Supplementary Table 1

	IC50 (nM)					
	BGJ398	FIIN-3				
FGFR1	10	1				
FGFR2	11	<1				
FGFR3	14	N/A*				
FGFR4	392	22				
EGFR L858R	>8000	17				
EGFR exon 19 del	N/A*	240				

^{*} Data not available

Supplementary Table 1. Pharmacologic activity of BGJ398 and FIIN-3.

Antiproliferative activity (IC₅₀) of BGJ398 and FIIN-3 against various genotypes of FGFR and EGFR transformed murine Ba/F3 cells. *N/A, data not available. Data obtained from Guagnano et al. and Tan et al. (26, 34).

Supplementary Table 2

EGFR form	LFC, FIIN-3 100 nM	LFC, FIIN-3 300 nM			
p.Leu747_Ala750delinsPro	4,9	0.6			
p.Thr790Met	4.6	0.1			
p.Ser752_lle759del	2.0	0.2			

Supplementary Table 2. Rescue from FIIN-3 by various EGFR-mutant ORFs.

Log-fold change (LFC) for various EGFR-mutant ORFs following treatment with FIIN-3 at 100 nM or 300 nM.

Supplementary Table 4

						IC50 (nM)						
Cell line	Cancer type	Oncogene alteration	BGJ398	FIIN- 3	Trametinib	LDC1267	LOXO- 101	Imatinib	MGCD- 265	Torin2	BKM120	AZD8931
NCI- H2077	Lung adenoca	FGFR1 amp	17	3	3000	7430	2800	9250	6600	482	264	6184
NCI- H520	Lung SCC	FGFR1 amp	36	13	1326							
DMS114	Small cell lung cancer	FGFR1 amp	200	18	125							
AN 3CA	Endometrial adenoca	FGFR2 mutation	67	28	200							
RT112	Bladder carcinoma	FGFR3- TACC3 fusion, FGFR3 amp	55	10	40	55000	2700	96000	10300	200	305	29790

Supplementary Table 4. Cellular models employed in the colony formation assays.

The cancer type and the oncogenic alteration are given for each cell line, as well as the IC₅₀ for each small-molecule inhibitor used. IC₅₀ is based on dose-response curves determined by Cell-Titer Glo at 96 hours (SCC, squamous cell cancer; adenoca, adenocarcinoma).