intracellular acidification

Svitlana Melnik^{1,2,12}, Dmytro Dvornikov^{3,4,12}, Karin Müller-Decker⁵, Sofia Depner³, Peter Stannek⁶, Michael Meister^{4,7}, Arne Warth^{4,8}, Michael Thomas^{4,7}, Thomas Muley^{4,7}, Angela Risch^{1,4,9,10}, Christoph Plass¹, Ursula Klingmüller^{3,4}, Christof Niehrs^{6,11}, Andrey Glinka^{6*}.

*To whom correspondence should be addressed: E-mail: glinka@dkfz.de

This pdf file includes:

Supplementary Tables 1-2 Supplementary Figures 1-10

Category	Non-diabetic	Metformin-taking diabetic
Number of patients	66	42
Age, median (range)	63 (43 - 80)	69 (53 - 79)
Male/Female	52/14	33/9
NS/FS/S/U	5/35/26/0	2/23/16/1
ECOG 0/1/unknown	55/9/2	38/4/0
p-stage I/II/III	20/24/22	9/13/18*
Histology		
Squamous cell	26	19
Adenocarcinoma	30	16
Large cell	4	2
Other (lung metastases and secondary		
malignant lung tumors)	6	5
Postoperative chemotherapy	36	16
Postoperative radiotherapy	18	5
Recurrence (local, distant, 2nd tumor)	29	20
Dead	29	15
mRNA expression, Mean value ± SEM		
AXIN2	1.89 ± 0.45	2.22±0.22
SOX4	3.77±0.45	3.01±0.28
DDIT3	4.03±0.58	5.09±2.23
VIM	1.59±0.16	2.01±0.31
ZEB1	1.30±0.10	2.36±0.36

Supplementary Table 1. Summary of clinical and mRNA expression data for the lung cancer patients cohort used in this study

* – no stage was assigned NS – non-smoker

FS – former smoker

S-smoker

U – unknown

Gene Name	Sequence	UPL	Assay
DDIT3	CCCATCGATGCCACCATGGCAGCTGAGTCATTGCC CCCTCTAGATTATGCTTGGTGCAGATTCACC		Cloning
EC-GFP	CCCGGATCCGCCACCATGAGTAAAGGAGAAGAAC TTTTCACTGGAG CCCGAATTCTTATTTGTATATTTCATCCATGCCATG		Cloning
SOX4	CAACGCCAACTCCAGCTC ACCGACCTTGTCTCCCTTC	25	qRT-PCR
AXIN2	CCACACCCTTCTCCAATCC TGCCAGTTTCTTTGGCTCTT	36	qRT-PCR
ESD	TTAGATGGACAGTTACTCCCTGATAA GGTTGCAATGAAGTAGTAGCTATGA	27	qRT-PCR
ZEB1	TTTTTCCTGAGGCACCTGAA AAAATGCATCTGGTGTTCCAT	28	qRT-PCR
GAPDH	GCATCCTGGGCTACACTGAG AGGTGGAGGAGTGGGTGTC	82	qRT-PCR
VIM	TACAGGAAGCTGCTGGAAG ACCAGAGGGAGTGAATCCAG	24	qRT-PCR
DDIT3	CAGAGCTGGAACCTGAGGAG TGGATCAGTCTGGAAAAGCA	9	qRT-PCR
ATF6	CTTTTAGCCCGGGACTCTTT TCAGCAAAGAGAGCAGAATCC	42	qRT-PCR
ATF4	GGTCAGTCCCTCCAACAACA CTATACCCAACAGGGCATCC	88	qRT-PCR
ATF2	TTTGGTCCAGCACGTAATGA CAAACCCACTTCTTCACAGTTTT	5	qRT-PCR
PERK	CCAGCCTTAGCAAACCAGAG TCTTGGTCCCACTGGAAGAG	58	qRT-PCR
IRE1	TGAGGACGAAGGGGACTACA ACGTCCCCAGATTCACTGTC	9	qRT-PCR
GPD2	CGGACAACGAGAAGTCGTC AGTCCTAAAACAGTTGCAAGAGC	25	qRT-PCR
AMPK1	TCTCAGGAGGAGAGCTATTTGATT GAACAGACGCCGACTTTCTTT	42	qRT-PCR

Supplementary Table 2. List of primers used in this study

AMPK2	ACCCACTGAAACGAGCAACT AGGAAGGGTCTTCAGGAAATAAG	61	qRT-PCR
LGR5	ACCAGACTATGCCTTTGGAAAC TTCCCAGGGAGTGGATTCTAT	78	qRT-PCR
DDIT3	CCCATTATCCTGCAGATGTGC CTTCCTTCAAGGAAATGAGGAAAGG		genotyping
SOX4 upstream	ACAGATCCAGTCAGATGGCTAC AGTATGTAGGCTGGCAATAGGC		qPCR, ChIP
SOX4 promoter (-800)	TGGGCTATGCAGGATTTACAGG TTGTGCTGTTTGTGGAAGG		qPCR, ChIP
SOX4 promoter (-400)	AGCTGGGGAACAGATTTTGC ATAACAAGGG GCTTGGAACG		qPCR, ChIP
SOX4 exon	ACATCAAGCGACCCATGAAC TTGTCGCTGTCTTTGAGCAG		qPCR, ChIP
SOX4 downstream	TGCCCAATGCCTAAGATTGG AGAGGAAATCTGGCCAAGAGAC		qPCR, ChIP
GAPDH	GGGGCCTGTTTTGTTGTCAT GGGCCGTGTGATTCTTTGTT		qPCR, ChIP
AXIN2 ⁴²	GGAGCAGTAAAAGGCCGTAA CCAAACCATTGAAGCCCTTA		qPCR, ChIP

Supplementary figure legends

Supplementary Figure 1 *SOX4* is a Wnt-inducible gene. (**a-e**) Levels of the indicated mRNA and proteins in the indicated cell lines were monitored by qRT-PCT or WB, respectively. **a**, H1299 cells were treated with: WntCM, epidermal growth factor (EGF, 50 ng/ml), insulin-like growth factor (IGF, 40 ng/ml), basic fibroblast growth factor (bFGF, 1 ng/ml) or insulin (10 µg/ml). Position of unspecific band used as a loading control is indicated by asterisk. Endogenous β -catenin from cytosolic extracts was used as a control of Wnt pathway activation. **b**, H1299 cells were treated with WntCM, as indicated. **c**, Cells were treated with WntCM for 48 h and subjected to siRNA-mediated β -catenin knockdown for 76 h. **d**, H1299 cells were transiently transfected with control or β -catenin-expressing vectors for 72 h. (**a-d**) Error bars represent mean values \pm SD. **e**, Cells were subjected to siRNA-mediated knockdown of β -catenin for 48 h.

Supplementary Figure 2 Metformin affects Wnt signaling in lung cancer patients.

Non-linear Spearman's rank correlation analysis of *VIM* or *ZEB1* mRNA expression levels with Wnt signaling (*AXIN2*) in tumor tissue samples from lung cancer patients, non-diabetic or Metformin-taking diabetic. ρ – Spearman's rank coefficient for non-linear correlation: $P \le 0.05$ (*); ns – not significant; n – number of patients.

Supplementary Figure 3 Metformin's effects on SOX4 could not be imitated by interference with GPD2 or AMPK functions. Levels of the indicated mRNAs and proteins were monitored by qRT-PCR or WB, respectively, in the indicated cell lines, subjected to siRNA-mediated knockdown of *GPD2* (**a**) or *AMPK1/2* (**b**) for 96 h, as indicated. Error bars represent mean values \pm SD.

Supplementary Figure 4 DDIT3 is one of the key factors involved in SOX4 repression upon Metformin treatment. (**a-c**) Levels of the indicated mRNA and proteins in the indicated cell lines, treated with WntCM and Metformin, as indicated, were monitored by qRT-PCT or WB, respectively. Asterisk indicates a position of DDIT3 protein band migration. **c**, DLD1 cells were pre-treated with Metformin for 72 h and later transferred into fresh media for the indicated time period. **d**, TOPFLASH luciferase reporter assay in HEK293T cells: Wnt signaling was activated by co-transfection of *LRP6* with *wnt8-frizzled5* fusion constructs (*LRP6/W/Fz*) or by *β-catenin*, in presence of or without *DDIT3* expression construct. Experiment was done in triplicates, error bars correspond to mean values \pm SD; RLA – relative luciferase activity. **e**, Confirmation of DDIT3 knockout in H1975 cell line generated with CRISPR/Cas9 genome editing system. Top: Genotyping result showed a single nucleotide insertion mutation (marked by asterisk) in a selected clone that caused translation frame shift. No wildtype alleles were detected for the selected clone after multiple sequencing. Bottom: H1975 wildtype cells and the selected mutant clone were treated with 5 µg/ml Tunicamycin, 60 nM Nigericin or 20 nM Bortezomib for 48 h, and DDIT3 protein induction was monitored by WB.

Supplementary Figure 5 Efficiency of siRNA-mediated knockdown experiments performed in this study was controlled by qRT-PCR. **a**, Samples from experiment presented in **Fig. 3a**. **d**, Samples from experiment presented in **Fig. 3f**.

Supplementary Figure 6 The UPR-inducing drugs induce DDIT3 and reduce protein levels of SOX4. (a-b) Levels of the indicated proteins in the indicated cell lines treated with WntCM and different drugs were monitored by WB. Asterisk indicates position of unspecific band used as a loading control. b, H1299 cells were transfected with β -catenin expression construct for 72 h and treated with Metformin or Tunicamycin, as indicated. c, 3D cell invasion assay done with H1299 cells treated with WntCM and the indicated drugs (6 mM Metformin or 5 nM Bortezomib) for 96 h. Cells were fixed and imaged using confocal microscopy. Bottom: Representative images of 3D cell invasion assay. Experiment was done with 5 biological replicates, error bars correspond to mean values ± SD. P < 0.0001 (****). Scale bar, 150 µm.

Supplementary Figure 7 Mitochondrial complex I inhibitors cause intracellular acidification. (**a-c**) Fluorometric measurements of pHi changes (EC-GFP/mCherry) in DLD1^{EC-GFP/mCHERRY} cells upon treatment with increasing concentrations of the indicated MCI inhibitor drugs for 72 h. **b**, pHi calibration curve built for conversion of EC-GFP/mCherry ratio values to pHi. DLD1^{EC-GFP/mCHERRY} cells were exposed to standard calibrating solutions with pH range from 6.2 to 8.8, for 0.5 h, before fluorometry. **c**, Treatment was done as in **a**, using increasing concentrations of MCII inhibitor, Lonidamine, in presence or without of 5 nM Monensin. Error bars correspond to mean values \pm SD for 6 biological replicates. (**a**, **c**) Positions of black lines on the right indicate a range of pHi changes caused by the treatments. The pHi values were converted from EC-GFP/mCherry ratios using the calibration curve presented in **b**.

Supplementary Figure 8 Only when drug treatment causes intracellular acidification, it blocks Wnt signaling. **a**, Fluorometric measurements of pHi changes (EC-GFP/mCherry) in DLD1^{EC-GFP/mCHERRY} cells upon treatment with increasing concentrations of the indicated monocarboxylate transporter (MCT) inhibitors: CHC (2-Cyano-3-(4-hydroxyphenyl)-2-propenoic acid) and AZD3965, or carbonic anhydrases (CA) inhibitor (Azetazolamide) for 72 h, as indicated. **b**, Levels of indicated proteins were monitored by WB in H1299 cells treated with indicated drugs (as in **a**, for 72 h) and induced with WntCM for 48 h.

Supplementary Figure 9 Drugs, selected according to the 'Warburg Trap' model, cooperatively drop pHi and inhibit Wnt signaling. **a**, Confocal microscopy in H1975^{EC-GFP} cells treated with combinations of Rotenone and Nigericin, or Papaverine and Salinomycin, as indicated. Live cells were imaged at 405 nm and 488 nm excitations to record control and pH-sensitive GFP emissions, respectively. Scale bar, 150 μ m. (**b-c**) Levels of the indicated proteins in the indicated cell lines treated as in **Fig. 5b** (H1975 and MDA-MB-231, **b**), or as indicated (MRC5, **b**; or H1299, **c**), were evaluated by WB. **d**, qRT-PCR analysis of the indicated mRNAs expression levels in the samples from the experiment presented in **Fig. 5c. e**, ATP concentration measurements in the indicated cell lines treated with Rotenone/Nigericin, as indicated. Error bars correspond to mean values ± SD for 6 biological replicates; *P* = 0.0042 (**); ns – not significant.

Supplementary Figure 10 Drugs, selected according to the 'Warburg Trap' model, cooperatively affect cancer cells viability and inhibit SOX4 protein accumulation, also in presence of ROS scavengers. **a**, Cell viability measured in the indicated cell lines with the indicated drug combinations. Assay was done as in **Fig. 5f**. Error bars correspond to mean values \pm SD for 6 biological replicates. **b**, The indicated cell lines were treated with different drug combinations: 10 nM Nigericin (Nig), 5nM

Rotenone (Rot), 1 μ M Papaverine-HCl (Pap), 10 nM Salinomycin (Sal), in presence or without of 1mM NAC (N-acetyl cysteine), 20 μ M Doxycycline, 20 μ M Minocycline, 100 μ M Trolox (soluble form of vitamin E), as indicated, and levels of SOX4 protein were evaluated with WB.

Melnik et al., Supplementary Figure 3

b

