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Supplementary Figure 1. Loss of H4K20me3 promotes emergence of senescent 87 

phenotypes. 88 

a-c, MEFs progressively accumulated positive SA-β-gal stained cells and showed a 89 

decreased proliferation rate over time. MEFs from different growth stages were 90 

subjected to SA-β-gal staining (a), growth curve analysis (b) and Mki67 measurement 91 

by RT-qPCR (c). Scale bar, 20 μm. **p<0.01, ***p<0.001 (One-way ANOVA with 92 

Dunnett’s multiple comparison test). d-g, RT-qPCR measurements of Mki67 (d), p21 93 



(e), p16 (f), and p15 (g) in Suv4-20h1 knockdown (shSuv4-20h1), Suv4-20h2 94 

knockdown (shSuv4-20h2) or both (shSuv4-20h) cells. h, Statistical analysis of SA-β-95 

gal staining in Figure. 1i. i, Statistical analysis of the Mki67 signal in Figure. 1j. j, 96 

Western blot for changes in H4K20 methylation in cells treated with the indicated doses 97 

of A-196. β-actin served as a loading control. k, Cells from j were subjected to SA-β-98 

gal staining (left) and analyzed (right, One-way ANOVA with Dunnett’s multiple 99 

comparison test). Scale bar, 20 μm. The error bars represent the s.d. obtained from 100 

triplicate independent experiments. Two-tailed unpaired Student’s t-tests were 101 

performed. **p<0.01, ***p<0.001. 102 
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Supplementary Figure 2. miR-29 targets Suv4-20h to accelerate cellular 153 

senescence. 154 

a, b, Schematic diagrams showing the of miRNAs predicted to target the 3' UTR of 155 



Suv4-20h1 (a) or Suv4-20h2 (b) by analyzing three different miRNA databases 156 

(TargetScan, PicTar and miRDB). c, Representative mode of miR-29 targeting the 3' 157 

UTRs of Suv4-20h1 and Suv4-20h2. d, e, Luciferase activity assays showed cells co-158 

transfected with miRNA mimics and constructs containing the 3' UTR of Suv4-20h1 (d) 159 

or 3' UTR of Suv4-20h2 (e). f-j, RT-qPCR showed expression of the indicated miRNA 160 

after transfection with the corresponding miRNA mimics or inhibitors. k, l, Western 161 

blots showed changes in Suv4-20h protein (k) and H4K20 methylation (l). α-tubulin 162 

and β-actin served as loading controls. m, RT-qPCR measurements of lentivirus-163 

induced expression of miR-29. n, o, Differential miRNA profiling (n) and RT-qPCR 164 

measurement (o) of the indicated miRNAs during MEFs senescence. p, Statistical 165 

analysis of Mki67-positive cells from Figure 2f,j. q, r, RT-qPCR analysis of miR-29 166 

expression in cells with mimic-mediated expression of miR-29 followed by 167 

reintroduction of Suv4-20h. s, Statistical analysis of SA-β-gal staining from Figure 2i 168 

(One-way ANOVA with Dunnett’s multiple comparison test). The error bars represent 169 

the s.d. obtained from triplicate independent experiments. Two-tailed unpaired 170 

Student’s t-tests were performed. **p<0.01, ***p<0.001. 171 
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Supplementary Figure 3. TGF-β signaling regulates transcription of Mir29 in a 215 

Smad-dependent manner during MEFs senescence. 216 

a, RT-qPCR measurement of miR-29 expression in cells treated with or without TGF-217 



β1/β2/β3. b, c, Knockout (b) or knockdown (c) of Smad4 was confirmed by western 218 

blotting. d, e, RT-qPCR measurement of miR-29a (d) and miR-29c (e) upon Smad4 219 

knockdown. f, Luciferase assays showed cells co-transfected with Smad4 and fused 220 

constructs containing the predicted promoters. g, h, Bioinformatics analysis of Mir29a 221 

(g) and Mir29c (h) about SBEs residing in the predicted promoters. The arrows show 222 

the transcription directions. The letters represent the primer positions for ChIP. i, RT-223 

qPCR to measure miR-29 expression following lentivirus-mediated expression of miR-224 

29. j, Cells with ectopic expression of miR-29 were subjected to SA-β-staining. The 225 

error bars represent the s.d. obtained from triplicate independent experiments. Two-226 

tailed unpaired Student’s t-tests were performed. **p<0.01, ***p<0.001. 227 
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Supplementary Figure 4. Hyperoxia-induced oxidative stress activates TGF-β 278 

signaling to accelerate senescence. 279 



a, The growth curves showed the differences in the proliferation rates of MEFs cultured 280 

under physioxia (3% oxygen) and relative hyperoxia (20% oxygen). b, Cells from PD10 281 

and PD12 incubated in 3% or 20% oxygen were subjected to SA-β-gal staining. Scale 282 

bar, 20 μm. One-way ANOVA with Dunnett’s multiple comparison test was performed. 283 

c, PD10 MEFs grown in 3% oxygen and 20% oxygen were used to immunofluorescent 284 

staining analysis of Mki67. Scale bar, 5 μm. Two-tailed unpaired Student’s t-tests were 285 

performed. d, PD10 MEF cells grown in 3% or 20% oxygen, with or without inhibitors 286 

were collected for analysis of differential mRNA transcript expression. e-h, RT-qPCR 287 

measurement validated the mRNA expression results from d. i, j, MEFs grown in 3% 288 

oxygen and transferred to 20% oxygen (i), as well as MEFs cultured in 20% oxygen 289 

and transferred to 3% oxygen (j), were treated with or without inhibitors and subjected 290 

to SA-β-gal staining. Scale bar, 20 μm. One-way ANOVA with Dunnett’s multiple 291 

comparison test was performed. k-m, Immunofluorescent staining analysis of the 292 

Mki67 signal of MEFs with the same treatment as in j. Graphs with p-values are 293 

representatives of triplicate independent experiments. **p<0.01, ***p<0.001, 294 

****p<0.0001. 295 
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Supplementary Figure 5. TGF-β signaling regulates senescence by reducing 341 



H4K20me3 abundance.  342 

a, Western blots showed protein changes in MEFs grown in 3% or 20% oxygen. β-actin 343 

served as a loading control. b, Western blots showed changes in H4K20 methylation in 344 

MEFs grown in 3% or 20% oxygen upon Smad4 knockout (KO). WT is designated for 345 

wild-type. β-actin served as a loading control. c, RT-qPCR measurement of miR-29 346 

expression in MEFs grown in 3% or 20% oxygen under treatment with or without E-347 

616452. d, Western blot for alterations of histone modifications in cells cultured in 3% 348 

or 20% oxygen in the presence or absence of E-616452. β-actin served as a loading 349 

control. e, MEFs from PD2, PD5 and PD8 treated with TGF-β or inhibitors (LY2157299 350 

and E-616452) were subjected to SA-β-gal staining. Scale bar, 20 μm. f, Western blot 351 

for confirmation of the efficacy of the treatments with E-616452 or TGF-β. g, 352 

Immunofluorescent microscopy for Mki67 staining in PD5 and PD8 MEFs (left) with 353 

the same treatment as in f. Signals were analyzed by ImageJ software (right). Student’s 354 

t-test was applied. Scale bar, 5 μm. h, Western blot for the indicated proteins in cells 355 

with the same treatment as in e. β-actin served as a loading control. i, Statistical analysis 356 

of the SA-β-gal staining in Figure 4g. One-way ANOVA with Dunnett’s multiple 357 

comparison test was performed. j, Statistical analysis of the Mki67-positive cells in 358 

Figure 4h. The error bars represent the s.d. obtained from triplicate independent 359 

experiments. Two-tailed unpaired Student’s t-tests were performed. **p<0.01, 360 

***p<0.001. 361 
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Supplementary Figure 6. Loss of H4K20me3 leads to DNA damage repair defects 402 

and lowers cell survival rates upon DNA damage stress. 403 



a, b, Immunofluorescent staining of γH2AX in serially passaged cells treated with or 404 

without E-616452 (a). Signals were analyzed by using ImageJ software (b). Scale bar, 405 

5 μm. c, d, Immunofluorescent staining of 53BP1 from PD4 and PD8 cells treated with 406 

inhibitor or TGF-β1 (c). Signals were analyzed using ImageJ software (d). Scale bar, 5 407 

μm. e, Protein levels of γH2AX in cells treated with or without E-616452, were tested 408 

by western blotting. f, Statistical analysis of the γH2AX signals in Figure 5e. g, h 409 

Immunofluorescent staining for γH2AX (g) and 53BP1 (h) in cells incubated with A-410 

196 for 48 h followed by etoposide treatment according to the indicated time course. 411 

Scale bar, 5 μm. i-k, Nuclei from Suv4-20h knockdown cells treated with or without E-412 

616452 and incubated with 0 U, 0.5 U or 2 U of MNase for 5 min followed by DNA 413 

extraction, agarose gel electrophoresis and ethidium bromide staining. The asterisks 414 

indicate prominent signal changes (i). Signals were analyzed using ImageJ software (j, 415 

k). l, Colonies analysis of Figure 5k using ImageJ software. m, Western blot for 416 

H4K20me3 in HEK293T (Ctrl) and SUV4-20H-knockout cells (SUV4-20H-/- #1 and 417 

#2). H3 served as a loading control. The error bars represent the s.d. obtained from 418 

triplicate independent experiments. Two-tailed unpaired Student’s t-tests were 419 

performed. **p<0.01, ***p<0.001. 420 
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Supplementary Figure 7. TGF-β signaling regulates cardiac aging by reducing 454 

H4K20me3 abundance. 455 

a, Tissues (spleen, lung and kidney) collected from mice of the indicated age were used 456 

to test H4K20 methylation by western blotting. b, Western blot for H4K20 methylation 457 

in livers collected from a. c, Immunoblotting for H4K20 methylation in livers, spleens, 458 

lungs and kidneys collected from the indicated mice fed with E-616452. H4, β-actin 459 

and Ponceau S served as loading controls. d, Western blot for H4K20 methylation in 460 

hearts from two-month-old mice. Four mice were treated with vehicle (DMSO), 461 

whereas four mice were treated with A-196. H4 served as a loading control. e, f, 462 

Representative echocardiographs vehicle (DMSO)- or A-196-treated 2-month-old mice 463 

(2m, e) and DMSO- or E-616452-treated 1-year-old mice (1 y, f). Data were acquired 464 

under B-mode, M-mode and pulse-waved Doppler. 465 
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Supplementary Figure 8. H4K20 methylation is attenuated during HUVECs 476 

senescence. 477 

a-c, HUVECs at different passage stages were subjected to SA-β-gal staining (a, b) and 478 

measurement of Ki67 expression (c). Scale bar, 20 μm. One-way ANOVA with 479 

Dunnett’s multiple comparison test was performed to analyze the SA-β-gal staining 480 

signals. d, The total protein levels of the indicated histone modifications were examined 481 

by immunoblotting. H4 and β-actin served as loading controls. The error bars represent 482 

the s.d. obtained from triplicate independent experiments. Two-tailed unpaired 483 

Student’s t-tests were performed. **p<0.01, ***p<0.001. 484 
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Supplementary Figure 9. Activated TGF-β signaling promotes HEFs senescence 524 

by reducing H4K20me3 via induction of miR-29 expression. 525 

a, SA-β-gal staining of serially passaged HEFs (PD2, PD8, PD16 and PD28) 526 

individually grown in 3% and 20% oxygen. Scale bar, 20 μm. b, Immunofluorescent 527 



staining of Ki67 of serially passaged HEFs cultured in 3% and 20% oxygen. Scale bar, 528 

5 μm. c, d, RT-qPCR measurement of miR-29 expression in different passages of HEFs. 529 

miRNAs expression was normalized to U6. The error bar represents the s.d. from three 530 

independent replicates. *p<0.05, **p<0.01, ***<p<0.001, Student’s t-test was 531 

performed. e, Global H4K20 methylation was tested by western blotting in the HEFs 532 

from a. H3, H4 and β-actin served as loading controls. f, Immunoblotting for the 533 

indicated proteins in the presence of E-616452 or TGF-β1. β-actin served as a loading 534 

control. g, RT-qPCR measurement of miR-29 expression in different passages of HEFs. 535 

h, Western blots of the indicated proteins in the HEFs derived from f. β-actin served as 536 

a loading control. i, SA-β-gal staining and immunofluorescent staining of Ki67 in HEFs 537 

with the same treatment as those in f. j, k, RT-qPCR measurement of miR-29 expression 538 

in HEFs with ectopic expression of miR-29 mimics. l, Western blot for total H4K20 539 

methylation in HEFs with ectopic miR-29 expression. β-actin served as a loading 540 

control. m, SA-β-gal staining (left panel, scale bar, 20 μm) and immunofluorescent 541 

staining of Ki67 (right panel, scale bar, 20 μm) in HEFs with the same treatment as 542 

those in l. n, Immunoblotting of H4K20 methylation in cells treated with A-196. β-actin 543 

served as a loading control. o, p, SA-β-gal staining (o, scale bar, 20 μm) and 544 

immunofluorescent staining of Ki67 (p, scale bar, 5 μm) in cells with the same 545 

treatment as those in a. 546 
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Supplementary Figure 10. Depletion of Zmpste24 blocks TGF-β-miR-29 signaling 582 

in the HGPS mouse model. 583 

a, Serial passages (P2 and P4) of wild-type (Zmpste24+/+) and Zmpste24-knockout 584 

(Zmpste24-/-) MEFs were subjected to SA-β-gal staining (left panel). Signals were 585 

analyzed by ImageJ software. One-way ANOVA with Dunnett’s multiple comparison 586 

test was performed (right panel). b, c, mRNA expression levels of Mki67 (b) and p16 587 

(c) were tested by RT-qPCR and normalized to that of Gapdh. d, Total protein levels of 588 

pSmad2, Smad2 and p16 were examined by immunoblotting in serially passaged wild-589 



type and Zmpste24-knockout cells. β-actin served as a loading control. e-j, RT-qPCR 590 

measurement of the indicated genes (p21, e and p15, f) and miRNAs (pri-miR-29 and 591 

miR-29, g-j). Expression of mRNA and pri-miRNA was normalized to that of Gapdh 592 

and expression of miRNA was normalized to that of U6. Two-tailed unpaired Student’s 593 

t-tests were performed. The error bars represent the s.d. obtained from triplicate 594 

independent experiments. k, Western blot for H4K20 methylation in the cells from d. 595 

β-actin served as a loading control. l, m, Immunoblotting of the indicated proteins in 596 

late-passage (P6) wild-type and Zmpste24-knockout MEFs treated with or without E-597 

616452. β-actin and H4 served as loading controls. n, o, RT-qPCR measurement of 598 

miR-29a (n) and miR-29c (o) expression in cells from l. Z+/+ and Z-/- represent wild-599 

type and Zmpste24 knockout cells in b-o, respectively. *p<0.05, **p<0.01, ***p<0.001. 600 
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Supplementary Figure 11. Uncropped scans of Western blots from Fig. 1a, b, e, h; Fig. 641 

2c, d, h; Fig. 4a, d, e, f, i; Fig. 6b, d, j, l 642 
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Supplementary Figure 12. Uncropped scans of Western blots from Supplementary Fig. 670 

1j, Supplementary Fig. 2l; Supplementary Fig. 3b,c; Supplementary Fig. 5h, 671 

Supplementary Fig. 6m; Supplementary Fig. 7a, b, c, d; Supplementary Fig. 8d; 672 

Supplementary Fig. 9e, f; Supplementary Fig. 10d, k, l, m. 673 
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Supplementary Table 1 Diastolic and systolic data of left ventricle 684 

 685 

 2 m (DMSO) 2 m (A -196) 1 y (DMSO) 1 y (E-616452)

LVAW; d 0.799 

mm±0.054 

0.632 

mm±0.021 

1.172 

mm±0.027 

1.385 

mm±0.038 

LVID; d 3.622 

mm±0.115 

4.128 

mm±0.120 

4.181 

mm±0.160 

3.956 

mm±0.113 

LVPW; d 0.826 

mm±0.031 

0.852 

mm±0.043 

0.959 

mm±0.061 

0.873 

mm±0.057 

LVAW; s 1.065 

mm±0.041 

1.092 

mm±0.026 

1.278 

mm±0.016 

1.225 

mm±0.034 

LVID; s 2.876 

mm±0.053 

4.234 

mm±0.106 

3.222 

mm±0.082 

2.476 

mm±0.133 

LVPW; s 0.692 

mm±0.026 

0.639 

mm±0.017 

0.985 

mm±0.024 

0.905 

mm±0.027 

Diastolic and systolic parameters of left ventricle under B- and M-mode. ± represents 686 

s.d. from mice of each group, respectively. Numbers of mice per group were indicated 687 

in the legend of Figure 6e,f. LVAWd, left ventricular anterior wall thickness at end-688 

diastole; d, diastole; LVIDd, left ventricular internal dimension at end-diastole; LVPWd, 689 

left ventricular posterior wall thickness at end-diastole; LVAWs, left ventricular anterior 690 

wall thickness at end-systole; s, systole; LVIDs, left ventricular internal dimension at 691 

end-systole; LVPWs, left ventricular posterior wall thickness at end-systole. 692 
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Supplementary Table 2 Primers used in our study 702 

 703 

Target Forward (5′-3′) Reverse (5′-3′) 

qPCR Mki67 ATCATTGACCGCTCCTTTAGGT GCTCGCCTTGATGGTTCCT 

qPCR Suv4-20h1 ACTAGCGCCTTTCCTTCGAG GCCGAAATCTCACAGGATTGTTG 

qPCR Suv4-20h2 GCAGAGCTGCGTGAAGAGG ACAGGCAGTATTCCCATCTGA 

qPCR p16 CGCAGGTTCTTGGTCACTGT TGTTCACGAAAGCCAGAGCG 

qPCR p21 CCTGGTGATGTCCGACCTG CCATGAGCGCATCGCAATC 

qPCR p15 CCCTGCCACCCTTACCAGA CAGATACCTCGCAATGTCACG 

qPCR Tgfb1 GGCGGTGCTCGCTTTGT GCGGGTGACCTCTTTAGCATAG 

qPCR Tgfb2 CGGAGCGACGAGGAGTA CGGACGATTCTGAAGTAGGGT 

qPCR Tgfb3 GGACTGGCGGAGCACAA CGCTGCTTGGCTATGTGC 

qPCR Serpine1 CTTCAGCCCTTGCTTGCC GGACCACCTGCTGAAACACT 

qPCR Ryr GCAGGTGGATGTGGAA GTAGGAATGGCGTAGCA 

qPCR Myh7 GAATGGCAAGACGGTGAC TCCAGGAAGCGTAGCG 

qPCR Ki67 GCCTGCTCGACCCTACAGA GCTTGTCAACTGCGGTTGC 

qPCR Gapdh GTGTTCCTACCCCCAATGTGT ATTGTCATACCAGGAAATGAGCTT 

qPCR GAPDH AGCCACATCGCTCAGACAC GCCCAATACGACCAAATCC 

qPCR Pri-miR-29a AGCCCTGAAGTAAGTGTCC AGGTCTTCATCCGAGCAT 

qPCR Pri-miR-29c ATGGGTGGAAGAGGGTT TCTTCCAGGTTCAGACGAG 

qPCR mmu-miR-29a-3p GGCTAGCACCATCTGAAATCGGTTA  

qPCR mmu-miR-29c-3p GGCTAGCACCATTTGAAATCGGTTA  

qPCR mmu-miR-29b-3p GCGTAGCACCATTTGAAATCAGTGTT  

qPCR U6 CGCAAGGATGACACGCAAATTC

ChIP miR-29a -414- -208 AACTATTGCACGGACTTCACCTTC CTGGACACTTACTTCAGGGCTGTAC 

ChIP miR-29a -621- -415 AGTAAAAAGTGTCACGCTTATCAAAA CCTAATTTCAGGCGATCCTATG 

ChIP miR-29a -828- -622 GCAGCAGTACTGATGATAGTGATAA TCCAGATCGATCTGTTAGAGTCG 

ChIP miR-29a -1035- -829) TTATTGGAGTCCCTGACACATTC TACTGCTACTACTATTACAGTTTTAAA

ChIP miR-29a -1236- -1021 GATTTGAGAATGAGCAGGAA CAGGGACTCCAATAACTACAC 

ChIP miR-29a -1656- -1450 GTCCCATGCACACTGGCTACTTC GTTCTTACTGAATTGTTTGAAAGCA 

ChIP miR-29a -1780- -1559 AATAGATTCCCAGTCTGTAGC CTACCCGAGGAAACAAAC 

ChIP miR-29a -2001- -1752 CCGAGCTCATTCTCCAGCCC GGTGCCAGGCTACAGACTGGG 

ChIP miR-29c -207- -1 GGGTTCCTTGGGCCTGCAC GGACCGACTGGTGGTGTTCTTC 



ChIP miR-29c -414- -208 CACAGCAGAGGGTAGACTACAGAGG TCTTCCACCCATGGAATGCTG 

ChIP miR-29c -621- -415 GCTCAAAGTGTTGGCTGTATG CTGCAATTCTTACTCCTAAAACAC 

ChIP miR-29c -828- -622 GTTGTTAACATCTCATAGGTCATTG AGACAAAAACAATGCAAAGCTT 

ChIP miR-29c -1035- -829 AGGTACATTTTTAAAACATACCTTGTT TGAACCCAAGTAAGTCACCTGTG 

ChIP miR-29c -1242- -1036 TCACATTATATTTGCTCTATTACCC AAAAATAAGATTCACAAGCTATGTT 

ChIP miR-29c -1449- -1243 CCCCTCCCCAGTCTAGCTCT GTATCCCCAGAGTCACAATATTCAA 

ChIP miR-29c -1656- -1450 GAGAAGTCAGTGTCAGCATTGCTAG GATTTAGCTCAGACAATCTGGATGG 

ChIP miR-29c -1863- -1657 ACTGCCATCTAATCTATTTATGACC AGAAACTGGGCCAGCCA 

ChIP miR-29c -2001- -1864 CATAGAGGGAGGGGATTGG TATTAACAAGGGTCAAAATCCTG 

Promoter miR-29a-3p GGGGTACCCCGAGCTCATTCTCCAGCC CGCTCGAGCACAAGAGGTCATGTGCA

Promoter miR-29c-3p GGGGTACCCATAGAGGGAGGGGATTG CGCTCGAGGGACCGACTGGTGGTGTT

3′ UTR-Suv420h1 GAGCTCTTGAATCTTGTGCGTGAC GTCGACCTCTTTACATTGAATCCC 

3′ UTR-Suv420h1-Mut CAAGAATGATCGCTACCTATTTTTTC TAGGTAGCGATCATTCTTGCAAAG 

3′ UTR-Suv4-20h2 CGAGCTCCTTACAGGGAGCGGAATG GCGTCGACCCAGTAGCACCAGGGATA

3′ UTR-Suv4-20h2-Mut GAGCTCCTTACAGGGAGCGGAATGGA  

3′ UTR-Suv4-20h2-Mut-1  GTCGACCCAGTTGGAGCTGGGATAGC

3′ UTR-Suv4-20h2-Mut-2  GTCGACCCAGTAGCACCAGGGATTGG

 704 


