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Figure 1. (a) Model for concept formation, and (b) model for learning of the language model.

APPENDIX 1: FUNDAMENTAL MODELS

In this section, we detail the multimodal latent Dirichlet allocation (MLDA) and learning of the language
model, which were used in two applications in this paper.

Multimodal LDA

We used MLDA as one of the modules. MLDA is an extension of LDA (Blei et al., 2003), which was
proposed for document classification, to classify multimodal information obtained by the robot’s sensors.
In this model, it was assumed that the multimodal information w1, w2 and w3 was generated by following
generative process:

• Category ratio is determined:

θ ∼ P (θ|β). (1)

• Following process is iterated Nm times for m ∈ {1, 2, 3}:
1. A category is selected:

z ∼ P (z|θ). (2)

2. Information of category z is generated:

wm ∼ P (w|ϕmz). (3)

MLDA stochastically models the generative process of multimodal information, and multimodal
information wm was assumed to be sampled from the distribution P (wm|ϕmz), such that information
wm of category z of modality m is generated. Fig. 1(a) is a graphical model of MLDA, and depicts
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this generative process of multimodal information. As well as LDA, the categories can be learned in
an unsupervised manner using Gibbs sampling, where category z is sampled and the model parameters
θ, ϕm are estimated. MLDA is the most fundamental model for multimodal categorization, and it can
be extended to the multimodal hierarchical Dirichlet process (Nakamura et al., 2011), which makes it
possible to estimate the number of categories, as well as an infinite mixture of models (Nakamura et al.,
2015), which makes it possible to estimate the model structure.

In terms of multimodal information, we used visual, auditory, and haptic information, which we will
explain later. In the previous study (Nakamura et al., 2007), we indicated that more human-like categories
can be formed by the classification of multimodal information.

Learning of language model

The robot can form object concepts using MLDA, and acquire word meanings by connecting the formed
concepts and words learned through interaction with others. To obtain the words, the robots are required to
recognize speech and extract words from it. In order to do so, a language model is required, which can be
learned in an unsupervised manner using the model shown in Fig. 1(b). The variable o represents the given
human speech, and this is recognized and converted into a sequence of words s using the parameters of the
acoustic model A and language model L. Here, we consider that A is already known and L is learned. In
the initial learning phase, the parameters of the language model are unknown, and we set these to a uniform
distribution where all phonemes are equally generated. First, the parameters of the language model L can
be estimated by dividing the recognized strings into words using a nested Pitman–Yor language model
(NPYLM) (Mochihashi et al., 2009), which is a method for unsupervised morphological analysis. This
word segmentation was realized via an estimation parameter L, which maximizes the probability that the
word sequence S = {ww

1 , w
w
2 , · · · } of recognized strings S′ is generated.

L,S = argmax
L,S

P (S|S′L). (4)

The learned language model enables the robot to recognize speech accurately.

Hierarchical Pitman-Yor Language Model

The hierarchical Pitman–Yor language model (HPYLM) is an n-gram language model in which the
hierarchical Pitman–Yor process is used. In the HPYLM, the probability that a word w appears after a
context h is computed as follows:

p(w|h) = c(w|h)− d · thw
θ +

∑
w c(w|h)

+
θ + d ·

∑
w thw

θ +
∑

w c(w|h)
p(w|h′), (5)

where h′ represents an (n− 1)-gram context and p(w|h′) is the probability that the word w appears after
the context that is one shorter than h; therefore, these probabilities can be computed recursively. Also,
c(w|h) represents the number of occurrences of w, and thw represents the number of occurrences of w in
the context h. d and θ are the hyperparameters of the Pitman–Yor process.

Nested Pitman-Yor Language Model

In the HPYLM mentioned in the previous section, p(w|h′) in Eq. (5) can be set as the reciprocal of the
number of vocabulary in the case of unigram. However, we assumed that the vocabulary is not predefined,
and is difficult to compute because all possible substrings in the recognized strings can be words. In
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Figure 2. Obtaining (a) visual information, (b) haptic information, (c) auditory information, and (d) 50
objects used in the experiments.

order to solve this problem, the character HPYLM was used as the base measure of the word unigram.
This model is called the NPYLM because the character HPYLM is embedded in the word HPYLM. By
utilizing the blocked Gibbs sampler and dynamic programming, NPYLM can divide strings into words
efficiently.

APPENDIX 2: MULTIMODAL OBJECT DATASET

Fig. 2(d) displays the objects used in the experiments. The robot obtained the multimodal information
from these objects.

Visual information wv A charge-coupled device camera and depth sensor were mounted on the arm
of the robot (Fig. 2(a)), and the images captured by observing the objects were utilized for visual
information. A dense scale-invariant feature transform (Vedaldi and Fulkerson, 2010) was computed
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Table 1. Motions that are carried out against objects.
motion object motion object
pour (1) dressing wipe (5) flooring cleaner

shampoo spray (6) spray can
shake (2) spray can look (7) soft toy

plastic bottle put (8) snack
dressing cup noodle

drink (3) plastic bottle throw (9) soft toy
eat (4) cup noodles rattle

snack pick up (10) cookie

from each image. Each feature vector was quantized using 500 representative vectors and converted
into a 500-dimensional histogram.

Haptic information wt

Haptic information was obtained using a Barrett hand mounted on the arm, and a tactile array
sensor was mounted on the hand (Fig. 2(b)). The robot grasps the objects and obtains a time series of
sensor values. The sensor values were approximated by a sigmoid function, the parameters of which
were used as feature vectors (Araki et al., 2011). Finally, these feature vectors were quantized and
converted into a 15-dimensional histogram.

Auditory information wa

A microphone was mounted on the robot’s hand, and the sound was captured by shaking the
objects (Fig. 2(c)). The sound was divided into frames, and a 13-dimensional mel-frequency cepstral
coefficient was computed from each frame. Therefore, the sound was converted into a 13-dimensional
feature vector. As well as the other information, these feature vectors were quantized and converted
into a 50-dimensional histogram.

Motion information wp

Motion information was computed from the joint angles captured by Microsoft Kinect. The
sequence of 11 joint angles was captured. We assumed that each motion can be segmented based on
the identity of the manipulated object; therefore, the sequence can be considered from the beginning
to the end of the manipulation of each object as one motion. Table 1 displays the motions carried
out against each object. The 11 joint angles were treated as 11-dimensional feature vectors, which
were quantized and converted into a 70-dimensional histogram. This histogram is a bag of feature
representations of motion, the efficiency of which is shown in (Mangin and Oudeyer, 2012).

Teaching utterances o

The speech that a human user provides to teach object features was used as the teaching utterances.
Each speech corresponds to each object based on the object identities. Therefore, the speech uttered
during a robot’s observing, grasping, and shaking is assumed to represent its object features.

In the experiment, the multimodal information was obtained through the following procedure. First, the
user placed an object in front of the robot. After detecting the object, the robot observed, grasped, and
shook it to obtain multimodal information. Simultaneously, the user teaches the object features by speech.
We instructed the user to teach the object features and did not impose any restrictions with regard to their
expression.
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