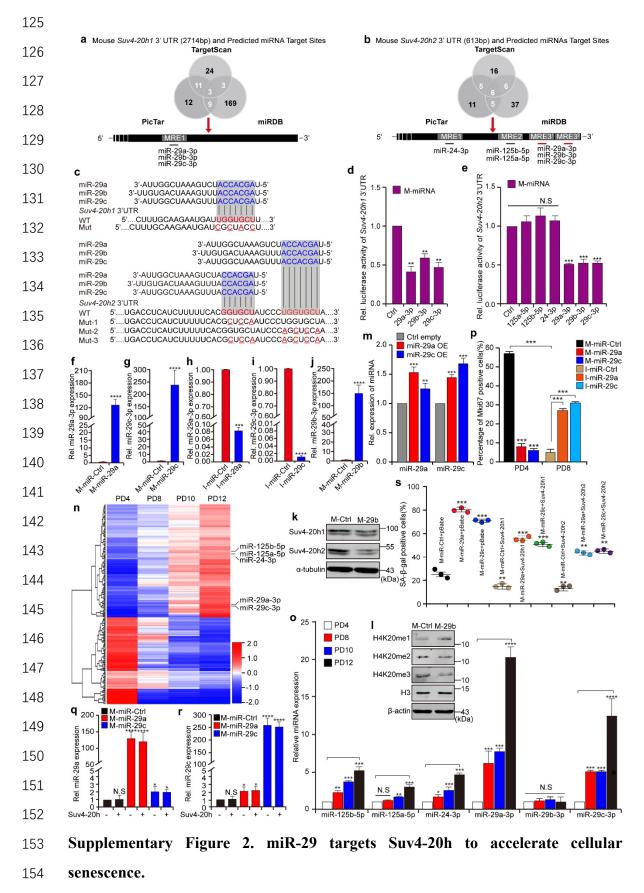
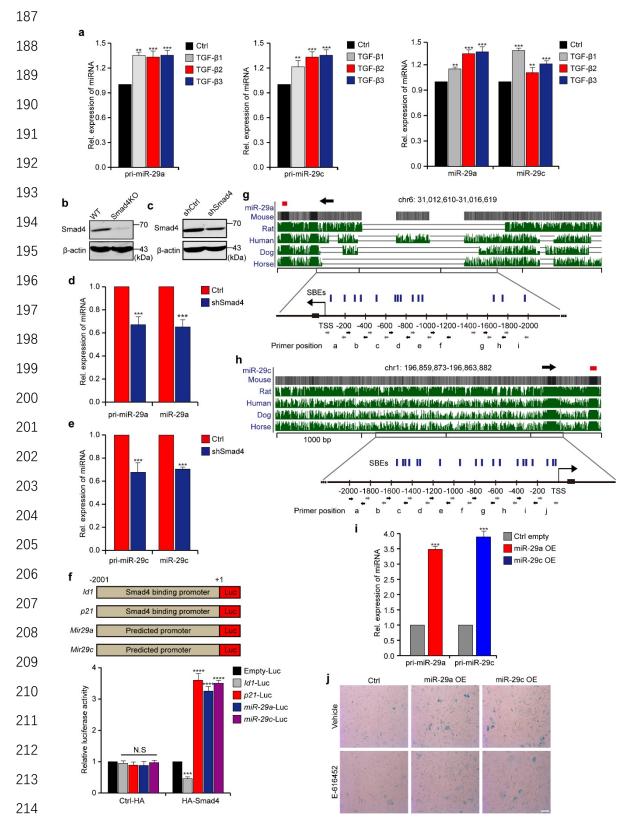

1	TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular
2	senescence and cardiac aging
3	Guoliang et al.
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	


32	32	
33	33	
34	34	
35	35	
36	36	
37	37	
38	38	
39	39	
40	40	
41	41	
42	42	
43	43	
44	44	
45	45	
	46 Supplementary Figures	
46		
46 47	46 Supplementary Figures	
46 47 48	 46 Supplementary Figures 47 	
46 47 48 49	 46 Supplementary Figures 47 48 	
46 47 48 49 50	 46 Supplementary Figures 47 48 49 	
46 47 48 49 50 51	 46 Supplementary Figures 47 48 49 50 	
46 47 48 49 50 51 52	46Supplementary Figures4748495051	
46 47 48 50 51 52 53 54	46 Supplementary Figures 47	
466 477 488 500 511 522 533 544 555	46 Supplementary Figures 47	
46 47 48 50 51 52 53 54 55 56	46 Supplementary Figures 47	
46 47 48 50 51 52 53 54 55 56 56 57	46 Supplementary Figures 47	
46 47 48 50 51 52 53 54 55 56 57 58	46 Supplementary Figures 47	
46 47 48 50 51 52 53 54 55 56 57 58 59	46 Supplementary Figures 47 48 48 49 50 50 51 50 52 53 54 50 55 56 56 57 58 59	
46 47 48 50 51 52 53 54 55 56 57 58 59 60	46 Supplementary Figures 47	
46 47 48 50 51 52 53 54 55 56 57 58 59 60 61	46 Supplementary Figures 47 48 48 49 50 50 51 50 52 53 54 50 55 56 56 57 58 59	

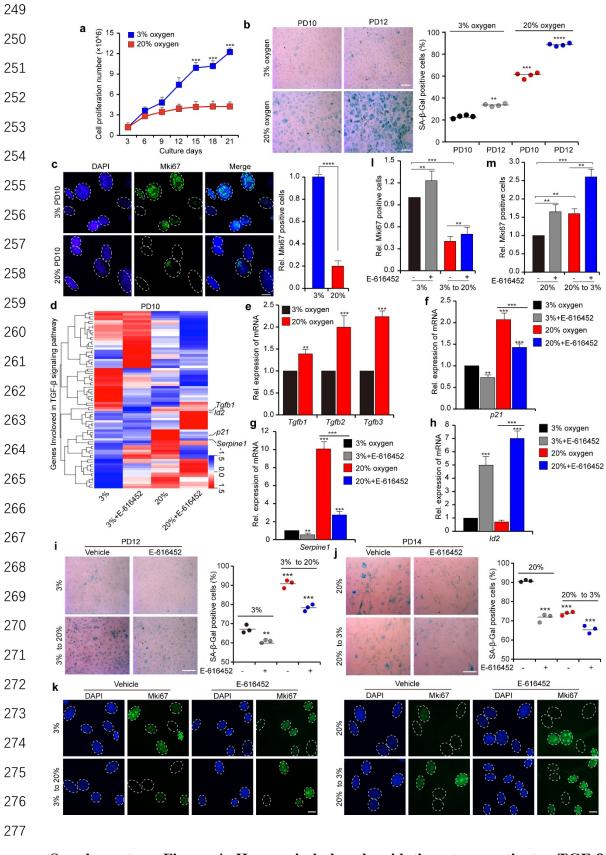
87 Supplementary Figure 1. Loss of H4K20me3 promotes emergence of senescent
88 phenotypes.


89 **a-c**, MEFs progressively accumulated positive SA- β -gal stained cells and showed a 90 decreased proliferation rate over time. MEFs from different growth stages were 91 subjected to SA- β -gal staining (**a**), growth curve analysis (**b**) and *Mki67* measurement 92 by RT-qPCR (**c**). Scale bar, 20 µm. **p<0.01, ***p<0.001 (One-way ANOVA with 93 Dunnett's multiple comparison test). **d-g**, RT-qPCR measurements of Mki67 (**d**), p21

94	(e), p16 (f), and p15 (g) in Suv4-20h1 knockdown (shSuv4-20h1), Suv4-20h2
95	knockdown (shSuv4-20h2) or both (shSuv4-20h) cells. h , Statistical analysis of SA- β -
96	gal staining in Figure. 1i. i, Statistical analysis of the Mki67 signal in Figure. 1j. j,
97	Western blot for changes in H4K20 methylation in cells treated with the indicated doses
98	of A-196. β -actin served as a loading control. k , Cells from j were subjected to SA- β -
99	gal staining (left) and analyzed (right, One-way ANOVA with Dunnett's multiple
100	comparison test). Scale bar, 20 μm . The error bars represent the s.d. obtained from
101	triplicate independent experiments. Two-tailed unpaired Student's t-tests were
102	performed. **p<0.01, ***p<0.001.
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	

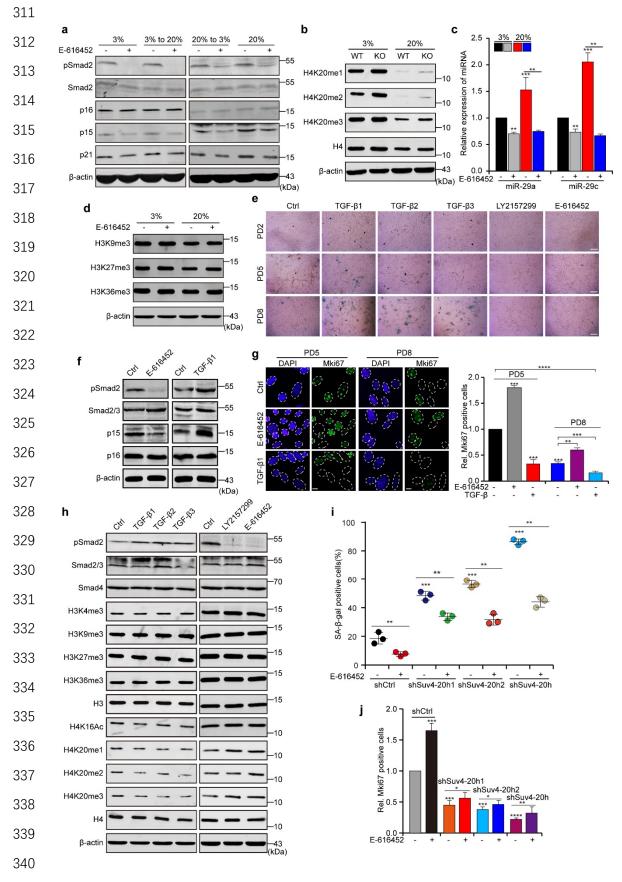
a, **b**, Schematic diagrams showing the of miRNAs predicted to target the 3' UTR of

156	Suv4-20h1 (a) or Suv4-20h2 (b) by analyzing three different miRNA databases
157	(TargetScan, PicTar and miRDB). c, Representative mode of miR-29 targeting the 3'
158	UTRs of Suv4-20h1 and Suv4-20h2. d, e, Luciferase activity assays showed cells co-
159	transfected with miRNA mimics and constructs containing the 3' UTR of Suv4-20h1 (d)
160	or 3' UTR of Suv4-20h2 (e). f-j, RT-qPCR showed expression of the indicated miRNA
161	after transfection with the corresponding miRNA mimics or inhibitors. k, l, Western
162	blots showed changes in Suv4-20h protein (k) and H4K20 methylation (l). α -tubulin
163	and β -actin served as loading controls. m , RT-qPCR measurements of lentivirus-
164	induced expression of miR-29. n, o, Differential miRNA profiling (n) and RT-qPCR
165	measurement (o) of the indicated miRNAs during MEFs senescence. p, Statistical
166	analysis of Mki67-positive cells from Figure 2f,j. q, r, RT-qPCR analysis of miR-29
167	expression in cells with mimic-mediated expression of miR-29 followed by
168	reintroduction of Suv4-20h. s, Statistical analysis of SA-β-gal staining from Figure 2i
169	(One-way ANOVA with Dunnett's multiple comparison test). The error bars represent
170	the s.d. obtained from triplicate independent experiments. Two-tailed unpaired
171	Student's t-tests were performed. **p<0.01, ***p<0.001.
172	
173	
174	
175	
176	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	



215 Supplementary Figure 3. TGF-β signaling regulates transcription of *Mir29* in a

216 Smad-dependent manner during MEFs senescence.


217 **a**, RT-qPCR measurement of miR-29 expression in cells treated with or without TGF-


218	$\beta 1/\beta 2/\beta 3$. b , c , Knockout (b) or knockdown (c) of Smad4 was confirmed by western
219	blotting. d, e, RT-qPCR measurement of miR-29a (d) and miR-29c (e) upon Smad4
220	knockdown. f, Luciferase assays showed cells co-transfected with Smad4 and fused
221	constructs containing the predicted promoters. g, h, Bioinformatics analysis of Mir29a
222	(g) and $Mir29c$ (h) about SBEs residing in the predicted promoters. The arrows show
223	the transcription directions. The letters represent the primer positions for ChIP. i, RT-
224	qPCR to measure miR-29 expression following lentivirus-mediated expression of miR-
225	29. j, Cells with ectopic expression of miR-29 were subjected to SA- β -staining. The
226	error bars represent the s.d. obtained from triplicate independent experiments. Two-
227	tailed unpaired Student's t-tests were performed. **p<0.01, ***p<0.001.
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	
243	
244	
245	
246	
247	
248	

Supplementary Figure 4. Hyperoxia-induced oxidative stress activates TGF-β
 signaling to accelerate senescence.

280	a , The growth curves showed the differences in the proliferation rates of MEFs cultured
281	under physioxia (3% oxygen) and relative hyperoxia (20% oxygen). b , Cells from PD10
282	and PD12 incubated in 3% or 20% oxygen were subjected to SA- β -gal staining. Scale
283	bar, 20 μm . One-way ANOVA with Dunnett's multiple comparison test was performed.
284	c, PD10 MEFs grown in 3% oxygen and 20% oxygen were used to immunofluorescent
285	staining analysis of Mki67. Scale bar, 5 μm . Two-tailed unpaired Student's t-tests were
286	performed. d , PD10 MEF cells grown in 3% or 20% oxygen, with or without inhibitors
287	were collected for analysis of differential mRNA transcript expression. e-h, RT-qPCR
288	measurement validated the mRNA expression results from d. i, j, MEFs grown in 3%
289	oxygen and transferred to 20% oxygen (i), as well as MEFs cultured in 20% oxygen
290	and transferred to 3% oxygen (j), were treated with or without inhibitors and subjected
291	to SA- β -gal staining. Scale bar, 20 μm . One-way ANOVA with Dunnett's multiple
292	comparison test was performed. k-m, Immunofluorescent staining analysis of the
293	Mki67 signal of MEFs with the same treatment as in j. Graphs with p-values are
294	representatives of triplicate independent experiments. **p<0.01, ***p<0.001,
295	****p<0.0001.
296	
297	
298	
299	
300	
301	
302	
303	
304	
305	
306	
307	
308	
309	
310	

342 H4K20me3 abundance.

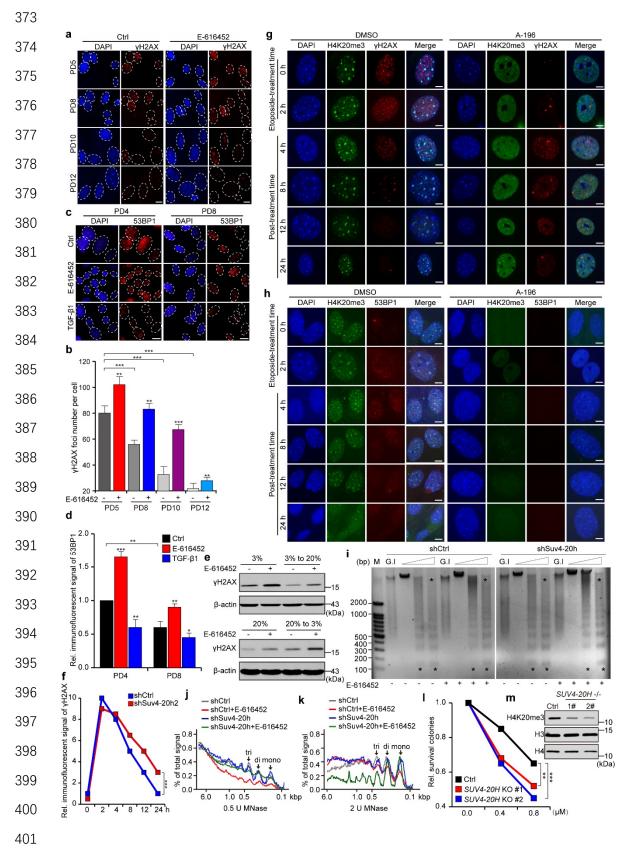
a, Western blots showed protein changes in MEFs grown in 3% or 20% oxygen. β -actin 343 served as a loading control. **b**, Western blots showed changes in H4K20 methylation in 344 MEFs grown in 3% or 20% oxygen upon Smad4 knockout (KO). WT is designated for 345 wild-type. β -actin served as a loading control. c, RT-qPCR measurement of miR-29 346 expression in MEFs grown in 3% or 20% oxygen under treatment with or without E-347 616452. d, Western blot for alterations of histone modifications in cells cultured in 3% 348 or 20% oxygen in the presence or absence of E-616452. β -actin served as a loading 349 control. e, MEFs from PD2, PD5 and PD8 treated with TGF-β or inhibitors (LY2157299 350 and E-616452) were subjected to SA-β-gal staining. Scale bar, 20 µm. f, Western blot 351 for confirmation of the efficacy of the treatments with E-616452 or TGF- β . g, 352 Immunofluorescent microscopy for Mki67 staining in PD5 and PD8 MEFs (left) with 353 the same treatment as in f. Signals were analyzed by ImageJ software (right). Student's 354 t-test was applied. Scale bar, 5 µm. h, Western blot for the indicated proteins in cells 355 356 with the same treatment as in e. β -actin served as a loading control. i, Statistical analysis of the SA-β-gal staining in Figure 4g. One-way ANOVA with Dunnett's multiple 357 comparison test was performed. j, Statistical analysis of the Mki67-positive cells in 358 Figure 4h. The error bars represent the s.d. obtained from triplicate independent 359 experiments. Two-tailed unpaired Student's t-tests were performed. **p<0.01, 360 ***p<0.001. 361

362

363

364

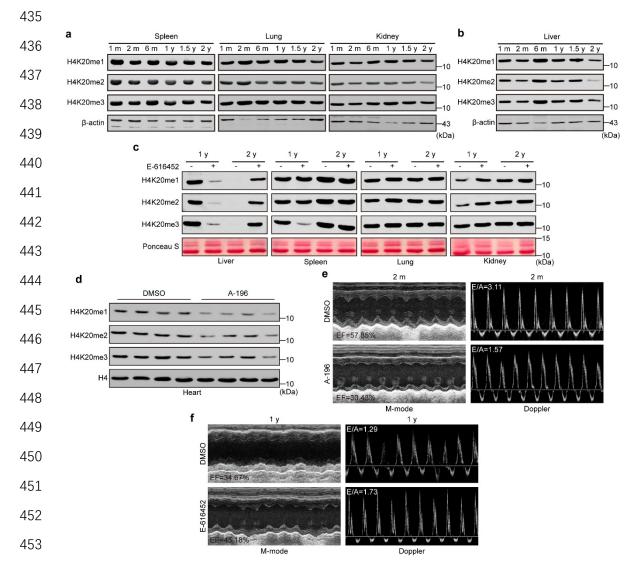
365


366

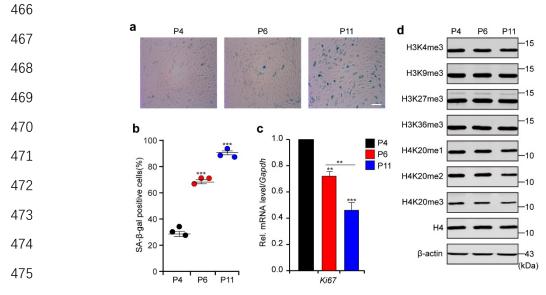
367 368

369

370

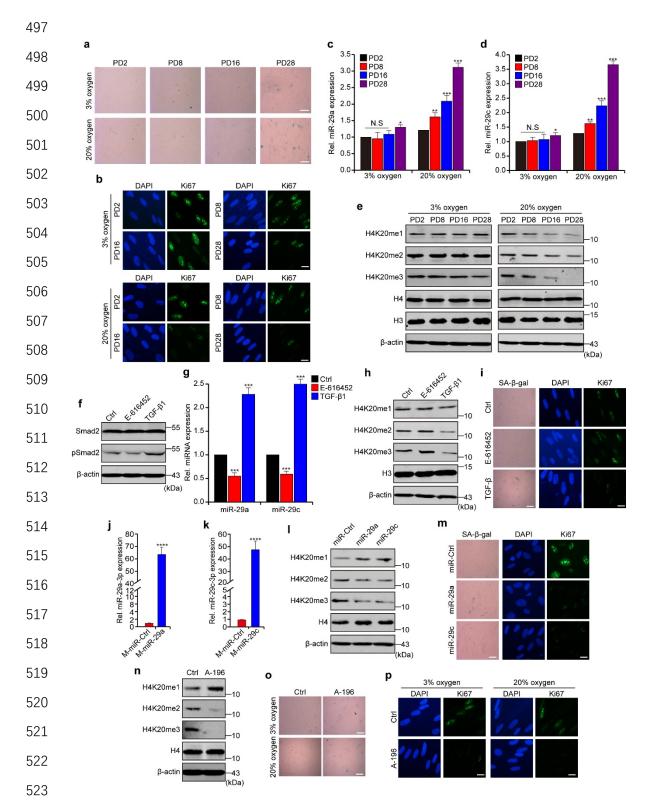

371

402 Supplementary Figure 6. Loss of H4K20me3 leads to DNA damage repair defects
403 and lowers cell survival rates upon DNA damage stress.


a, **b**, Immunofluorescent staining of γ H2AX in serially passaged cells treated with or without E-616452 (a). Signals were analyzed by using ImageJ software (b). Scale bar, 5 µm. c, d, Immunofluorescent staining of 53BP1 from PD4 and PD8 cells treated with inhibitor or TGF- β 1 (c). Signals were analyzed using ImageJ software (d). Scale bar, 5 μ m. e, Protein levels of γ H2AX in cells treated with or without E-616452, were tested by western blotting. f, Statistical analysis of the yH2AX signals in Figure 5e. g, h Immunofluorescent staining for γ H2AX (g) and 53BP1 (h) in cells incubated with A-196 for 48 h followed by etoposide treatment according to the indicated time course. Scale bar, 5 µm. i-k, Nuclei from Suv4-20h knockdown cells treated with or without E-616452 and incubated with 0 U, 0.5 U or 2 U of MNase for 5 min followed by DNA extraction, agarose gel electrophoresis and ethidium bromide staining. The asterisks indicate prominent signal changes (i). Signals were analyzed using ImageJ software (i, k). I, Colonies analysis of Figure 5k using ImageJ software. m, Western blot for H4K20me3 in HEK293T (Ctrl) and SUV4-20H-knockout cells (SUV4-20H-/- #1 and #2). H3 served as a loading control. The error bars represent the s.d. obtained from triplicate independent experiments. Two-tailed unpaired Student's t-tests were performed. **p<0.01, ***p<0.001.

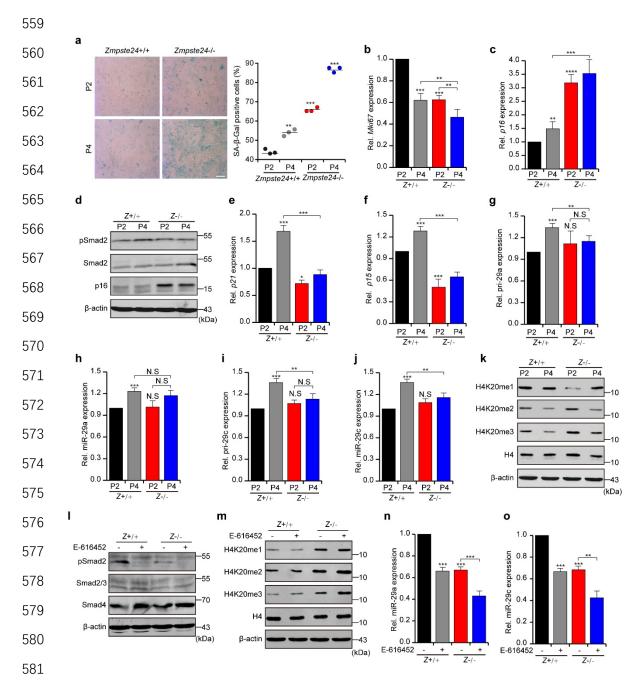
- .00

454 Supplementary Figure 7. TGF-β signaling regulates cardiac aging by reducing
455 H4K20me3 abundance.


456 a, Tissues (spleen, lung and kidney) collected from mice of the indicated age were used to test H4K20 methylation by western blotting. **b**, Western blot for H4K20 methylation 457 in livers collected from a. c, Immunoblotting for H4K20 methylation in livers, spleens, 458 lungs and kidneys collected from the indicated mice fed with E-616452. H4, β-actin 459 and Ponceau S served as loading controls. d, Western blot for H4K20 methylation in 460 hearts from two-month-old mice. Four mice were treated with vehicle (DMSO), 461 whereas four mice were treated with A-196. H4 served as a loading control. e, f, 462 Representative echocardiographs vehicle (DMSO)- or A-196-treated 2-month-old mice 463 (2m, e) and DMSO- or E-616452-treated 1-year-old mice (1 y, f). Data were acquired 464 under B-mode, M-mode and pulse-waved Doppler. 465

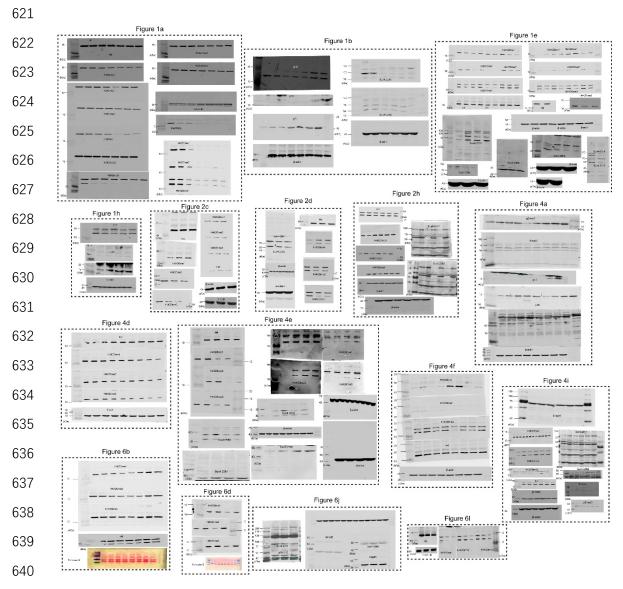
476 Supplementary Figure 8. H4K20 methylation is attenuated during HUVECs
477 senescence.

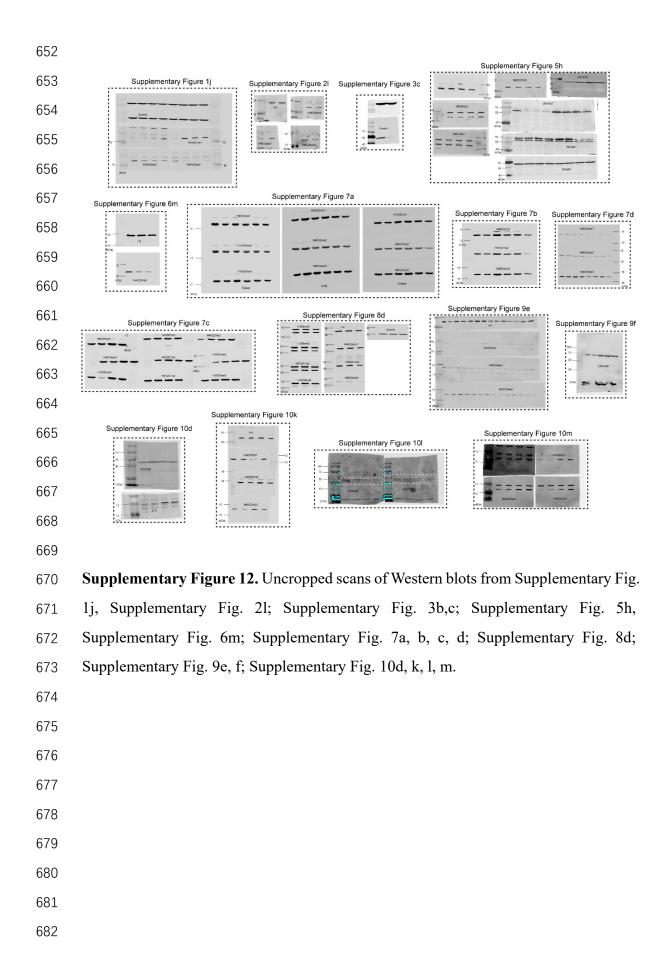
a-c, HUVECs at different passage stages were subjected to SA- β -gal staining (**a**, **b**) and measurement of *Ki67* expression (**c**). Scale bar, 20 µm. One-way ANOVA with Dunnett's multiple comparison test was performed to analyze the SA- β -gal staining signals. **d**, The total protein levels of the indicated histone modifications were examined by immunoblotting. H4 and β -actin served as loading controls. The error bars represent the s.d. obtained from triplicate independent experiments. Two-tailed unpaired Student's t-tests were performed. **p<0.01, ***p<0.001.


- 485
- 486
- 487
- 488
- 489
- 490
- 491 492
- 493
- 494
- 495
- 496

Supplementary Figure 9. Activated TGF-β signaling promotes HEFs senescence
by reducing H4K20me3 via induction of miR-29 expression.

a, SA-β-gal staining of serially passaged HEFs (PD2, PD8, PD16 and PD28)
individually grown in 3% and 20% oxygen. Scale bar, 20 μm. b, Immunofluorescent


staining of Ki67 of serially passaged HEFs cultured in 3% and 20% oxygen. Scale bar, 5 µm. c, d, RT-qPCR measurement of miR-29 expression in different passages of HEFs. miRNAs expression was normalized to U6. The error bar represents the s.d. from three independent replicates. *p<0.05, **p<0.01, ***<p<0.001, Student's t-test was performed. e, Global H4K20 methylation was tested by western blotting in the HEFs from a. H3, H4 and β -actin served as loading controls. f, Immunoblotting for the indicated proteins in the presence of E-616452 or TGF-\beta1. \beta-actin served as a loading control. g, RT-qPCR measurement of miR-29 expression in different passages of HEFs. **h**, Western blots of the indicated proteins in the HEFs derived from **f**. β -actin served as a loading control. i, SA-β-gal staining and immunofluorescent staining of Ki67 in HEFs with the same treatment as those in **f**. **j**, **k**, RT-qPCR measurement of miR-29 expression in HEFs with ectopic expression of miR-29 mimics. I, Western blot for total H4K20 methylation in HEFs with ectopic miR-29 expression. β-actin served as a loading control. m, SA-β-gal staining (left panel, scale bar, 20 µm) and immunofluorescent staining of Ki67 (right panel, scale bar, 20 µm) in HEFs with the same treatment as those in **l**. **n**, Immunoblotting of H4K20 methylation in cells treated with A-196. β-actin served as a loading control. **o**, **p**, SA- β -gal staining (**o**, scale bar, 20 μ m) and immunofluorescent staining of Ki67 (p, scale bar, 5 µm) in cells with the same treatment as those in **a**.


Supplementary Figure 10. Depletion of Zmpste24 blocks TGF-β-miR-29 signaling
in the HGPS mouse model.

a, Serial passages (P2 and P4) of wild-type (*Zmpste24*^{+/+}) and *Zmpste24*-knockout (*Zmpste24*^{-/-}) MEFs were subjected to SA- β -gal staining (left panel). Signals were analyzed by ImageJ software. One-way ANOVA with Dunnett's multiple comparison test was performed (right panel). **b**, **c**, mRNA expression levels of *Mki67* (**b**) and *p16* (**c**) were tested by RT-qPCR and normalized to that of *Gapdh*. **d**, Total protein levels of pSmad2, Smad2 and p16 were examined by immunoblotting in serially passaged wild-

590	type and Zmpste24-knockout cells. β -actin served as a loading control. e-j, RT-qPCR
591	measurement of the indicated genes ($p21$, e and $p15$, f) and miRNAs (pri-miR-29 and
592	miR-29, g-j). Expression of mRNA and pri-miRNA was normalized to that of Gapdh
593	and expression of miRNA was normalized to that of U6. Two-tailed unpaired Student's
594	t-tests were performed. The error bars represent the s.d. obtained from triplicate
595	independent experiments. k, Western blot for H4K20 methylation in the cells from d.
596	β -actin served as a loading control. I, m, Immunoblotting of the indicated proteins in
597	late-passage (P6) wild-type and Zmpste24-knockout MEFs treated with or without E-
598	616452. β -actin and H4 served as loading controls. n , o , RT-qPCR measurement of
599	miR-29a (n) and miR-29c (o) expression in cells from l. $Z^{+/+}$ and $Z^{-/-}$ represent wild-
600	type and <i>Zmpste24</i> knockout cells in b-o , respectively. *p<0.05, **p<0.01, ***p<0.001.
601	
602	
603	
604	
605	
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	

- **Supplementary Figure 11.** Uncropped scans of Western blots from Fig. 1a, b, e, h; Fig.
- 642 2c, d, h; Fig. 4a, d, e, f, i; Fig. 6b, d, j, l

Supplementary Table 1 Diastolic and systolic data of left ventricle

	2 m (DMSO)	2 m (A -196)	1 y (DMSO)	1 y (E-616452)
LVAW; d	0.799	0.632	1.172	1.385
	mm±0.054	mm±0.021	mm±0.027	mm±0.038
LVID; d	3.622	4.128	4.181	3.956
	mm±0.115	mm±0.120	mm±0.160	mm±0.113
LVPW; d	0.826	0.852	0.959	0.873
	mm±0.031	mm±0.043	mm±0.061	mm±0.057
LVAW; s	1.065	1.092	1.278	1.225
	mm±0.041	mm±0.026	mm±0.016	mm±0.034
LVID; s	2.876	4.234	3.222	2.476
	mm±0.053	mm±0.106	mm±0.082	mm±0.133
LVPW; s	0.692	0.639	0.985	0.905
	mm±0.026	mm±0.017	mm±0.024	mm±0.027

Diastolic and systolic parameters of left ventricle under B- and M-mode. ± represents
s.d. from mice of each group, respectively. Numbers of mice per group were indicated
in the legend of Figure 6e,f. LVAWd, left ventricular anterior wall thickness at enddiastole; d, diastole; LVIDd, left ventricular internal dimension at end-diastole; LVPWd,
left ventricular posterior wall thickness at end-diastole; LVAWs, left ventricular anterior
wall thickness at end-systole; s, systole; LVIDs, left ventricular internal dimension at
end-systole; LVPWs, left ventricular posterior wall thickness at end-systole.

Supplementary Table 2 Primers used in our study

Target	Forward (5'-3')	Reverse (5'-3')
qPCR Mki67	ATCATTGACCGCTCCTTTAGGT	GCTCGCCTTGATGGTTCCT
qPCR Suv4-20h1	ACTAGCGCCTTTCCTTCGAG	GCCGAAATCTCACAGGATTGTTG
qPCR Suv4-20h2	GCAGAGCTGCGTGAAGAGG	ACAGGCAGTATTCCCATCTGA
qPCR <i>p16</i>	CGCAGGTTCTTGGTCACTGT	TGTTCACGAAAGCCAGAGCG
qPCR <i>p21</i>	CCTGGTGATGTCCGACCTG	CCATGAGCGCATCGCAATC
qPCR <i>p15</i>	CCCTGCCACCCTTACCAGA	CAGATACCTCGCAATGTCACG
qPCR Tgfb1	GGCGGTGCTCGCTTTGT	GCGGGTGACCTCTTTAGCATAG
qPCR Tgfb2	CGGAGCGACGAGGAGTA	CGGACGATTCTGAAGTAGGGT
qPCR Tgfb3	GGACTGGCGGAGCACAA	CGCTGCTTGGCTATGTGC
qPCR Serpine1	CTTCAGCCCTTGCTTGCC	GGACCACCTGCTGAAACACT
qPCR Ryr	GCAGGTGGATGTGGAA	GTAGGAATGGCGTAGCA
qPCR Myh7	GAATGGCAAGACGGTGAC	TCCAGGAAGCGTAGCG
qPCR Ki67	GCCTGCTCGACCCTACAGA	GCTTGTCAACTGCGGTTGC
qPCR Gapdh	GTGTTCCTACCCCCAATGTGT	ATTGTCATACCAGGAAATGAGCTT
qPCR GAPDH	AGCCACATCGCTCAGACAC	GCCCAATACGACCAAATCC
qPCR Pri-miR-29a	AGCCCTGAAGTAAGTGTCC	AGGTCTTCATCCGAGCAT
qPCR Pri-miR-29c	ATGGGTGGAAGAGGGTT	TCTTCCAGGTTCAGACGAG
qPCR mmu-miR-29a-3p	GGCTAGCACCATCTGAAATCGGTTA	
qPCR mmu-miR-29c-3p	GGCTAGCACCATTTGAAATCGGTTA	
qPCR mmu-miR-29b-3p	GCGTAGCACCATTTGAAATCAGTGTT	
qPCR U6	CGCAAGGATGACACGCAAATTC	
ChIP miR-29a -414208	AACTATTGCACGGACTTCACCTTC	CTGGACACTTACTTCAGGGCTGTAC
ChIP miR-29a -621415	AGTAAAAAGTGTCACGCTTATCAAAA	CCTAATTTCAGGCGATCCTATG
ChIP miR-29a -828622	GCAGCAGTACTGATGATAGTGATAA	TCCAGATCGATCTGTTAGAGTCG
ChIP miR-29a -1035829)	TTATTGGAGTCCCTGACACATTC	TACTGCTACTACTATTACAGTTTTAAA
ChIP miR-29a -12361021	GATTTGAGAATGAGCAGGAA	CAGGGACTCCAATAACTACAC
ChIP miR-29a -16561450	GTCCCATGCACACTGGCTACTTC	GTTCTTACTGAATTGTTTGAAAGCA
ChIP miR-29a -17801559	AATAGATTCCCAGTCTGTAGC	CTACCCGAGGAAACAAAC
ChIP miR-29a -20011752	CCGAGCTCATTCTCCAGCCC	GGTGCCAGGCTACAGACTGGG
ChIP miR-29c -2071	GGGTTCCTTGGGCCTGCAC	GGACCGACTGGTGGTGTTCTTC

ChIP miR-29c -414208	CACAGCAGAGGGTAGACTACAGAGG	TCTTCCACCCATGGAATGCTG
ChIP miR-29c -621415	GCTCAAAGTGTTGGCTGTATG	CTGCAATTCTTACTCCTAAAACAC
ChIP miR-29c -828622	GTTGTTAACATCTCATAGGTCATTG	AGACAAAAACAATGCAAAGCTT
ChIP miR-29c -1035829	AGGTACATTTTTAAAACATACCTTGTT	TGAACCCAAGTAAGTCACCTGTG
ChIP miR-29c -12421036	TCACATTATATTTGCTCTATTACCC	AAAAATAAGATTCACAAGCTATGTT
ChIP miR-29c -14491243	CCCCTCCCCAGTCTAGCTCT	GTATCCCCAGAGTCACAATATTCAA
ChIP miR-29c -16561450	GAGAAGTCAGTGTCAGCATTGCTAG	GATTTAGCTCAGACAATCTGGATGG
ChIP miR-29c -18631657	ACTGCCATCTAATCTATTTATGACC	AGAAACTGGGCCAGCCA
ChIP miR-29c -20011864	CATAGAGGGAGGGGGATTGG	TATTAACAAGGGTCAAAATCCTG
Promoter miR-29a-3p	GGGGTACCCCGAGCTCATTCTCCAGCC	CGCTCGAGCACAAGAGGTCATGTGCA
Promoter miR-29c-3p	GGGGTACCCATAGAGGGAGGGGGATTG	CGCTCGAGGGACCGACTGGTGGTGTT
3' UTR-Suv420h1	GAGCTCTTGAATCTTGTGCGTGAC	GTCGACCTCTTTACATTGAATCCC
3' UTR-Suv420h1-Mut	CAAGAATGATCGCTACCTATTTTTTC	TAGGTAGCGATCATTCTTGCAAAG
3' UTR-Suv4-20h2	CGAGCTCCTTACAGGGAGCGGAATG	GCGTCGACCCAGTAGCACCAGGGATA
3' UTR-Suv4-20h2-Mut	GAGCTCCTTACAGGGAGCGGAATGGA	
3' UTR-Suv4-20h2-Mut-1		GTCGACCCAGTTGGAGCTGGGATAGC
3' UTR-Suv4-20h2-Mut-2		GTCGACCCAGTAGCACCAGGGATTGG