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Supplemental Table 1. Descriptions of the CpG-associated genes reveal a predominance           
of genes that function in MHC class or skin/connective tissue structure.  
 
HUGO Symbol Location Function 

TNXB MHC Class III An tenascin (extracellular matrix glycoprotein) with 
anti-adhesive effects involved in wound healing. This has 
been implicated as a biomarker for malignant 
mesothelioma (1). 

COL11A2  Alpha 2 chain of type XI collagen, an minor fibrillar 
collagen. 

PSORS1C1 MHC Class I Confers susceptibility to psoriasis and systemic sclerosis 

MUC21  Large membrane-bound O-glycosylated protein involved 
in forming mucous barriers and intracellular signalling. 
MUC21 expression has been associated with colorectal 
cancers among others (2). 

HCG22  HLA Complex Group 22 

C6ORF15  Protein coding gene that is related to heparin binding and 
fibronectin binding in GO. 

CYP21A2  Cytochrome P450 family member which are 
monooxygenases involved in drug metabolism and 
synthesis of cholesterols, steroids, and other lipids. 

STK19 MHC Class III A serine/theronine kinase with unknown function. STK19 
mutations have been associated with melanoma (3). 

CDSN MHC Class I A protein involved in desquamination and a variety of skin 
related diseases.  

TNXA  Tenascin XA is a pseudogene. Expression of this lncRNA 
was associated with bladder cancer (4). 

C4A/B MHC Class III Complement factor involved in the complement 
pathways, allowing for the immune system to defend 
against foreign pathogens. 
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Supplemental Table 2. Consistently hypomethylated genes in NSD1 disrupted cell lines.   

Gene Function 

COL13A1 
Alpha chain of a nonfibrillar collagen. Involved in cell-matrix and cell-cell 
adhesion. Differential gene expression of this COL13A1 may be associated 
with chemotherapy response in breast cancer (5). 

PRSS16 

A serine protease typically expressed in the thymus that may play a role in 
T-cell development. PRSS16 is associated with Type I Diabetes and is located 
on chromosome 6 near the major histocompatibility complex class I region, 
similar to genes in supplemental Figure 2b. Has shown differential gene 
expression in chemoresistant tumors in ovarian cancer (6). 

ARRDC5 A gene that contains the arrestin domain. Not much else is known about this 
protein. 

NTM A gene from a family of cell adhesion molecules that contain an 
immunoglobulin domain involved in promoting the growth of neurites. 

PDE1A 
Calcium/Calmodulin-dependent cyclic nucleotide phosphodiesterase. This 
gene is involved in many cell signalling processes and has been implicated in 
ALL (7) and melanoma (8). 

LMX1A 
Transcription factor that promotes insulin production and may also play a role 
in neuron production in embryogenesis. LMX1A has been suggested as a 
tumor suppressor in gastric and cervical cancers (9,10). 

F11 Encodes the Factor XI blood coagulation factor. Like PRSS16, Factor XI is a 
serine protease. Factor XI deficiency is a cause of Hemophilia C.  

NR1H4 

A ligand-activated transcription factor primarily regulating genes involved in 
bile acid synthesis and transport. NR1H4 also has many other isoforms 
involved in the regulation of many different genes. Also known as FXR, 
NR1H4 has been implicated as a tumor suppressor in colon cancer (11). 
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Supplemental Figure 1. E�ect of various factors on NSD1 mutation survival e�ect in TCGA and validation of NSD1 survival e�ect in a second independent cohort from the 
University of Chicago (12). A, Distribution of smokers and non-smokers and B, Kaplan-Meier curve for overall survival of current and former smokers from the HPV(–) HNSCC cohort 
in TCGA (13). C, Kaplan-Meier curve for progression free survival and D, for overall survival for the HPV(–) HNSCC cohort from the University of Chicago. E, Kaplan-Meier curve for 
overall survival of patients with truncating (blue) or missense (orange) NSD1 mutations versus those with wild type NSD1 (green). Analysis is for the TCGA HPV(–) HNSCC cohort. 
All p-values for Kaplan-Meier curves in this �gure were derived from the Log-Rank Test.
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Supplemental Figure 2. Regional analysis of di�erentially methylated CpG sites in TCGA patients. A strong cluster of di�erentially 
methylated CpG sites appear around chromosome 6 from 31 MB – 33 MB.
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Supplemental Figure 3. NSD1 protein expression levels in parental and monoclonal 
cell lines with NSD1 disrupted by CRISPR-Cas9. A, Immunoblots of NSD1 and TBP 
(TATA Binding Protein) for NSD1 wild type CAL33, two monoclonal and one 
polyclonal NSD1 disrupted cell lines. B, Relative NSD1 expression levels were 
calculated by taking the ratio of intensity of the NSD1 band relative to the TBP band 
and setting the wild type expression level to 100%. C, Immunoblots of NSD1 and TBP 
(TATA Binding Protein) for NSD1 wild type UM-SCC47 and one monoclonal NSD1 
disrupted cell line. D, Same as B except with the NSD1 expression levels from the 
UM-SCC47 cell lines. NSD1 alleles from monoclonal populations are characterized as 
follows: wt, wild type; trunc, contains a truncating mutation.
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Supplemental Figure 4. E�ect of NSD1 mutations on CpG site methylation and gene expression in HNSCC cell lines. A, Clustered 
bar chart describing the distribution of all di�erentially methylated CpG sites (DMRs) for Sotos Syndrome patients (14) (red), TCGA 
HNSCC NSD1 mutant tumors (gold), and the top 10,000 most di�erentially methylated probes from CAL33 (blue, green) and 
UM-SCC47 (purple) NSD1 knockout cell lines (Methods) compared to the standard distribution of CpG sites in the Illumina 450k 
chip for each site feature (light blue). B and C, Di�erential mRNA expression by RT-qPCR of selected genes in CAL33 (B) and 
UM-SCC47 (C) cell lines, with and without NSD1 disruption.
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Supplemental Figure 5. E�ect of NSD1 mutations on cell line sensitivity to radiation and DNA damage repair. A, Relative gain in percentage of γ
H2AX positive CAL33 cells when treated with cisplatin compared to cells without cisplatin treatment for CAL33 wild-type and pooled NSD1-knock-
out cells. γH2AX gain is signi�cantly increased at 2µM cisplatin (Holm-Sidak corrected p-value < 0.005, Student’s T-Test), consistent with the signi�-
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