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Supplementary Note 1: Effective Hamiltonian of triply degenerate points
Due to the PT symmetry, all magnon bands in CuzTeOg have twofold degeneracy. The

magnonic Hamiltonian can be written as
H=H, & H;. (1)
Near the triply-degenerate nodal point, the linearized k - p Hamiltonian takes the form

Hi(q) = EoIsx3 + Z VaGaSa; (2)

a=x,y,2
where g = k — k is the momentum deviation from the crossing point at kg, Ej is the energy
of the nodal point, v, is the group velocity, and S, are the 3 x 3 matrix representation of
the spin-1 operators. Equation 2 gives an effective description of the magnonic dispersions

around the H point shown in Supplementary Figure 6.

Supplementary Figures
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Supplementary Figure 1. Single crystals and structural characterisations. a, A photograph of

the 40 coaligned single crystals of CusgTeOg with a total mass about 3 g on an aluminum plate. The

natural cleavage plane is the (100) plane. b, Laue X-ray pattern of a single crystal with the beam

along the [100] direction. ¢, Powder X-ray diffraction pattern with indices for major Bragg peaks.

d, Single-crystal X-ray diffraction pattern for the (100) plane. e and f, Rocking curves of single

crystals for the (200) peak measured with X-ray and neutrons, respectively. FWHM represents full

width at half maximum. Errors represent one standard deviation throughout the paper.
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Supplementary Figure 2. Magnetic susceptibility and specific heat. a, Magnetic susceptibility
of a single crystal measured with a magnetic field of 1 T applied along the [100] direction. The
inset shows the inverse susceptibility with a Curie-Weiss fit for temperatures ranging from 150 to
350 K, indicated by the solid line. Ocw is the Curie-Weiss temperature resulting from the fit. b,
Specific heat as a function of temperature. The magnetic transition temperature Ty ~ 61 K is

indicated in both a and b.
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Supplementary Figure 3. Experimental and calculated spin-wave excitations. a-c, Inelastic
neutron scattering results of the spin excitation spectra measured at ' = 5 K along [001] (a),
[101] (b), and [111] (c) directions, respectively. d-f, Calculated magnetic spectra using the linear-
spin-wave theory based on a Hamiltonian with nearest-neighbour (NN) exchange interaction .J;
and next NN exchange interaction Js. The calculated dispersions are plotted as solid lines in a-c.
Here, J; and Jy are 10.99 and 1.01 meV, respectively. Vertical dashed lines indicate the Q (wave
vector) positions illustrated in Fig. 1b in the main manuscript. g-i, Same as in a-c but measured

at T =70 K.
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Supplementary Figure 4. Temperature dependence of the magnetic Bragg peaks and spin-wave

excitations. a, b, ¢, and d, Constant-energy cuts integrated over the energy range [-2,2] meV at 5,

30, 60, and 70 K, respectively. g-j, Similar as in a-d but with energies integrated over [8,10] meV.

e, Constant-Q cuts along the [001] direction through K = [0.9,1.1] rlu in a-d. k, Similar as in e

but through K = [—0.1,0.1] rlu in g-j. The intensities of the cuts in e and k are offset for a better

visualisation. f and 1, Integrated intensities over L = [—1,1] rlu in e and k, respectively. Solid

curves in f and 1 are guides to the eye. Dashed lines denote the magnetic transition temperature

Tn ~ 61 K. Data in a-d and g-j are integrated over [H, 0, 0] = [—3.2,—2.8] rlu. Intensities of

elastic scattering at 7' = 70 K in d-f are due to nuclear scattering, which remain finite above Ty.
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Supplementary Figure 5. A triply degenerate node at a lower energy of 16 meV. a-c, Contours
plotted against two orthogonal axes [311] and [011] with different energy intervals. Dashed arrows
indicate the trajectory of the cuts plotted in d. The vertical dashed line in d denotes the position
of the triply degenerate node. Lines through data are fits with Gaussian functions. Intensities in
d are offset according to the energy. These results illustrate that the bands cross each other at the

H point.
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Supplementary Figure 6. Calculated dispersions near triply degenerate points. Calculated

dispersions near the H point based on Eq. 1 in the main manuscript. Three magnon bands cross

at the H point at two different energies. The magnon bands can be described by Supplementary

Equation 2 effectively.



