
SAVER MAST scDD SCDE

Reference 3049 2757 2829 2318
Down-sampled 1744 725 926 403

Supplementary Table 1 In the filtered Zeisel dataset, two subclasses of cells (n = 351 CAPyr1 and
n = 389 CA1Pyr2) were identified by BackSPIN, a biclustering algorithm. We compared the
performance of the following differential expression methods under an FDR of 0.01: Wilcoxon rank sum
test using SAVER, MAST, scDD, and SCDE.



BABAM1 C1S CCNA2 FGFR1 FOSL1 GAPDH JUN KDM5A KDM5B LMNA MITF RUNX2 SOX10 TXNRD1 VCL VGF

BABAM1 17095 0 0 0 0 17095 0 17095 0 17095 0 0 0 0 0 0
C1S 0 6936 0 0 0 6936 0 0 0 0 0 0 0 0 6936 0

CCNA2 0 0 13564 13564 13564 13564 13564 0 0 0 13564 13564 13564 0 0 13564
FGFR1 0 0 13564 13564 13564 13564 13564 0 0 0 13564 13564 13564 0 0 13564
FOSL1 0 0 13564 13564 13564 13564 13564 0 0 0 13564 13564 13564 0 0 13564

GAPDH 17095 6936 13564 13564 13564 88040 13564 17095 13558 46226 13564 13564 13564 21314 6936 13564
JUN 0 0 13564 13564 13564 13564 13564 0 0 0 13564 13564 13564 0 0 13564

KDM5A 17095 0 0 0 0 17095 0 17095 0 17095 0 0 0 0 0 0
KDM5B 0 0 0 0 0 13558 0 0 13558 13558 0 0 0 0 0 0
LMNA 17095 0 0 0 0 46226 0 17095 13558 46226 0 0 0 0 0 0
MITF 0 0 13564 13564 13564 13564 13564 0 0 0 13564 13564 13564 0 0 13564

RUNX2 0 0 13564 13564 13564 13564 13564 0 0 0 13564 13564 13564 0 0 13564
SOX10 0 0 13564 13564 13564 13564 13564 0 0 0 13564 13564 13564 0 0 13564

TXNRD1 0 0 0 0 0 21314 0 0 0 0 0 0 0 21314 0 0
VCL 0 6936 0 0 0 6936 0 0 0 0 0 0 0 0 6936 0
VGF 0 0 13564 13564 13564 13564 13564 0 0 0 13564 13564 13564 0 0 13564

Supplementary Table 2 Number of cells in the melanoma FISH dataset where pair-wise gene
measurements were made.



Mean exp % zero Average

Dataset # Genes # Cells Orig Ref Down Orig Ref Down Efficiency

Baron 2284 1076 0.39 2.63 0.26 86.9% 46.5% 87.5% 10%
Chen 2159 7712 0.18 1.35 0.14 91.3% 54.0% 90.5% 10%
La Manno 2059 947 0.29 2.52 0.25 88.2% 39.7% 84.4% 10%
Zeisel 3529 1799 0.70 4.20 0.21 81.2% 27.3% 86.1% 5%

Supplementary Table 3 In the down-sampling experiment of four datasets, highly expressed genes
and cells were chosen to form the reference dataset. Then, the expression levels for each reference
dataset was set to be the mean of a Poisson random variable multiplied by a cell-specific efficiency
parameter and the down-sampled data was created by sampling at each gene and cell. The reference
dataset and efficiency was chosen such that the down-sampled data has approximately the same
proportion of zeros as the original dataset.



Supplementary Note 1: Permutation experiment to test for over-
smoothing

A main danger in gene expression recovery is creating false correlations between genes. This
could happen if the model overfits to the data, or if the final estimates rely too heavily on the
prediction model and neglects the natural gene expression stochasticity between cells.

We investigated whether SAVER, MAGIC, and scImpute overfits by creating a null dataset
where there are no real relationships between genes and cells. Instead of simulating from scratch,
we take the existing Drop-seq dataset from the Torre and Dueck et al. and permute the cell
labels independently for each gene. This maintains the marginal distributions of the origi-
nal scRNA-seq dataset while destroying all relationships between genes. Between any pair of
genes in the permuted data, the correlation should be zero.

SAVER, MAGIC, and scImpute are applied to this permuted data. We then calculated the
gene-to-gene correlations for 1,000 randomly selected genes. Supplementary Figure 4 shows
violin plots of these gene-to-gene correlations. Indeed, the correlations are mostly zero for the
observed data. MAGIC grossly inflates the correlations, thus one would detect spurious corre-
lation from MAGIC results. The correlations are also slightly inflated in the scImpute results.
Reassuringly, SAVER does not inflate the correlations and even shrink them further towards
zero; this is expected since SAVER reduces the noise as compared to the observed counts, and
thus should more reliably estimate the true correlation of zero.



Supplementary Note 2: Performance of SAVER under different
scenarios

The performance of SAVER can vary depending on the sequencing depth, the number of cells,
the amount of heterogeneity in the population, and gene-specific properties. We will address
these factors one by one.

Sequencing depth

To examine the performance of SAVER under various sequencing depths, we down-sampled
the Zeisel reference dataset at mean efficiencies of 25%, 10%, and 5% (Fig. 1, Table 1).
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Figure 1 Histograms of cell-specific efficiencies at each mean efficiency level for n = 1, 799 cells.

Ref 25% 10% 5%

Mean exp 4.20 1.04 0.42 0.21
% zero 27.3% 61.9% 77.6% 86.1%

Table 1 Mean expression and percentage zero at each efficiency.

We then compared gene-wise correlations and cell-wise correlations with the reference for ob-
served, SAVER, MAGIC, and scImpute (Fig. 2). Gene-wise and cell-wise correlations with the
reference decreases as efficiency decreases, yet SAVER maintains the highest correlation with



the reference across all efficiencies. The biggest improvement for SAVER over the observed
occurs at the lowest efficiency of 5%.
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Figure 2 Evaluation of SAVER by down-sampled mouse brain dataset. (a) Schematic of down-sampling experiment. (b) 
Performance of algorithms measured by correlation with reference, on the gene level (left) and on the cell level (right). 
Percentage improvement over using the observed data is shown in the lower two panels. SAVER is more closely correlated 
with the truth across both genes and cells. (c) Comparison of gene-to-gene (left) and cell-to-cell (right) correlation matrices 
of recovered values with the true correlation matrices, as measured by correlation matrix distance (CMD). (d) Differential 
expression (DE) analysis between CA1Pyr1 cells (n = 351) and CA1Py2 cells (n = 389). SAVER yields more significant 
genes across efficiencies (left), while still controlling false discovery rate at 0.01 (right). (e) Cell clustering and t-SNE 
visualization of seven cell types. Classification accuracy of the 5% down-sampled observed dataset and recovery methods as 
compared to the reference classification is shown.
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Figure 2 Performance of algorithms measured by correlation with reference, on the gene level (left) for
n = 3, 599 genes and on the cell level (right) for n = 1, 799 cells. Percentage improvement over using
the observed data is shown in the lower two panels. Box plots show the median (center line),
interquartile range (hinges), and 1.5 times the interquartile range (whiskers); outlier data beyond this
range are not shown.

Next, we calculated the correlation matrix distance (CMD) between the reference and the ob-
served/recovered correlation matrices at each efficiency (Fig. 3). The CMD for both gene-to-
gene and cell-to-cell correlation matrices increases as efficiency decreases, yet SAVER main-
tains the lowest CMD with the reference across all efficiencies. Similarly, the improvement of
SAVER is most noticeable at the lowest efficiency of 5%.
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Figure 3 Comparison of gene-to-gene (left) and cell-to-cell (right) correlation matrices of recovered
values with the true correlation matrices, as measured by correlation matrix distance (CMD).



To investigate the impact of sequencing depth on downstream analysis, we repeated the Zeisel
differential expression analysis and cell clustering and visualization for each efficiency. In the
differential expression analysis, the number of detected differentially expressed genes decreases
as efficiency decreases, while SAVER maintains the highest number of differentially expressed
genes across all efficiencies (Fig. 4).
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Figure 4 Differential expression (DE) analysis between CA1Pyr1 cells (n = 351) and CA1Py2 cells (n
= 389). SAVER yields more significant genes across efficiencies (left), while still controlling false
discovery rate at 0.01 (right).

In the cell clustering analysis, the Jaccard index decreases and the clusters become less de-
fined in the t-SNE visualization as efficiency decreases (Fig. 5). SAVER maintains high clus-
ter similarity across all efficiencies with the most improvement at the 5% efficiency.

Figure 5 Cell clustering and t-SNE visualization of the Zeisel dataset across efficiencies for n = 1, 799
cells.

By performing the down-sampling experiment at three different efficiencies for the Zeisel data,
we discovered that as sequencing depth decreases, the observed data becomes less representa-
tive of the true expression data. However, SAVER is able to recover the original data, espe-



cially so for low efficiency setting.

Number of cells

Next, we wanted to see the effect of the number of cells on SAVER performance. Often, the
number of cells and sequencing depth go hand-in-hand when choosing to design an experi-
ment. An experiment with a large number of cells will usually have low sequencing depth and
vice versa. The Zeisel down-sampled dataset contains 1,799 cells. We calculated the gene-wise
and cell-wise correlations at subsamples of 250, 500, 1,000, and 1,500 cells across the three ef-
ficiencies (Fig. 6).
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Supplementary Figure 10 Effect of subsampling cells on SAVER correlation with the Zeisel reference dataset at 25%, 
10%, and 5% efficiencies. Cells were randomly subsampled at each specified sample size. Density plots showing 
genewise (a) and cell-wise (b) correlations with reference across efficiencies reveal that SAVER performs at least as 
well as the observed even at small sample sizes. (c) Median percentage improvement over observed in terms of gene-
wise correlations. As sample size increases, SAVER outperforms the observed to a greater extent. (d) Median percentage 
improvement over observed in terms of cell-wise correlations. Improvements in cell-wise correlations do not depend on 
sample size.

Figure 6 Effect of subsampling cells on SAVER correlation with the Zeisel reference dataset at 25%,
10%, and 5% efficiencies. Cells were randomly subsampled at each specified sample size. Density plots
showing genewise (a) and cell-wise (b) correlations with reference across efficiencies reveal that SAVER
performs at least as well as the observed even at small sample sizes. (c) Median percentage
improvement over observed in terms of gene-wise correlations. (d) Median percentage improvement
over observed in terms of cell-wise correlations.

As the number of cells increases, the gene-wise correlations increase as well across all efficien-
cies (Fig. 6a). At lower efficiencies, increasing the number of cells has a larger effect on the
gene-wise correlation improvement than at higher efficiencies (Fig. 6c). It is important to note



that when the number of cells is small, SAVER does not try to over-aggressively use infor-
mation that is not there. As a result, the performance of SAVER will always improve on the
observed data. Interestingly, the cell-wise correlation improvement depends on the efficiency
but not on the number of cells (Fig. 6b,d). This is likely because cells behave independently
so adding additional cells does not improve cell-wise correlations.

We also decided to look at the effect of subsampling on recovery of the Gini coefficient in the
FISH Drop-seq experiment (Fig. 7). For most genes, the Gini coefficient is adequately recov-
ered using only 250 out of the 8,498 cells and remains constant across all sample sizes. How-
ever, genes like BABAM1, CCNA2, and SOX10 demonstrate improved estimation of the Gini
coefficient by SAVER as the sample size increases.
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SAVER

Supplementary Figure 11 Effect of subsampling cells on SAVER recovery of Gini coefficient on the Torre and Dueck 
melanoma Drop-seq dataset. 10 datasets were randomly subsampled at each sample size, represented by the open points. The 
line represents the mean across the 10 datasets. For most genes, the Gini coefficient is adequately recovered using only 250 
out of the 8,498 cells and remains constant across all sample sizes. However, genes like BABAM1, CCNA2, and SOX10 
demonstrate improved estimation of the Gini coefficient by SAVER as the sample size increases.

Figure 7 Effect of subsampling cells on SAVER recovery of Gini coefficient on the Torre and Dueck
melanoma Drop-seq dataset. 10 datasets were randomly subsampled at each sample size, represented
by the open points. The line represents the mean across the 10 datasets.



Cell Heterogeneity

Another factor that affects the performance of SAVER is the heterogeneity of the cell popu-
lation in the study. To investigate this, we analyzed the down-sampled 5% Zeisel data, which
contained 834 Pyramidal CA1 cells as identified by the authors. We selected these 834 cells
and treated this as the homogeneous population. Then, we took a random sample of 834 other
cells, which are a mix of different cell types, and treated this as the heterogeneous population.
We applied SAVER to these two datasets separately and evaluated the performance by calcu-
lating the gene-wise and cell-wise correlations with the reference data.

The observed homogeneous dataset had lower gene-wise and cell-wise correlations with the ref-
erence than the observed heterogeneous dataset (Fig. 8). SAVER improves on the gene-wise
correlation for both the homogeneous and heterogeneous datasets with greater improvement
in the heterogeneous population. SAVER also substantially improves the cell-wise correlations
with the reference, with greater improvement in the homogeneous population which in the ob-
served data, had much lower correlation than the heterogeneous population.
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Figure 8 Comparison of the performance of SAVER on a homogeneous cell population versus a
heterogeneous cell population.

Regardless of the composition of cell types in the data, SAVER improves on both gene-wise
and cell-wise correlations. The biggest gains in gene-wise correlation are in heterogeneous
datasets where there is more information to leverage gene relationships. The biggest gains in
cell-wise correlation are in homogeneous datasets where the observed cell-wise correlations are
low compared to heterogeneous datasets.

Gene properties

Properties of specific genes such as mean expression level, percentage of cells with non-zero
expression, and variability of the expression across cells can affect the performance of SAVER
in recovering the gene. To study these effects, we analyzed the 5% down-sampled Zeisel dataset
and compared the percent improvement in gene-wise correlation with the reference over ob-
served with mean expression, percent non-zero cells, and variability of expression (Fig. 9).



Figure 9 Comparison of gene-wise correlation percentage improvement over observed for 5% Zeisel
SAVER recovered expression across gene metrics such as mean expression, % nonzero, and Fano factor
for n = 3, 599 cells. The red line represents the moving average.

For genes with high expression, expression in a high percentage of cells, or high dispersion,
SAVER does not perform much better than the observed. The reason is that the true expres-
sion of these highly expressed, variable genes are less subject to noise so the observed values
are good estimates for the true expression. SAVER recognizes this and puts more weight on
the observed values. For genes with very low expression, expression in few cells, or low dis-
persion, SAVER also does not perform much better than the observed because of the lack of
information available to generate reasonable predictions. Once again, SAVER can identify
these genes and adaptively does not try to overfit. With the exception of these very highly ex-
pressed or lowly expressed genes, SAVER substantially improves on the gene-wise correlations
with the reference.

Identification of true zeros

A difficult question to address in scRNA-seq expression analysis is whether an observed zero is
a true zero, i.e. the true expression of the gene is zero, or an induced zero due to low sampling
efficiency. Here, we wanted to see if SAVER could distinguish between true zeros and sampled
zeros. Using the Zeisel reference dataset, we classified observed zero expression in the 25%,
10%, and 5% down-sampled datasets as either true zeros or sampled zeros. Then we compared
the SAVER estimates for these two groups (Fig. 10).
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Supplementary Figure 16 Density plots of the SAVER estimates for true zeros in the reference Zeisel dataset and down-
sampled zeros which were non-zero in the reference dataset looking at (a) all genes and (b) the top 200 predictable genes as 
defined by the size of the correlation adjustment factor derived in Supplementary Note 2. SAVER estimates for true zeros are 
seen to be smaller than the down-sampled zeros. 
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Figure 10 Density plots of the SAVER estimates for true zeros in the reference Zeisel dataset and
down-sampled zeros which were non-zero in the reference dataset looking at (a) all genes and (b) the
top 200 predictable genes as defined by the size of the correlation adjustment factor derived in
Supplementary Note 2.

The SAVER estimates are slightly higher for the sampled zeros than the true zeros for all
genes, but when restricted to the top 200 predictable genes, SAVER is able to more clearly
distinguish the sampled zeros from the true zeros.



Supplementary Note 3: Dispersion Estimation

Let Ygc be the observed count of gene g in cell c. We can model Ygc as a function of a cell-
specific normalization constant sc and a true expression λgc. We place a Gamma prior on λgc.

Ygc ∼ Poisson(scλgc)

λgc ∼ Gamma(αgc, βgc)

Let µ be the mean and v be the variance of a Gamma-distributed random variable X ∼ Gamma(α, β).
Under the shape-rate parameterization,

f(x) =
βα

Γ(α)
xα−1e−βx

µ = α/β

v = α/β2

Instead of parameterizing by α and β, we can reparameterize in terms of the moments µ and
v:

λgc ∼ Gamma(αgc, βgc)⇔ λgc ∼ Gamma

(
µ2gc
vgc

,
µgc
vgc

)
µgc is obtained by fitting a Lasso Poisson regression as described in the Methods. Next, we
want to estimate vgc. We assume that for a given gene g, there is an underlying mean-variance
or dispersion relationship common to that gene. The following are three scenarios which we
consider:

1. Constant variance: vgc = vg

2. Constant Fano: vgc = Fgµgc

3. Constant CV 2: vgc = CV 2
g µ

2
gc

Constant Variance

Under this scenario, we assume that all the cells for a particular gene share a variance vg which
is independent of the mean. This independence implies that the predicted values are homoscedas-
tic. Thus, the prior Gamma distribution under the moment parametrization takes the form

λgc ∼ Gamma

(
µ2gc
vg
,
µgc
vg

)
To find vg, we need to maximize the marginal likelihood of Ygc given µgc and vg. Here, Ygc|µgc, vg
follows a negative binomial distribution with density function

f(y|µgc, vg) =
syc
y!

(
µgc
vg

)
µ2gc
vg

Γ(
µ2gc
vg

)

Γ(y +
µ2gc
vg

)

(sc +
µgc
vg

)
y+

µ2gc
vg



Assuming independence across cells, the likelihood is simply the product of the individual
densities:

L(vg|Ygc, µgc) =

C∏
c=1

s
Ygc
c

Ygc!

(
µgc
vg

)
µ2gc
vg

Γ(
µ2gc
vg

)

Γ(Ygc +
µ2gc
vg

)

(sc +
µgc
vg

)
Ygc+

µ2gc
vg

l(vg|Ygc, µgc) =
C∑
c=1

Ygc log sc − log Ygc! +
µ2gc
vg

logµgc −
µ2gc
vg

log vg − log Γ

(
µ2gc
vg

)

+ log Γ

(
Ygc +

µ2gc
vg

)
−
(
Ygc +

µ2gc
vg

)
log

(
sc +

µgc
vg

)
We find the v̂g which maximizes this likelihood using the optimize function in R.

Constant Fano Factor

Under the constant Fano factor assumption, we assume that the variance scales linearly with
the mean. This corresponds with assuming the distribution of a gene is Poisson-like in the
mean-variance relationship. The Fano factor Fg can be expressed as

Fg =
vgc
µgc

=
1

βg

Thus, assuming a constant Fano factor is equivalent to assuming a constant rate βg parameter
in the usual Gamma distribution parametrization. Therefore, we have the following prior and
want to find βg.

λgc ∼ Gamma(µgcβg, βg)

The log-likelihood is calculated similarly as above.

l(βg|Ygc, µgc) =
C∑
c=1

Ygc log sc − log Ygc! + µgcβg log βg − log Γ(µgcβg)

+ log Γ(Ygc + µgcβg)− (Ygc + µgcβg) log(sc + βg)

For numerical stability, we maximize with respect to 1/βg to get β̂g.

Constant Coefficient of Variation

Under the constant coefficient of variation assumption, we assume that the variance scales
quadratically with the mean. This corresponds to a typical constant scaling of a Gamma dis-
tribution, since scaling by a constant c still gives a Gamma distribution with mean scaled by c
and variance scaled by c2. The coefficient of variation CV 2 can be expressed as

CV 2
g =

vgc
µ2gc

=
1

αg

Thus, assuming a constant coefficient of variation is equivalent to assuming a constant shape
αg parameter in the usual Gamma distribution parametrization. Therefore, we have the fol-
lowing prior and want to find α̂g.

λgc ∼ Gamma

(
αg,

αg
µgc

)



The log-likelihood is

l(αg|Ygc, µgc) =

C∑
c=1

Ygc log sc − log Ygc! + αg logαg − αg logµgc − log Γ(αg)

+ log Γ(Ygc + αg)− (Ygc + αg) log

(
sc +

αg
µgc

)
For numerical stability, we maximize with respect to 1/αg to get α̂g.

Estimating v̂gc

For gene g, let lv(v̂g), l
F (β̂g), and lcv(α̂g) be the maximized marginal likelihoods under con-

stant variance, constant Fano factor, and constant coefficient of variation respectively. To
find the noise model that corresponds to gene g, we take the maximum of lv(v̂g), l

F (β̂g), and
lcv(α̂g).

If the maximum is lv(v̂g), then we assign a constant variance model for gene g and let v̂gc =
v̂g.

If the maximum is lF (β̂g), then we assign a constant Fano factor model for gene g and let

v̂gc = µ̂gc/β̂g.

If the maximum is lcv(α̂g), then we assign a constant coefficient of variation model for gene g
and let v̂gc = µ̂2gc/α̂g.



Supplementary Note 4: Correlation Calculation Adjustment

Recall the SAVER output for gene g and cell c is the posterior random variable λgc. Suppose
we want to find the correlation between two genes g and g′ across cells, namely Cor(λg,λg′),

where λg = (λg1, . . . , λgC). As the SAVER posterior mean λ̂gc is a point estimate, calculating
the correlation between the SAVER estimates will be an overestimate of the magnitude of the
correlation since the variance is not taken into account:∣∣∣Cor(λ̂g, λ̂g′)

∣∣∣ ≥ ∣∣Cor(λg,λg′)
∣∣

Thus, if we want to calculate the correlation between gene g and g′, we need to adjust Cor(λ̂g, λ̂g′)
by gene-specific correlation factors γg and γg′ such that

Cor(λg,λg′) = γgγg′Cor(λ̂g, λ̂g′)

Derivation of γg

Consider the definition of correlation:

Cor(λg,λg′) =
Cov(λg,λg′)√

Var(λg)
√

Var(λg′)

Let Z = {Yg,Yg′ ,αg,αg′ ,βg,βg′}. Given Z, λg and λg′ are independent. By the law of total
covariance and independence,

Cov(λg,λg′) = E[Cov(λg,λg′ |Z)] + Cov[E(λg|Z),E(λg′ |Z)]

= Cov(λ̂g, λ̂g′)

In addition, by the law of total variance,

Var(λg) = Var[E(λg|Z)] + E[Var(λg|Z)]

= Var(λ̂g) + E[Var(λg|Z)]

Next, we can solve for Cor(λg,λg′).

Cor(λg,λg′) =
Cov(λ̂g, λ̂g′)√

Var(λ̂g) + E[Var(λg|Z)]
√

Var(λ̂g′) + E[Var(λg′ |Z)]

=

√
Var(λ̂g)

√
Var(λ̂g′)√

Var(λ̂g) + E[Var(λg|Z)]
√

Var(λ̂g′) + E[Var(λg′ |Z)]

Cov(λ̂g, λ̂g′)√
Var(λ̂g)

√
Var(λ̂g′)

=

√√√√ Var(λ̂g)

Var(λ̂g) + E[Var(λg|Z)]

√√√√ Var(λ̂g′)

Var(λ̂g′) + E[Var(λg′ |Z)]
Cor(λ̂g, λ̂g′)

= γgγg′Cor(λ̂g, λ̂g′),

where

γg =

√√√√ Var(λ̂g)

Var(λ̂g) + E[Var(λg|Z)]



γg takes into account the posterior variance through E[Var(λg|Z)]. Thus, if the expected pos-
terior variance across cells is high compared to the variance of the estimates, then γg will be

small and
∣∣Cor(λg,λg′)

∣∣ � ∣∣∣Cor(λ̂g, λ̂g′)
∣∣∣. However, if the expected posterior variance across

cells is small compared to the variance of the estimates, then γg ≈ 1 and
∣∣Cor(λg,λg′)

∣∣ ≈∣∣∣Cor(λ̂g, λ̂g′)
∣∣∣

In calculating the sample adjusted correlation, we have the expression

Cors(λg,λg′) = γ̂gγ̂g′Cors(λ̂g, λ̂g′),

where

γ̂g =

√√√√ Vars(λ̂g)

Vars(λ̂g) + 1
C

∑C
c=1[Var(λgc|Z)]

and the subscript s represent sample estimates.

Example

As an example, we will take a look at the effect of taking into account the adjustment factor
in calculating correlation between BABAM1 and LMNA, the two genes analyzed in Figure 1e.

Figure 1 Scatterplot of BABAM1 and LMNA for FISH (left), unadjusted SAVER (center), and
adjusted SAVER (right). The smooth scatterplot for the adjusted SAVER was created by sampling
from the posterior distribution for each cell. Pearson correlations were calculated across n = 17, 095
cells for FISH and n = 8, 498 cells for SAVER.

The correlation between BABAM1 and LMNA in FISH is 0.67. When we calculate the corre-
lation in the SAVER estimates as Cors(λ̂BABAM1, λ̂LMNA), we get a value of 0.92. Taking the
posterior uncertainty into account, we calculate the adjustment factor as γ̂BABAM1 = 0.81 and
γ̂LMNA = 0.93, so the adjusted correlation is

radj = γ̂BABAM1γ̂LMNACors(λ̂BABAM1, λ̂LMNA) = 0.69


