**Supplementary Figure 1.** YxxP motifs in human DCBLD1 are required for  $H_2O_2$ -induced binding to the CRKL-SH2 domain. GST-CRKL-SH2 pull-down assays comparing human DCBLD1-Flag WT and human DCBLD1-Flag Y8F. HEK 293 cells transfected with the indicated constructs were either left untreated or stimulated with  $H_2O_2$  for 20 minutes prior to lysis and pulldown assays from the clarified extracts. The immunoblot of the pulldown assays was first stained with Ponceau to visualize levels of the GST-CRKL-SH2 domain. This was followed by blotting with anti-Flag. Levels of the DCBLD1-Flag proteins were determined by immunoprecipitation and immunoblotting of the immune complexes following their separation by SDS-PAGE. Whole cell extracts were subjected to SDS-PAGE and immunoblotting with anti-phosphotyrosine to verify the effect of  $H_2O_2$  stimulation.



Supplementary Figure 2. (A) Src-1 and STI571 titrations to determine concentrations of SFK and Abl inhibitors necessary to disrupt the DCBLD2-CRKL-SH2 interaction. GST-CRKL-SH2 pulldown assays were performed from DCBLD2-transfected HEK 293 lysates treated with 0.5, 1, or 2 µM Src-1 or 5, 10, or 20 µM STI571 for 15 min, followed by an additional 15 min in 8.8 mM  $H_2O_2$  treatment prior to lysis. Neither inhibitor was sufficient to abolish the interaction alone, however, 2  $\mu$ M Src-1 and 20  $\mu$ M STI571 were deemed appropriate to prevent potential off-target effects at higher concentrations. (B) Tyrosine residues in YxxP motifs are required for the increased Abl (and SFK) activity observed in WT DCBLD2-transfected HEK 293 cells treated with H<sub>2</sub>O<sub>2</sub>. Compare differences observed between pAbl and pSrc blots in lanes 1-3 of panels A and B. In B, HEK 293 cells expressing DCBLD2-Y7F-Flag were treated with H<sub>2</sub>O<sub>2</sub> alone or with inhibitors and  $H_2O_2$  prior to lysis as described for A. Whole cell extracts were subjected to SDS-PAGE and proteins were immunoblotted with the indicated antibodies. c) DCBLD2 Tyr phosphorylation in YxxP motifs are required for the ABL-SH2 domain to bind. DCBLD2-WT-Flag and DCBLD2-Y7F-Flag were immunoprecipitated from transfected HEK 293 cells treated with or without H<sub>2</sub>O<sub>2</sub>. Immune complexes were then incubated with the GST-ABL-SH2 fusion protein. While some background binding was observed in all lanes of the anti-GST blot, significantly higher levels of the GST-ABL-SH2 protein bound to DCBLD2-WT when HEK 293 cells were treated with H<sub>2</sub>O<sub>2</sub> prior to lysis, suggesting the Tyr residues in YxxP motifs are required to the DCBLD2-ABL-SH2 interaction. The "\*" on the panel showing Flag reactivity indicates the signal from a heavy-chain dimer of the antibody in the IP.



**Supplementary Figure 3.** Workflow for LC-MS/MS quantification of regulated tyrosine phosphorylation sites on DCBLD1 and DCBLD2. Flag-tagged DCBLD proteins were expressed in HEK 293 cells under two general types of conditions: (i) cells were left unstimulated, stimulated with H<sub>2</sub>O<sub>2</sub>, or pre-treated with SFK and/or Abl inhibitors prior to H<sub>2</sub>O<sub>2</sub> stimulation; and (ii) DCBLD proteins were co-expressed with Fyn and/or Abl. DCBLD proteins were immunoprecipitated from cell extracts and the immune complexes were separated by SDS-PAGE. DCBLD proteins were subjected to in-gel tryptic digestion and phosphorylation of intracellular YxxP sites were monitored with targeted LC-MS/MS of tryptic phosphopeptides. The DCBLD2 peptide harboring the non-YxxP Tyr715 was also targeted in our analysis. Quantification was achieved by three distinct methods for comparison (SILAC, label-free, and the addition of stable isotope-labeled peptide standards).



**Supplementary Figure 4.** Amino acid sequences, tryptic cleavage sites, and LC-MS/MS coverage maps of (A) mouse DCBLD1 and (B) human DCBLD2. Arg and Lys residues in red indicate anticipated cleavage sites within each protein during the proteolytic digestion. Underlined portions of each sequence denote coverage observed via LC-MS/MS.

## Α

MGTGAGGPSVLALLFAVCAPLRLQAEELGDGCGHIVTSQDSGTMTSKNYPGTYPNYTVCEKIITVPKGKRLILRLGD LNIESKTCASDYLLFSSATDQYGPYCGSWAVPKELRLNSNEVTVLFKSGSHISGRGFLLTYASSDHPDLITCLERGS HYFEEKYSKFCPAGCRDIAGDISGNTKDGYRDTSLLCKAAIHAGIITDELGGHINLLQSKGISHYEGLLANGVLSRH GSLSEKRFLFTTPGMNITTVAIPSVIFIALLLTGMGIFAICRKRKKKGNPYVSADAQKTGCWKQIKYPFARHQSTEF TISYDNEKEMTQKLDLITSDMADYQQPLMIGTGTVARKGSTFRPMDTDTEEVRVNTEASGHYDCPHRPGRHEYALPL THSEPEYATPIVERHLLRAHTFSTQSGYRVPGPRPTHKHSHSSGGFPPATGATQVESYQRPASPKPVGGGYDKPAAS SFLDSRDPASQSQMTSGGDDGYSAPRNGLAPLNQTAMTALL

В

MASRAVVRARRCPQCPQVRAAAAAPAWAALPLSRSLPPCSNSSSFSMPLFLLLLLVLLLLLEDAGAQQGDGCGHTVL GPESGTLTSINYPQTYPNSTVCEWEIRVKMGERVRIKFGDFDIEDSDSCHFNYLRIYNGIGVSRTEIGKYCGLGLQM NHSIESKGNEITLLFMSGIHVSGRGFLASYSVIDKQDLITCLDTASNFLEPEFSKYCPAGCLLPFAEISGTIPHGYR DSSPLCMAGVHAGVVSNTLGGQISVVISKGIPYYESSLANNVTSVVGHLSTSLFTFKTSGCYGTLGMESGVIADPQI TASSVLEWTDHTGQENSWKPKKARLKKPGPPWAAFATDEYQWLQIDLNKEKKITGIITTGSTMVEHNYYVSAYRILY SDDGQKWTVYREPGVEQDKIFQGNKDYHQDVRNNFLPPIIARFIRVNPTQWQQKIAMKMELLGCQFIPKGRPPKLTQ PPPPRNSNDLKNTTAPPKIAKGRAPKFTQPLQPRSSNEFPAQTEQTTASPDIRNTTVTPNVTKDVALAAVLVPVLVM VLTTLILILVCAWHWRNRKKKTEGTYDLPYWDRAGFYLMVSLACRHNEGWWKGMKQFLPAKAVDHEETPVRYSSSEV NHLSPREVTTVLQADSAEYAQPLVGGIVGTLHQRSTFKPEEGKEAGYADLDPYNSPGQEVYHAYAEPLPITGPEYAT PIIMDMSGHPTTSVGQPSTSTFKATGNQPPPLVGTYNTLLSRTDSCSSAQAQYDTPKAGKPGLPAPDELVYQVPQST QEVSGAGRDGECDVFKEIL **Supplementary Figure 5.** Several DCBLD2 YxxP Tyr residues contribute to the ability of Fyn and Abl to induce DCBLD2 to bind to CRKL-SH2 domain. DCBLD2 WT as well as tyrosine-to-phenylalanine point mutants (Y1F, Y3F, and Y7F) were expressed in cells with or without co-expression of Fyn (A) or Abl (B). All DCBLD2 constructs have both Myc and Flag tags at their C-terminus. Cell extracts were subject to pulldown assays with GST-CRKL-SH2 or immunoblotting with the indicated antibodies. As the Abl kinase we are using has a Flag-tag, anti-Myc was used in the immunoblots.



**Supplementary Figure 6.** Low energy CID fragmentation spectra of DCBLD1 and DCBLD2 tryptic peptide ions harboring differentially regulated phosphorylated and unphosphorylated tyrosine residues. "Y#" denotes phosphorylated tyrosines. Spectra were acquired in a linear ion trap mass spectrometer. Parent ion masses and charge states are tabulated in Supplementary Table 1. Included are MS/MS spectra of unphosphorylated, singly phosphorylated, and multiply phosphorylated peptides harboring more than one tyrosine. MS/MS spectra of phosphorylated and unphosphorylated tryptic peptide ions harboring (A-D) DCBLD1 Tyr589 and Tyr600 (E-J) DCBLD2 Tyr565 and Tyr569, (K-Q) DCBLD2 Tyr649, Tyr655, Tyr663, Tyr666 and Tyr677.



















**Supplementary Table 1.** Monoisotopic and average mass to charge (m/z) values of (A) DCBLD1 and (B) DCBLD2 unphosphorylated and phosphorylated tryptic peptides harboring differentially regulated tyrosine residues. Amino acid sequences identified with LC-MS/MS are given alongside the charge state and monoisotopic m/z values used to quantify peptide intensity, as well as the average m/z value, used in targeted scans. Italicized peptides were not targeted, but were identified in data dependent scans.

## Α

| pTyr residue       | Peptide                                                            | Monoisotopic [m/z] | Average [m/z] | Charge state [z] |
|--------------------|--------------------------------------------------------------------|--------------------|---------------|------------------|
| Unphos             | HEYALPLTHSEPEYATPIVER                                              | 818.0763           | 818.5759      | 3                |
| pTyr589 or pTyr600 | HEYALPLTHSEPEYATPIVER                                              | 844.7318           | 845.2323      | 3                |
| pTyr589, pTyr600   | HEYALPLTHSEPEYATPIVER                                              | 871.3872           | 871.8867      | 3                |
| Unphos             | AHTFSTQSGYR                                                        | 627.7968           | 628.1695      | 2                |
| pTyr621            | AHTFSTQSGYR                                                        | 667.7799           | 668.1527      | 2                |
| Unphos             | AHTFSTQSGYRVPGPRPTHK                                               | 742.0506           | 742.4962      | 3                |
| pTyr621            | AHTFSTQSGYRVPGPRPTHK                                               | 768.706            | 769.1516      | 3                |
| В                  |                                                                    |                    |               |                  |
| pTyr residue       | Peptide                                                            | Monoisotopic [m/z] | Average [m/z] | Charge state [z] |
| Unphos             | TEGTYDLPYWDR                                                       | 758.3412           | 758.8067      | 2                |
| pTyr565            | TEGTYDLPYWDR                                                       | 798.3244           | 798.7899      | 2                |
| pTyr565, pTyr569   | TEGTYDLPYWDR                                                       | 838.3075           | 838.773       | 2                |
| Unphos             | KTEGTYDLPYWDR                                                      | 548.5949           | 548.9316      | 3                |
| pTyr565            | KTEGTYDLPYWDR                                                      | 575.2503           | 575.587       | 3                |
| pTyr565, pTyr569   | KTEGTYDLPYWDR                                                      | 902.355            | 902.86        | 2                |
| Unphos             | EVTTVLQADSAEYAQPLVGGIVGTLHQR                                       | 984.8524           | 985.4413      | 3                |
| pTyr621            | EVTTVLQADSAEYAQPLVGGIVGTLHQR                                       | 1011.5078          | 1012.097      | 3                |
| Unphos             | EAGYADLDPYNSPGQEVYHAYAEPLPITGPEYATPIIMDMSGHPTTSVGQPSTSTFK          | 1220.5711          | 1221.34       | 5                |
| pTyr 655           | EAGYADLDPYNSPGQEVYHAYAEPLPITGPEYATPIIMDMSGHPTTSVGQPSTSTFK          | 1236.3628          | 1237.1344     | 5                |
| Unphos             | STFKPEEGKEAGYADLDPYNSPGQEVYHAYAEPLPITGPEYATPIIMDMSGHPTTSVGQPSTSTFK | 1421.2706          | 1422.1608     | 5                |
| Singly pTyr        | STFKPEEGKEAGYADLDPYNSPGQEVYHAYAEPLPITGPEYATPIIMDMSGHPTTSVGQPSTSTFK | 1437.0623          | 1437.9552     | 5                |
| Doubly pTyr        | STFKPEEGKEAGYADLDPYNSPGQEVYHAYAEPLPITGPEYATPIIMDMSGHPTTSVGQPSTSTFK | 1452.854           | 1453.7496     | 5                |
| Unphos             | ATGNQPPPLVGTYNTLLSR                                                | 1000.034           | 1000.6344     | 2                |
| pTyr715            | ATGNQPPPLVGTYNTLLSR                                                | 1040.0172          | 1040.6175     | 2                |
| Unphos             | AGKPGLPAPDELVYQVPQSTQEVSGAGR                                       | 951.1577           | 951.7251      | 3                |
| pTyr750            | AGKPGLPAPDELVYQVPQSTQEVSGAGR                                       | 977.8132           | 978.3805      | 3                |

**Supplementary Table 2.** Monoisotopic and average m/z values of tryptic peptides harboring targeted tyrosine and phosphotyrosine residues for (A) DCBLD2 SL peptides, (B) DCBLD1 heavy-labeled SILAC peptides, and (C) DCBLD2 heavy-labeled SILAC peptides. Underlined residues possess all <sup>13</sup>C and <sup>15</sup>N atoms, resulting in added masses of 7.0172 m/z for Leu, 6.0138 m/z for Val, 10.0083 m/z for Arg, and 8.0142 m/z for Lys.

## Α

| pTyr residue       | Peptide                               | Monoisotopic [m/z]        | Average [m/z] | Charge state [z] |
|--------------------|---------------------------------------|---------------------------|---------------|------------------|
| Unphos             | KTEGTYD <u>L</u> PYWDR                | 550.934                   | 551.2707      | 3                |
| pTyr565            | KTEGTYD <u>L</u> PYWDR                | 577.5894                  | 577.9261      | 3                |
| Unphos             | ATGNQPPPLVGTYNTL <u>L</u> SR          | 1003.5426                 | 1004.143      | 2                |
| pTyr715            | ATGNQPPPLVGTYNTL <u>L</u> SR          | 1043.5258                 | 1044.1261     | 2                |
| Unphos             | AGKPGLPAPDELVYQVPQSTQE <u>V</u> SGAGR | 953.1623                  | 953.7297      | 3                |
| pTyr750            | AGKPGLPAPDELVYQVPQSTQE <u>V</u> SGAGR | 979.8178                  | 980.3851      | 3                |
| В                  |                                       |                           |               |                  |
| pTyr residue       | Peptide                               | Monoisotopic [m/z]        | Average [m/z] | Charge state [z] |
| Unphos             | HEYALPLTHSEPEYATPIVE <u>R</u>         | 821.4124                  | 821.912       | 3                |
| pTyr589 or pTyr600 | HEYALPLTHSEPEYATPIVE <u>R</u>         | 848.0679                  | 848.5674      | 3                |
| pTyr589, pTyr600   | HEYALPLTHSEPEYATPIVE <u>R</u>         | 874.7233                  | 875.2228      | 3                |
| Unphos             | AHTFSTQSGY <u>R</u>                   | 632.8009                  | 633.1737      | 2                |
| pTyr621            | AHTFSTQSGY <u>R</u> VPGPRPTH <u>K</u> | 778.0496                  | 778.4952      | 3                |
| С                  |                                       |                           |               |                  |
| (p)Tyr residue     | Peptide                               | <b>Monoisotopic</b> [m/z] | Average [m/z] | Charge state [z] |

| (p) I yr residue | Pepulae                                       |           | Average [m/2] |   |
|------------------|-----------------------------------------------|-----------|---------------|---|
| Unphos           | TEGTYDLPYWD <u>R</u>                          | 763.3454  | 763.8109      | 2 |
| pTyr565          | TEGTYDLPYWD <u>R</u>                          | 843.3117  | 843.7772      | 2 |
| Unphos           | <u>K</u> TEGTYDLPYWD <u>R</u>                 | 554.6024  | 554.9391      | 3 |
| pTyr565          | <u>K</u> TEGTYDLPYWD <u>R</u>                 | 607.9133  | 608.25        | 3 |
| Unphos           | EVTTVLQADSAEYAQPLVGGIVGTLHQ <u>R</u>          | 988.1885  | 988.7774      | 3 |
| pTyr621          | EVTTVLQADSAEYAQPLVGGIVGTLHQ <u>R</u>          | 1014.8439 | 1015.4328     | 3 |
| Unphos           | ATGNQPPPLVGTYNTLLS <u>R</u>                   | 1005.0382 | 1005.6385     | 2 |
| pTyr715          | ATGNQPPPLVGTYNTLLS <u>R</u>                   | 1045.0213 | 1045.6217     | 2 |
| Unphos           | AG <u>K</u> PGLPAPDELVYQVPQSTQEVSGAG <u>R</u> | 957.1652  | 957.7326      | 3 |
| pTyr750          | AG <u>K</u> PGLPAPDELVYQVPQSTQEVSGAG <u>R</u> | 983.8207  | 984.388       | 3 |

**Supplementary Table 3.** Monoisotopic and average m/z values of tryptic peptides of (A) DCBLD1 and (B) DCBLD2 reference peptides used in SILAC, SL peptide and LF quantification. Light and heavy masses are given with charge state and the quantification method that employed each reference. The italicized peptide was targeted in SL quantification experiments. All remaining peptides were identified in data dependent scans. Underlined residues possess all <sup>13</sup>C and <sup>15</sup>N atoms, resulting in added masses of 6.0138 m/z for Val, 10.0083 m/z for Arg, and 8.0142 m/z for Lys.

## Α

| pTyr residue | Peptide             | Monoisotopic [m/z] | Average [m/z] | Charge state [z] | Labeling<br>(method) |
|--------------|---------------------|--------------------|---------------|------------------|----------------------|
| 114-124      | LNSNEVTVLFK         | 632.3509           | 632.7355      | 2                | Native (LF, SILAC)   |
| 114-124      | LNSNEVTVLF <u>K</u> | 636.358            | 636.7426      | 2                | Heavy (SILAC)        |
| 153-160      | GSHYFEEK            | 498.7248           | 499.0293      | 2                | Native (LF, SILAC)   |
| 153-160      | GSHYFEE <u>K</u>    | 502.7319           | 503.0364      | 2                | Heavy (SILAC)        |
| 171-181      | DIAGDISGNTK         | 545.7724           | 546.0849      | 2                | Native (LF, SILAC)   |
| 171-181      | DIAGDISGNT <u>K</u> | 549.7795           | 550.092       | 2                | Heavy (SILAC)        |
| В            |                     |                    |               |                  |                      |

| (p)Tyr residue | Peptide              | Monoisotopic [m/z] | Average [m/z] | Charge state [z] | Labeling<br>(method) |
|----------------|----------------------|--------------------|---------------|------------------|----------------------|
| 133-141        | IYNGIGVSR            | 489.772            | 490.0653      | 2                | Native (LF, SILAC)   |
| 133-141        | IYNGIGVS <u>R</u>    | 494.7762           | 495.0695      | 2                | Heavy (SILAC)        |
| 179-189        | GFLASYSVIDK          | 600.319            | 600.6918      | 2                | Native (SL)          |
| 179-189        | GFLASYS <u>V</u> IDK | 603.3259           | 603.6987      | 2                | Heavy (SL)           |
| 418-427        | NNFLPPIIAR           | 577.8377           | 578.1961      | 2                | Native (LF, SILAC)   |
| 418-427        | NNFLPPIIA <u>R</u>   | 582.8419           | 583.2002      | 2                | Heavy (SILAC)        |
| 489-496        | FTQPLQPR             | 493.7746           | 494.0766      | 2                | Native (LF, SILAC)   |
| 489-496        | FTQPLQP <u>R</u>     | 498.7787           | 498.0808      | 2                | Heavy (SILAC)        |

**Supplementary Table 4.** SILAC heavy-to-light ratios (fold change) of DCBLD1 and DCBLD2 unphosphorylated peptides harboring tyrosines differentially regulated by SFKs and Abl. Heavy conditions possessed either a co-expressed kinase (paired with a light unstimulated condition), or  $H_2O_2$  stimulation alone (paired with a light inhibitor treatment following  $H_2O_2$  stimulation). The peptide sequences and the number of the regulated tyrosine residues (human numbering) are indicated on the left.

|     |                                         |      | Heavy condition<br>(Light = unstimulated) |       |                |  |               | Light condition<br>(Heavy = H <sub>2</sub> O <sub>2</sub> ) |  |
|-----|-----------------------------------------|------|-------------------------------------------|-------|----------------|--|---------------|-------------------------------------------------------------|--|
|     | Peptide                                 | H2O2 | Fyn                                       | c-Abl | Fyn &<br>c-Abl |  | Src-1<br>H2O2 | STI571<br>H2O2                                              |  |
| LD1 | HEYALPLTHSEPEYATPIVER<br>Tyr 589 Tyr600 | 0.75 | 0.78                                      | 0.31  | 0.45           |  | 0.75          | 0.73                                                        |  |
| DCB | AHTFSTQSGYR<br>Tyr621                   | 1.18 | 1.13                                      | 0.54  | 0.76           |  | 1.09          | 1.09                                                        |  |
|     | TEGTYDLPYWDR<br>Tyr565                  | 0.72 | 0.50                                      | 0.92  | 0.49           |  | 0.82          | 0.49                                                        |  |
| LD2 | EVTTVLQADSAEYAQPLVGGIVGTLHQR<br>Tyr621  | 0.60 | 0.70                                      | 0.42  | 0.41           |  | 0.74          | 0.64                                                        |  |
| DCB | ATGNQPPPLVGTYNTLLSR<br>Tyr715           | 0.76 | 0.16                                      | 0.53  | 0.63           |  | 0.83          | 0.73                                                        |  |
|     | AGKPGLPAPDELVYQVPQSTQEVSGAGR<br>Tyr750  | 0.46 | 0.75                                      | 0.20  | 0.19           |  | 0.60          | 0.46                                                        |  |

**Supplementary Table 5.** Statistical analyses of DCBLD2 phosphopeptide quantificaiton. DCBLD2 peptides harboring quantified Tyr phosphorylation sites were subjected to a one-way ANOVA and post-hoc Tukey HSD to identify statistical differences in phosphorylation of each peptide across experimental conditions. Conditions with statistically significant differences (P = 0.05) are tabulated for (A) Tyr565 and (B) Tyr715 and Tyr750. K = kinase overexpressed group, I = inhibitor treatment group. K/TEGTYDLPYWDR denotes summed intensities of KTEGTYDLPYWDR and TEGTYDLPYWDR peptides. "Y#" denotes phosphorylated tyrosine.

|                          |        |       | ANOVA (0.05)    | Tukey All Pairs (0.05)                              |                                            |                                  |
|--------------------------|--------|-------|-----------------|-----------------------------------------------------|--------------------------------------------|----------------------------------|
| Peptide, (p)Tyr residue  | Method | Group | <i>P</i> -value | Condition 1                                         | Condition 2                                | <i>P</i> -value                  |
| K/TEGTY#DLPYWDR, pTyr565 | LF     | К     | 3.00E-04        | Fyn & c-Abl                                         | Unstimulated                               | 2.00E-04                         |
|                          |        |       |                 | H <sub>2</sub> O <sub>2</sub><br>Fyn & c-Abl<br>Fyn | Unstimulated<br>c-Abl<br>Unstimulated      | 5.50E-03<br>6.10E-03<br>1.06E-02 |
| KTEGTY#DLPYWDR, pTyr565  | SL     | К     | 3.41E-02        | Fyn                                                 | Unstimulated                               | 3.88E-02                         |
| KTEGTY#DLPYWDR, pTyr565  | LF     | К     | 4.30E-03        | Fyn & c-Abl<br>Fyn & c-Abl                          | Unstimulated<br>c-Abl                      | 5.20E-03<br>1.72E-02             |
|                          |        |       |                 | $H_2O_2$                                            | Unstimulated                               | 3.18E-02                         |
| TEGTY#DLPYWDR, pTyr565   | LF     | К     | 4.00E-04        | Fyn & c-Abl<br>Fyn & c-Abl                          | Unstimulated<br>c-Abl                      | 2.00E-04<br>9.40E-03             |
|                          |        |       |                 | H <sub>2</sub> O <sub>2</sub><br>Fyn                | Unstimulated<br>Unstimulated               | 9.40E-03<br>1.21E-02             |
| KTEGTY#DLPYWDR, Tyr565   | SL     | К     | 3.41E-02        | Fyn                                                 | Unstimulated                               | 3.88E-02                         |
| K/TEGTY#DLPYWDR, pTyr565 | LF     | Ι     | 1.20E-03        | $H_2O_2$                                            | Unstimulated                               | 3.90E-03                         |
| summed intensities       |        |       |                 | H <sub>2</sub> O <sub>2</sub><br>c-Abl<br>c-Abl     | Fyn & c-Abl<br>Unstimulated<br>Fyn & c-Abl | 4.40E-03<br>1.18E-02<br>1.34E-02 |
|                          |        |       |                 | H <sub>2</sub> O <sub>2</sub>                       | Fyn                                        | 3.83E-02                         |
| KTEGTY#DLPYWDR, pTyr565  | SL     | I     | 2.69E-02        | c-Abl                                               | Unstimulated                               | 4.39E-02                         |
| TEGTY#DLPYWDR, pTyr565   | LF     | Ι     | <1.00E-04       | $H_2O_2$                                            | Unstimulated                               | <1.00E-04                        |
|                          |        |       |                 | $H_2O_2$                                            | Fyn & c-Abl                                | 1.00E-04                         |
|                          |        |       |                 | $H_2O_2$                                            | Fyn                                        | 1.20E-03                         |
|                          |        |       |                 | H <sub>2</sub> O <sub>2</sub><br>c-Abl              | c-Abl<br>Unstimulated                      | 3.60E-03<br>7.35E-02             |

|                                          |        |       | one-way<br>ANOVA (0.05) | Tukey All Pairs (0.05)                                                                                  |                                                            |                                                          |
|------------------------------------------|--------|-------|-------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|
| Peptide and/or<br>(p)Tyr residue         | Method | Group | P-value                 | Condition 1                                                                                             | Condition 2                                                | <i>P</i> -value                                          |
| ATGNQPPPLVGTY#NTLLSR<br>pTyr715          | SL     | К     | 1.13E-02                | Fyn & c-Abl<br>c-Abl                                                                                    | Unstimulated<br>Unstimulated                               | 1.29E-02<br>3.10E-02                                     |
| ATGNQPPPLVGTY#NTLLSR<br>pTyr715          | LF     | К     | 2.17E-02                | c-Abl<br>Fyn & c-Abl                                                                                    | Unstimulated<br>Unstimulated                               | 2.29E-02<br>3.77E-02                                     |
| ATGNQPPPLVGTY#NTLLSR<br>pTyr715          | SL     | Ι     | 2.51E-02                | H <sub>2</sub> O <sub>2</sub><br>H <sub>2</sub> O <sub>2</sub>                                          | Unstimulated<br>Fyn & c-Abl                                | 2.38E-02<br>3.55E-02                                     |
| ATGNQPPPLVGTY#NTLLSR<br>pTyr715          | LF     | Ι     | <1.00E-04               | $H_2O_2$<br>$H_2O_2$                                                                                    | Unstimulated<br>Fyn & c-Abl                                | <1.00E-04<br><1.00E-04                                   |
|                                          |        |       |                         | H <sub>2</sub> O <sub>2</sub><br>H <sub>2</sub> O <sub>2</sub><br>c-Abl<br>c-Abl                        | Fyn<br>c-Abl<br>Unstimulated<br>Fyn & c-Abl                | <1.00E-04<br>4.00E-04<br>2.68E-02<br>3.94E-02            |
| AGKPGLPAPDELVY#QVPQSTQEVSGAGR<br>pTyr750 | SL     | К     |                         | Fyn & c-Abl<br>H <sub>2</sub> O <sub>2</sub><br>c-Abl<br>Fyn & c-Abl l<br>H <sub>2</sub> O <sub>2</sub> | Unstimulated<br>Unstimulated<br>Unstimulated<br>Fyn<br>Fyn | 7.00E-04<br>1.30E-03<br>2.80E-03<br>1.31E-02<br>2.77E-02 |
| AGKPGLPAPDELVY#QVPQSTQEVSGAGR<br>pTyr750 | LF     | К     | 3.30E-03                | Fyn & c-Abl<br>c-Abl<br>H <sub>2</sub> O <sub>2</sub>                                                   | Unstimulated<br>Unstimulated<br>Unstimulated               | 3.40E-03<br>1.46E-02<br>1.66E-02                         |
| AGKPGLPAPDELVY#QVPQSTQEVSGAGR<br>Tyr750  | LF     | К     | 4.50E-03                | c-Abl<br>H <sub>2</sub> O <sub>2</sub><br>c-Abl<br>Fyn & c-Abl                                          | Unstimulated<br>Unstimulated<br>Fyn<br>Unstimulated        | 7.90E-03<br>2.28E-02<br>3.17E-02<br>4.72E-02             |

В

**Supplementary Table 6.** Unquantified DCBLD2 tryptic peptides identified via LC-MS/MS. "Y#" denotes site of tyrosine phosphorylation. Annotated fragmentation spectra can be found in Supplemental Figure 6.

| Tyr residue    | Peptide                                                              |
|----------------|----------------------------------------------------------------------|
| Tyr565, Tyr569 | K.TEGTY#DLPY#WDR                                                     |
| Tyr 655        | EAGYADLDPY#NSPGQEVYHAYAEPLPITGPEYATPIIMDMSGHPTTSVGQPSTSTFK           |
| Tyr649, Tyr677 | STFKPEEGKEAGY#ADLDPYNSPGQEVYHAYAEPLPITGPEY#ATPIIMDMSGHPTTSVGQPSTSTFK |
| Tyr663         | STFKPEEGKEAGYADLDPYNSPGQEVY#HAYAEPLPITGPEYATPIIMDMSGHPTTSVGQPSTSTFK  |
| Tyr677         | STFKPEEGKEAGYADLDPYNSPGQEVYHAYAEPLPITGPEY#ATPIIMDMSGHPTTSVGQPSTSTFK  |
| Tyr666, Tyr677 | STFKPEEGKEAGYADLDPYNSPGQEVYHAY#AEPLPITGPEY#ATPIIMDMSGHPTTSVGQPSTSTFK |