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S1. EPIDEMIOLOGICAL DYNAMICS 

The disease-free equilibrium occurs at  

𝑆𝐽
∗ =

𝑏𝑆𝐴
∗

𝑔(𝛽𝐽)
                                                                                   (S1a) 

𝑆𝐴
∗ =

𝑔(𝛽𝐽)(𝑎(𝛽𝐽) − 𝑏) − 𝑏
2

𝑞 (𝑏 + 𝑔(𝛽𝐽))
                                                  (S1b) 

which is stable provided 𝑔(𝛽𝐽)(𝑎(𝛽𝐽) − 𝑏) > 𝑏
2 and the basic reproductive ratio, 𝑅0, of the disease 

is less than 1. The disease can invade provided the 𝑅0 > 1, with 

𝑅0 =
𝑆𝐴
∗ (𝑏𝛽𝐽 + 𝛽𝐴𝑔(𝛽𝐽))

𝑔(𝛽𝐽)𝛤
                                                           (S2) 

when transmission is density-dependent, and 

𝑅0 =
𝑏𝛽𝐽 + 𝛽𝐴𝑔(𝛽𝐽)

𝛤 (𝑏 + 𝑔(𝛽𝐽))
                                                                    (S3) 
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when transmission is frequency-dependent. There is no general expression for the endemic 

equilibrium, but extensive simulations suggest that it is likely to always be asymptotically stable 

provided 𝑔(𝛽𝐽)(𝑎(𝛽𝐽) − 𝑏) > 𝑏
2 and 𝑅0 > 1 (although the disease can potentially drive the host 

extinct when transmission is frequency-dependent). 

S2. DERIVATION OF HOST FITNESS AND SELECTION GRADIENT 

We derive the invasion fitness of a rare mutant using the next-generation method (Hurford et al. 

2010). The Jacobian of the rare mutant dynamics is: 

𝐽 =

(

 
 

−𝑏 − 𝑔(𝛽𝐽𝑚) − 𝜆𝐽𝑚
∗ 𝑎(𝛽𝐽𝑚) − 𝑞𝑁

∗ 𝛾 𝑓(𝑎(𝛽𝐽𝑚) − 𝑞𝑁
∗)

𝑔(𝛽𝐽𝑚) −𝑏 − 𝜆𝐴
∗ 0 𝛾

𝜆𝐽𝑚
∗ 0 −𝑔(𝛽𝐽𝑚) − 𝛤 0

0 𝜆𝐴
∗ 𝑔(𝛽𝐽𝑚) −𝛤 )

 
 
       (𝑆4) 

which can be split into components 𝐹 and 𝑉 such that 𝑉 = 𝐹 − 𝐽, where: 

𝐹 = (

0 𝑎(𝛽𝐽𝑚) − 𝑞𝑁
∗ 0 𝑓(𝑎(𝛽𝐽𝑚) − 𝑞𝑁

∗)

0 0 0 0
0 0 0 0
0 0 0 0

)                                     (𝑆5) 

𝑉 =

(

 
 

𝑏 + 𝑔(𝛽𝐽𝑚) + 𝜆𝐽𝑚
∗ 0 −𝛾 0

−𝑔(𝛽𝐽𝑚) 𝑏 + 𝜆𝐴
∗ 0 −𝛾

−𝜆𝐽𝑚
∗ 0 𝑔(𝛽𝐽𝑚) + 𝛤 0

0 −𝜆𝐴
∗ −𝑔(𝛽𝐽𝑚) 𝛤 )

 
 
                            (𝑆6) 

The next generation matrix is then 𝑁𝐺 = 𝐹𝑉
−1 and the invasion fitness of the rare mutant, 𝑤(𝛽𝐽𝑚), 

is sign equivalent to the largest eigenvalue of 𝑁𝐺  minus 1: 

𝑤(𝛽𝐽𝑚) =
𝑔(𝛽𝐽𝑚)(𝑎(𝛽𝐽𝑚) − 𝑞𝑁

∗)𝐴𝐽𝑚
𝐵𝐽𝑚𝐶

− 1                                             (𝑆7) 
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where the following terms are used to simplify the notation: 

𝐴𝐽𝑚 = 𝜆𝐽𝑚
∗ 𝐸 + (𝑔(𝛽𝐽𝑚) + 𝛤)(𝑓𝜆𝐴

∗ + 𝛤)                                              (S8a) 

𝐵𝐽𝑚 = 𝜆𝐽𝑚
∗ 𝐷 + (𝑔(𝛽𝐽𝑚) + 𝛤)(𝑏 + 𝑔(𝛽𝐽𝑚))                                        (S8b) 

𝐶 = 𝜆𝐴
∗ [𝛤 − 𝛾] + 𝑏𝛤                                                                                  (S8c) 

𝐷 = 𝑔(𝛽𝐽𝑚) + 𝛤 − 𝛾                                                                                (𝑆8𝑑) 

𝐸 = 𝑓(𝑏 + 𝜆𝐴
∗ ) + 𝛾                                                                                    (𝑆8𝑒) 

The selection gradient, 𝑠(𝛽𝐽) =
𝑑𝑤

𝑑𝛽𝐽𝑚
|
𝛽𝐽𝑚=𝛽𝐽

, is therefore: 

𝑠(𝛽𝐽) =
𝑔(𝛽𝐽)

𝐵𝐽𝐶
{
𝑑𝑎

𝑑𝛽𝐽
𝐴𝐽 + 𝑑𝜆𝐴

∗ (𝑎(𝛽𝐽) − 𝑞𝑁
∗) (

𝐴𝐽𝐷

𝐵𝐽
− 𝐸)} +

𝑑𝑔

𝑑𝛽𝐽

(𝑎(𝛽𝐽) − 𝑞𝑁
∗)𝐴𝐽

𝐵𝐽𝐶
          (𝑆9) 

and 𝛽𝐽
∗ is a singular strategy if (𝛽𝐽

∗) = 0. A singular strategy is evolutionarily stable if: 

𝐸𝑆(𝛽𝐽
∗) =

𝑑2𝑤

𝑑𝛽𝐽𝑚
2 |

𝛽𝐽𝑚=𝛽𝐽
∗

< 0                                                (𝑆10) 

S3. EVOLUTIONARY SIMULATIONS 

The above method assumes that mutations are rare (a complete separation of ecological and 

evolutionary timescales) that mutations have very small phenotypic effects. We relax these 

assumptions in our simulations, which allow mutations of larger size to occur when the system has 

yet to reach its dynamical attractor (source code available in the online Supplementary Material). 

Starting with a single resident trait, 𝛽𝐽, we solve the ODE system for a given time period [0, 𝑇] (𝑇 =

 500), then introduce a mutant, 𝛽𝐽𝑚 = 𝛽𝐽 ± 𝜖1 (mutation size 𝜖1 = (𝑑 − 1)/50), at low frequency. 

We then rerun the ODE solver over the period [𝑇, 2𝑇] and remove any strains that have fallen below 

a frequency of 𝜖2 = 10
−5. If more than one trait is still present in the population, then the next 
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mutant is chosen based on a weighted probability of the trait frequencies. The process is repeated 

for n = 5000 iterations.  
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Figure S1 - Qualitative outcomes for the evolution of elevated juvenile susceptibility when disease 

transmission is frequency-dependent. In (A) there is a trade-off between juvenile susceptibility and 

adult fecundity (equation 1a) and in (B) the trade-off occurs with the maturation rate. The outcomes 

are as described in Fig. 1, with the addition of a repeller and a continuously stable strategy (RE+CSS). 

𝛽𝐴 is calibrated to match the initial age- and disease-structure of the population when transmission 

is density-dependent. Remaining parameters as described in Fig. 1. 

 


