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1 Backward Master Equation Operator

The master equation operator Ω is populated from Markovian transition rates
that come from the dynamics allowed in our system within the Moran frame-
work. We denote T+[xi] as a transition that increases the number of mutants
in microhabitat xi. Explicitly, our three transition rates increasing the number
of mutants from an initial state (j, k, ℓ) are

T+[x0](j, k, ℓ) = (N − j)
︸ ︷︷ ︸

WT dies

(N − j)r0(x0)

(N − j)r0(x0) + jr∗(x0)
︸ ︷︷ ︸

Pick WT

µ
︸︷︷︸

WT mutates

+ (N − j)
︸ ︷︷ ︸

WT dies

jr∗(x0)

(N − j)r0(x0) + jr∗(x0)
︸ ︷︷ ︸

Pick mutant

(1 − β)
︸ ︷︷ ︸

No migration

+ (N − j)
︸ ︷︷ ︸

WT dies

kr∗(x1)

(N − k)r0(x1) + kr∗(x1)
︸ ︷︷ ︸

Pick right mutant

β
︸︷︷︸

Migration

(S1)

T+[x1](j, k, ℓ) = (N − k)
︸ ︷︷ ︸

WT dies

(N − k)r0(x1)

(N − k)r0(x1) + kr∗(x1)
︸ ︷︷ ︸

Pick WT

µ
︸︷︷︸

WT mutates

+ (N − k)
︸ ︷︷ ︸

WT dies

kr∗(x1)

(N − k)r0(x1) + kr∗(x1)
︸ ︷︷ ︸

Pick mutant

(1− 2β)
︸ ︷︷ ︸

No migration

+ (N − k)
︸ ︷︷ ︸

WT dies

jr∗(x0)

(N − j)r0(x0) + jr∗(x0)
︸ ︷︷ ︸

Pick left mutant

β
︸︷︷︸

Migration

+ (N − ℓ)
︸ ︷︷ ︸

WT dies

ℓr∗(x2)

(N − ℓ)r0(x2) + ℓr∗(x2)
︸ ︷︷ ︸

Pick right mutant

β
︸︷︷︸

Migration

(S2)
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and

T+[x2](j, k, ℓ) =
N − ℓ

(N − ℓ)r0(x2) + ℓr∗(x2)
[(N − ℓ)r0(x2)µ+ (1− β)ℓr∗(x2)]

+
N − ℓ

(N − k)r0(x1) + kr∗(x1)
kr∗(x1)β (S3)

Within the Moran process, we also have transitions that decrease the num-
ber of mutants in a given microhabitat. We denote T−[xi] as the transition
decreasing the number of mutants in microhabitat xi. The explicit transition
rates are given by

T−[x0](j, k, ℓ) = j
︸︷︷︸

Kill mutant

(N − j)r0(x0)

(N − j)r0(x0) + jr∗(x0)
︸ ︷︷ ︸

Choose WT

(1 − β − µ)
︸ ︷︷ ︸

WT grows without mutation or migration

+ j
︸︷︷︸

Kill mutant

(N − k)r0(x1)

(N − k)r0(x1) + kr∗(x1)
︸ ︷︷ ︸

Pick WT

β
︸︷︷︸

Right migration

(S4)

T−[x1](j, k, ℓ) = k
︸︷︷︸

Kill mutant

(N − k)r0(x1)

(N − k)r0(x1) + kr∗(x1)
︸ ︷︷ ︸

Choose WT

(1 − 2β − µ)
︸ ︷︷ ︸

WT grows without mutation or migration

+ k
︸︷︷︸

Kill mutant

(N − j)r0(x0)

(N − j)r0(x0) + jr∗(x0)
︸ ︷︷ ︸

Pick WT

β
︸︷︷︸

Left migration

+ k
︸︷︷︸

Kill mutant

(N − ℓ)r0(x2)

(N − ℓ)r0(x2) + ℓr∗(x2)
︸ ︷︷ ︸

Pick WT

β
︸︷︷︸

Right migration

(S5)

and

T−[x2](j, k, ℓ) = ℓ
︸︷︷︸

Kill mutant

(N − ℓ)r0(x2)

(N − ℓ)r0(x2) + ℓr∗(x2)
︸ ︷︷ ︸

Choose WT

(1− β − µ)
︸ ︷︷ ︸

WT grows without mutation or migration

+ ℓ
︸︷︷︸

Kill mutant

(N − k)r0(x1)

(N − k)r0(x1) + kr∗(x1)
︸ ︷︷ ︸

Pick WT

β
︸︷︷︸

Left migration

(S6)

With these transition rates, Ω is populated according to

Ωm,n =







Wn→m n 6= m

−
∑

m′ 6=m

Wn→m′

n = m (S7)
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where Wn→m is the transition rate from initial state n to final state m. Note
that the number of mutants can change by one at most, so the backwards master
equation operator is sparse.

We can then solve the mean first passage time equation

−1 =
∑

m′ 6=mf

T (mf |m′)Ωm′,mi
(S8)

where T (mf |mi) is the mean time required for a system initially in state mi to
first reach state mf . All of the natural boundary conditions are already imposed
by Ω, but we do need to specify that

T ((n∗(x0), n
∗(x1), n

∗(x2))|(n∗(x0), n
∗(x1), n

∗(x2))) = 0 (S9)

for any initial state (n∗(x0), n
∗(x1), n

∗(x2)), which is intuitively obvious.

2 Characterization of Intermediate Regime

To further investigate evolution in the intermediate regime, where heterogeneity
can either speed or slow fixation, depending on the specific profile, we calculated
the minimum and maximum fixation times (τmin

f and τmax
f , respectively) as δs is

modulated to create different selection pressure distributions (Fig. S1a). While
in many cases the fixation time is decreased by only a few percent, we do find
larger effects in the high and low migration limits (i.e. on the edges) of the
intermediate regime. To understand how the spatial τf profiles change over this
intermediate region, we fix µ and traverse across a trajectory in β as shown by
the arrow in Fig. S1a. As we increase β, τf smoothly transitions from being
minimized at δs = 0 to being maximized near δs = 0 (Fig. S1b).

3 Alternative Landscape Parameters

The results in the main text were all generated with 〈s〉 = 0.167. However, the
existence of three regions of parameter space is not specific to this particular
value of 〈s〉. In Fig. S2, we see that we observe three regions of parameter
space with a variety of values for 〈s〉. It is worth noting that the relative size
and location of the intermediate region change with 〈s〉, and the magnitude of
effects also changes with 〈s〉. However, the existence of these regions is constant
throughout these different classes of landscapes.

Note that it a second intermediate region appears with larger values of 〈s〉.
The existence of this additional intermediate region does not follow the same
intuitive understanding and is more subtle. This second intermediate region
arises due to numerical reasons. Upon discretizing our selection landscape in
steps of ∆δs = 0.1, it is possible for the “true” minimum to occur near δs = 0
but not exactly at this value. With these relatively large step sizes, it allows
the “true” minimum to be mapped to δs = 0 even though the true minimum
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Figure S1: (a) Minimum fixation times (τmin
f ) over different selection pressure

distributions (relative to the maximum fixation times, τmax
f ) in the intermediate

parameter region where fixation can be both accelerated and decelerated. N =
25 and 〈s〉 = 0.167. (b) Across a specific trajectory in the intermediate region
(arrow in panel (a)), the dependence of τf on heterogeneity (δs) transitions
smoothly from a state with a minimum at δs = 0 (light test curve) to one with
a maximum at δs = 0 (darkest curve). For ease of comparison, fixation times
are scaled to arbitrary units between 0 and 1.

occurs at some small non-zero value. So the apparent area between the two in-
termediate regions is actually an artifact of the numerical discretization of our
landscape. Further evidence comes from looking at the fixation times in this sec-
ond intermediate region, which differ by less 1% from the spatially homogeneous
landscape, so it is likely of little significance.

We can also vary N to confirm that the existence of the three regions of
parameter space is resilient to changes in N . We investigated a few different
values of N in Fig. S3, and we again see the same three regions of parameter
space.

4 Alternative Topologies

We can also confirm that the existence of three regions of parameter space is
not predicated upon the specific topology chosen. The results of the main text
assumed a nearest-neighbor connection without migration between the bound-
ary microhabitats. We can easily imagine additional topologies for a specified
selection landscape. We can remove one of the existing connections and allow
migration between the boundary microhabitats (which is equivalent to cyclically
permuting the selection landscape with the same connections). The resulting
phase plot is shown in Fig. 4(a). We can also imagine a global topology in which
all microhabitats are connected to all others. The phase plot from this global
topology is shown in Fig. 4(b). Note that the phase plots differ quantitatively
when the topology is changed, but all three topologies support three different
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(a) 〈s〉 = 0.333
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(b) 〈s〉 = 0.5
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(c) 〈s〉 = 0.667
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(d) 〈s〉 = 0.833

Figure S2: Changing 〈s〉 does not change the existence of three regions of our
parameter space. The appearance of a second intermediate region is artificial
and due to numerical discretization.
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(a) N = 15
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(b) N = 35

Figure S3: Different population sizes N result in the same qualitative behaivor.
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(a) Permuted Topology
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(b) Global Topology

Figure S4: Different topologies also produce three unique regions of parameter
space.
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Figure S5: A monotonic selection landscape produces a qualitatively similar
phase plot to that generated with a non-monotonic landscape.

regions of parameter space.

5 Monotonic Landscape

We can also imagine using a monotonic selection landscape. A non-monotonic
landscape potentially allows for more complicated dynamics due to the lack
of a single direction of selection pressure gradient. In Fig. S5, we see that a
monotonic landscape also results in three regions of parameter space. Future
work will be focused on understanding the role of monotonicity on the fixation
times.
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6 Analytical Approximation for Single Habitat

In a single microhabitat with selection pressure s, we can approximate the fix-
ation time τf (s) in the limit µ ≪ 1 as

τf (s) ≈
1

λeff
=

1

µNPfix(s)
. (S10)

Equation S10 provides a good approximation to τf (s) for a range of µ ≪ 1
(Figure S6). This approximation assumes that mutations are sufficiently rare
that fixation times are dominated by arrival and fixation of a single mutant (i.e.
the timescale of fixation of a single mutant is fast compared to the expected
arrival time of the next mutant via mutation). Therefore, the arrival time
distribution is exponential with a rate parameter λeff . The factor µN is the
transition rate T+(0) for increasing the number of mutants by one starting
from zero mutants (see, for example, Equation S1 with j = 0 and β = 0).
Pfix is the probability of fixation of a single mutant in a habitat with selection
pressure s and no mutation. The expression for Pfix(s) is well-known, but for
completeness, we briefly repeat the derivation here. To do so, we first write an
iterative equation for pi, the probability of fixation from a starting condition of
i mutants. We have

pi = T−(i)pi−1 + T+(i)pi+1 + (1− T+(i)− T−(i))pi

=
ρ

1 + ρ
pi−1 +

1

1 + ρ
pi+1

(S11)

where ρ ≡ T−(i)/T+(i) = 1− s, and we have used the fact that

T+(i) =
i(N − i)

N − s(N − i)

T−(i) =
i(N − i)(1− s)

N − s(N − i)
.

(S12)

Equation S11 is a second order linear difference equation with constant coeffi-
cients. It has general solution pi = c1+c2ρ

i, and given the boundary conditions
p0 = 0 and pN = 1, we can solve for the constants c1 and c2 to arrive at

pi =
1− ρi

1− ρN
. (S13)

For i = 1 and ρ = 1− s, we therefore have

Pfix(s) ≡ p1 =
s

1− (1− s)N
. (S14)

7 Analytical Approximation for Multiple Habi-

tats

To derive an approximate expression for τf in the M = 3 vial array, we again
consider the limit where the arrival of the first mutant in each vial dominates
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Figure S6: Within a single vial system, the fixation time is well-approximated
for sufficiently small µ by Equation S10. Circles: exact calculation; solid line:
approximation. Mutation rates are µ = 10−7 (blue), µ = 10−5 (red), and
µ = 10−3 (black). N = 75 for all curves. Fixation times are measured in units
of N−1.
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the fixation time, which now corresponds to µ, β ≪ 1. In this limit, the time to
fixation within a single vial—given the presence of a single initial mutant—is
again fast compared to the arrival time of that first mutant, which now can
be due to either a mutation event (at rate µN) or a migration event (at rate
Nβnfix, where nfix is the integer number of (connected) neighboring vials that
have already achieved fixation). Therefore, the different habitats effectively
achieve fixation one at a time, and the fixation time within each vial is an
exponential process governed by a rate

λ(s, nfix) = N(µ+ βnfix)Pfix(s) (S15)

with Pfix(s) again given by Equation S14. For economy of notation, we intro-
duce the shorthand λi(nfix) ≡ λ(s(xi), nfix). The global fixation time, which
depends on the distribution of selection pressures in the three habitats, can be
approximated by

τf ≈ τmin +Q(x0)τ
β
max(x1, x2) +Q(x1)τ

β
max(x0, x2) +Q(x2)τ

β
max(x0, x1).

(S16)
τmin is the fixation time of the fastest vial in the absence of migration and is
given by the expected minimum of three independent, exponentially distributed
variables with rates λi(0),

τmin =
1

λ0(0) + λ1(0) + λ2(0)
. (S17)

Q(xi) is the probability that the vial at location xi was the first to reach fixation
in the absence of migration, and it is given by

Q(xi) =
λi(0)

∑2
j=0 λj(0)

(S18)

The β dependence of Equation S16 is contained in the terms τβmax(xi, xj), which
also implicitly contain information about the connection topology. τβmax(xi, xj)
is the expected maximum time of two independent fixation events occurring in
habitats xi and xj , assuming that the third habitat (xk 6= xi, xj) has already
achieved fixation and can therefore supply seed mutants at a rate βN . For
example, we have

τβmax(x0, x1) =
1

λ0(0) + λ1(1)
+

λ0(0)

λ0(0) + λ1(1)
(λ1(2))

−1+
λ1(1)

λ0(0) + λ1(1)
(λ0(1))

−1

(S19)
where the first term is the expected minimum time of two independent processes
occurring at rates λ0(0) and λ1(1); note that since the vial at x2 has already
achieved fixation, the rate for the vial at x1 is taken at nfix = 1, which accounts
for migration from vial x2 to x1. The second term in Equation S19 is a product
of two terms: the probability that the vial at x0 achieves fixation before the
vial at x1, and the rate at which the vial at x1 would achieve fixation (1/λ1(2)).
The latter rate corresponds to nfix = 2, as vials at x0 and x2 have already
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achieved fixation and can both contribute βN to the arrival rate of the first
mutant. Finally, the last term is a product of two terms: the probability that
the vial at x1 achieves fixation before the vial at x0, and the rate at which the
vial at x0 would achieve fixation (1/λ0(1)).

Because of the symmetry of the selection pressure profiles considered here
(s(x0) = s(x2)), we have τ

β
max(x0, x1) = τβmax(x1, x2), while the remaining term

in Equation S16 is given by

τβmax(x0, x2) =
1

λ0(1) + λ2(1)
+

λ0(1)

λ0(1) + λ2(1)
(λ2(1))

−1 +
λ2(1)

λ0(1) + λ2(1)
(λ0(1))

−1

=
3

2λ0(1)
(S20)

where the last line accounts for the symmetry of the selection profile.
By combining Equation S16 with Equations S14, S15, and S17-S20, we arrive

at a general equation for τf that depends on the selection pressure profile, µ, β,
andN . The general expression is long and cumbersome, but it is straightforward
to numerically evaluate τf for any value of the parameters. We find that the
approximation performs surprisingly well over a large range of parameter values,
qualitatively reproducing all features of the full MFPT calculation (Figure S7,
main panel; Compare to Figure 2, main text) and even providing excellent
quantitative agreement in many cases (Figure S7, bottom panels). To gain
additional analytical insight into the model, we consider in what follows several
limiting cases where additional analytical progress is tractable.

7.1 β ≪ µ Limit

To investigate the limit β ≪ µ, we expand Equation S16 in the small param-
eter ǫ1 ≡ β/µ and neglect terms of order ǫ1 and higher. In this limit, τf in
Equation S16 reduces to τmax, given by

τmax =
2

λ0(0)
+

1

λ1(0)
− 2

λ0(0) + λ1(0)
− 1

λ0(0) + λ2(0)
+

1

2λ0(0) + λ1(0)
, (S21)

which is the expected maximum of three independent exponentially distributed
random variables; note that we have again taken into account the symmetry
in the selection pressure profile (λ0 = λ2). In this limit, the three vial sys-
tem acts effectively as three independent systems, with the overall fixation
time corresponding to the slowest fixation. After rewriting τmax in terms of
〈s〉 and δs, it is straightforward (though algebraically tedious) to show that
(∂τmax/∂δs)|δs=0 = 0 and (∂2τmax/∂δs

2)|δs=0 > 0, indicating that the homo-
geneous landscape (δs = 0) minimizes the fixation time, consistent with results
of the exact calculation. Intuitively, increasing heterogeneity reduces the min-
imum selection pressure in the spatial array, which in turn slows the expected
maximum fixation time among the three habitats.
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Figure S7: Parameter regimes and fixation time curves calculated using approx-
imate MFPT (compare to Figure 2, main text). MFPT approximations were
performed for the indicated values of β and µ and for −0.2 ≤ δs ≤ 0.5 in steps
of 0.025. Red numbers on the main plot correspond to curves shown in the
subplots below. Black circles: exact calculation. Red curves: approximation.
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Figure S8: Fixation times near the origin as a function of δs in the N → ∞
limit. β and µ values for panels labeled 1-10 are the same as in Figure S7; we’ve
also included β = 0 and β = 1. 〈s〉 = 1/6 (red) and 〈s〉 = 5/6 (blue).

7.2 β ≫ µ Limit

To investigate the limit β ≫ µ, we expand Equation S16 in the small parameter
ǫ2 ≡ µ/β. The dominant term is of order 1/ǫ2, and we ignore terms of order
unity and higher. In the limit β ≫ µ, τf in Equation S16 reduces to the expected
minimum of three independent exponential processes, leading to τf ≈ τmin

(Equation S17). In this limit, the fixation time is dominated by dynamics in
the vial that first achieves fixation; the remaining vials then rapidly achieve
fixation due to fast migration. For large but finite N , the fixation time τmin is
maximized at δs = 0, indicating that heterogeneity always accelerates fixation,
again consistent with the exact calculation (Fig. 2b, right panel). In this limit,
the effective rate of fixation λeff is increased for all δ 6= 0, as heterogeneity
decreases fixation time in the vial with the fastest average fixation.

7.3 Large N Limit

While our primary focus is on finite populations, we briefly consider here the
limit of N → ∞, where Equation S16 reduces (after simplification) to

τ∞f ≈ 1

µ(2s0 + s1)

[

1 +
3µs1

2(β + µ)s0
+

2µ
(
2βs1(s0 + s1) + µ(s20 + s0s1 + s21)

)

(2β + µ)s1(βs1 + µ(s0 + s1))

]

(S22)
Note that prior to taking the N → ∞ limit, we first rescaled our time units
by a factor of N . We’ve also used the shorthand si ≡ s(xi) and consider only
symmetric landscapes (s0 = s2).

In the limit s1/s0 → 0 (large selection valley), Equation S22 reduces to
τ∞f = 1/(s1(2β+µ)), which corresponds to selection in a single vial of selection
pressure s1 where seed mutants can arise due to mutation (µ) or due to migration
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from one of two vials that have already achieved fixation (2β). Fixation in the
center vial is the rate limiting step for global fixation. Similarly, when s0/s1 → 0
(large selection peak), we have τ∞f = 3/(2s0(β + µ)), which is the maximum
of two independent exponential processes that each occur at rate s0(β + µ).
Fixation in the peripheral vials is the rate-limiting process.

To evaluate the magnitude of the change in fixation time as the selection
profile is modulated, we fix the average selection pressure 〈s〉 and calculate the
difference in fixation times ∆τ between a selection profile with a large peak
(s0 = s2 ∼ ǫ0) and one with a large valley (s1 ∼ 2ǫ0), where ǫ0 ≪ 1 is assumed
to be small so that the vast majority of the selection pressure is concentrated
either in the center vial or the edge vials. By expanding Equation S22 in ǫ0 and
ignoring terms of order ǫ0 or higher, we have

∆τ

τv
=

τp − τv
τv

=
5 + 2γ

1 + γ
> 0, (S23)

where τv (τp) corresponds to the selection profile with a large valley (peak)
and γ ≡ µ/β. The fixation time is always larger (slower) in a sharply peaked
landscape than one with a sharp valley. Choosing the peaked landscape over the
valley leads to a relative increase of 2-5 fold depending on the ratio of mutation
to migration.

Following a change of variables in Equation S22 from {si} → 〈s〉 and δs,
we find that the homogeneous landscape is an optimum ((∂τ∞f /∂δs) = 0) only

for β = 0 and β = µ
(
7 +

√
145

)
/4, and each corresponds to a minimum of the

fixation time. Surprisingly, then, all other values of β correspond to the inter-
mediate regime, where heterogeneity can either slow or speed fixation depending
on the specific landscape. In practice, the value of δs for which a minimum oc-
curs is often very close to zero, though it does depend on 〈s〉 (Figure S8). Large
heterogeneity–either a peak (δs > 0) or a valley (δs < 0)–tends to slow fixation.
For β ≫ µ, the fixation time reduces to τ∞f ≈ (3µ〈s〉)−1 and no longer depends
on δs; this corresponds to the fixation time of a single habitat with effective
selection pressure se = 3〈s〉, where the factor of 3 results from a tripling of the
population size (relative to a single vial).

7.4 Time to Fixation With Initial Mutants

We now consider the case when there are N/2 resistant mutants in the middle

habitat (x1). In this case, we can approximate the time to fixation τ
N/2
f as

τ
N/2
f ≈ [Pfix(s1, N/2)]τβmax(x0, x2) + (1− Pfix(s1, N/2))τf (S24)

where τβmax(x0, x2) is given by Equation S20, τf is the fixation time starting
from zero initial mutants (Equation S16), and Pfix(s,N/2) is the probability
of fixation in a single vial with selection pressure s starting from N/2 initial
mutants,

Pfix(s,N/2) =
1− (1 − s)N/2

1− (1 − s)N
. (S25)
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The first term in Equation S24 corresponds to the middle vial achieving fixation
first, while the second term corresponds to another vial first achieving fixation.
As before, we are assuming sufficiently small µ and β that the fixation (or ex-
tinction) of a mutant population in a single vial happens much faster than the
typical arrival time of a new mutant via migration or mutation. In the limit
N → ∞, the middle vial is guaranteed to reach fixation first, and Equation S24

reduces to τ
N/2
f = 3/(2s0(β+µ)), which is the expected maximum of the (inde-

pendent) fixation times for the edge vials. In this limit, it is always optimal to
distribute the drug in the habitats with no initial mutants (i.e. minimize s0).

For general N , fixation in the middle habitat is not guaranteed, and the
optimal strategy will depend on µ and β. While Equation S24 is a cumbersome
expression that depends nonlinearly on the system parameters, it is easy to
evaluate numerically, and we find that it provides an excellent approximation
to the exact results in the parameter regimes considered here (Figure 3b-d).

14


	Backward Master Equation Operator
	Characterization of Intermediate Regime
	Alternative Landscape Parameters
	Alternative Topologies
	Monotonic Landscape
	Analytical Approximation for Single Habitat
	Analytical Approximation for Multiple Habitats
	 Limit
	 Limit
	Large N Limit
	Time to Fixation With Initial Mutants


