Supplementary material: A unified stochastic modelling framework for the spread of nosocomial infections

Martín López-García¹^{*}, Theodore Kypraios²

¹ School of Mathematics, University of Leeds, LS2 9JT Leeds, UK ² School of Mathematical Sciences, University of Nottingham, NG7 2RD Nottingham, UK

Abstract

In this Supplementary Material, we discuss about how systems of equations in Ref. [1] can be represented in matrix form and iteratively solved. Moreover, we report here parameter values considered in case studies 1-5 in Ref. [1], obtained from Refs. [2, 3, 4, 5, 6], and summarise in Table S6 the function rates $\lambda_j(i_1,\ldots,i_M)$, $\mu_j(i_1,\ldots,i_M)$ and $\delta(i_1,\ldots,i_M)$ for these case studies.

1 Matrix-oriented solutions

² 1.1 Number of infections caused by an individual at compartment j until he/she is removed or the outbreak is detected

⁵ The objective here is to compute probabilities

$$
\nu_{(i_1,\ldots,i_M)}^{(j)}(n) = \mathbb{P}(R_{(i_1,\ldots,i_M)}^{(j)} = n), \quad n \ge 0,
$$

by solving the systems of equations given by $[1, Eq. (2.3)].$

We can rewrite this system into a matrix equation of the ⁸ form

$$
\mathbf{D}^{(j)}\boldsymbol{\nu}^{(j)}(n) = \mathbf{e}^{(j)}(n), \tag{1}
$$

where matrix $\mathbf{D}^{(j)}$ is independent of the value $n \geq 0$, while column vectors $v^{(j)}(n)$ and $e^{(j)}(n)$ depend on this value. In particular,

$$
(\mathbf{D}^{(j)})_{(i_1,\ldots,i_M),(i_1,\ldots,i_k-1,\ldots,i_M)} = \frac{1}{\theta_{(i_1,\ldots,i_M)}} \mu_k (i_k 1_{k \neq j}
$$

+ $(i_k - 1)1_{k=j}), \quad 1 \leq k \leq M,$

$$
(\mathbf{D}^{(j)})_{(i_1,\ldots,i_M),(i_1,\ldots,i_k+1,\ldots,i_M)} = \frac{1}{\theta_{(i_1,\ldots,i_M)}} \left(\lambda_k + \sum_{l=1,\ l \neq j}^M \lambda_{lk} i_l + (i_j - 1)\lambda_{jk}\right) (N_k - i_k), \quad 1 \leq k \leq M,
$$

$$
(\mathbf{e}^{(j)}(n))_{(i_1,\ldots,i_M)} = \frac{1}{\theta_{(i_1,\ldots,i_M)}} \left(1_{n>0} \sum_{k=1}^M (N_k - i_k) \lambda_{jk}\right)
$$

$$
\times \nu_{(i_1,\ldots,i_k+1,\ldots,i_M)}^{(j)} (n-1) + 1_{n=0} (\mu_j + \delta(i_1,\ldots,i_M))\right).
$$

Dimensionality of system in Eq. (1) is not $\#\mathcal{C}$ = ¹⁰ $\prod_{k=1}^{M} (N_k + 1)$, but $N_j \prod_{k=1, k \neq j}^{M} (N_k + 1)$, since probabilities $\nu_{(i)}^{(j)}$ $\psi_{(i_1,\ldots,i_M)}^{(j)}(n)$ are only defined for states $(i_1,\ldots,i_M) \in \mathcal{C}$ with $i_j > 0$. Moreover, we are storing in Eq. (1) probabilities $\nu_{(i)}^{(j)}$ $\binom{1}{i_1,\ldots,i_M}(n)$ in the column vector 13

$$
\boldsymbol{\nu}^{(j)}(n) = \begin{pmatrix} \nu^{(j)}_{(0,0,\ldots,0,0)}(n) \\ \nu^{(j)}_{(0,0,\ldots,0,1)}(n) \\ \nu^{(j)}_{(0,0,\ldots,0,2)}(n) \\ \vdots \\ \nu^{(j)}_{(0,0,\ldots,0,N_M)}(n) \\ \nu^{(j)}_{(0,0,\ldots,1,0)}(n) \\ \nu^{(j)}_{(0,0,\ldots,1,1)}(n) \\ \nu^{(j)}_{(0,0,\ldots,1,2)}(n) \\ \vdots \\ \nu^{(j)}_{(N_1,N_2,\ldots,N_{M-1},N_M)}(n) \end{pmatrix}
$$

,

so that each row in this matrix system represents a state $_{14}$ $(i_1, \ldots, i_M) \in \mathcal{C}$, with $i_j > 0$. Due to the lexicographic order followed above when ordering these states ¹⁶ by rows, each state (i_1, \ldots, i_M) with $i_j > 0$ corresponds 17 to the $\sum_{k=1}^{M} (1_{k\neq j} i_k + 1_{k=j} (i_j-1)) \prod_{p=k+1}^{M} (1_{p\neq j} (N_p+1) +$ $(1_{p=j}N_p)^{th}$ row (*i.e.*, equation) in Eq. (1). Finally, since 19 matrix $\mathbf{D}^{(j)}$ is significantly sparse, for numerical results in 20 $[1, Section 3]$ we solve this system of linear equations by 21 using the *scipy.sparse.linalg* Python package. This involves $_{22}$ solving Eq. (1) for $n = 0$, and then iteratively solving it for 23 values $n \geq 1$ using probabilities $\nu_{(i)}^{(j)}$ $\binom{(J)}{(i_1,\ldots,i_M)}(n-1)$, which are 24 stored in column vector $v^{(j)}(n-1)$ previously computed. 25

[∗]Author for correspondence (m.lopezgarcia@leeds.ac.uk)

²⁶ 1.2 Number of infections caused by an 27 individual at compartment j, among 28 individuals at compartment k, until \hbar he/she is removed or the outbreak is ³⁰ detected

³¹ The objective here is to compute probabilities

$$
\nu_{(i_1,\ldots,i_M)}^{(j)}(k;n) \quad = \quad \mathbb{P}(R_{(i_1,\ldots,i_M)}^{(j)}(k)=n), \quad n \ge 0,
$$

 32 by solving the systems of equations given by [1, Eq. (2.2)]. ³³ Again, we can construct and iteratively solve matrix sys-

³⁴ tems of the form

$$
{\bf D}^{(j)}(k){\boldsymbol \nu}^{(j)}(k;n) \;\; = \;\; {\bf e}^{(j)}(k;n),
$$

where

$$
(\mathbf{D}^{(j)}(k))_{(i_1,...,i_M),(i_1,...,i_l-1,...,i_M)} = \frac{1}{\theta_{(i_1,...,i_M)}} \mu_l (i_l 1_{l \neq j}
$$

+ $(i_l - 1)1_{l=j}), \quad 1 \leq l \leq M,$

$$
(\mathbf{D}^{(j)}(k))_{(i_1,...,i_M),(i_1,...,i_l+1,...,i_M)} = \frac{1}{\theta_{(i_1,...,i_M)}} \left(1_{l \neq k} \left(\lambda_l \right) \right)
$$

+
$$
\sum_{p=1}^{M} \lambda_{pl} i_p (N_l - i_l) + 1_{l=k} (\lambda_l + \sum_{p=1, p \neq j}^{M} \lambda_{pl} i_p
$$

+
$$
\lambda_{jl} (i_j - 1)) (N_l - i_l) , \quad 1 \leq l \leq M,
$$

$$
(\mathbf{e}^{(j)}(k;n))_{(i_1,...,i_M)} = \frac{1}{\theta_{(i_1,...,i_M)}} \left(1_{n>0} (N_k - i_k) \lambda_{jk} \right)
$$

$$
\times \nu_{(i_1,...,i_k+1,...,i_M)}^{(j)} (k; n-1) + 1_{n=0} (\mu_j + \delta(i_1,...,i_M)) \right)
$$

and where probabilities $\nu_{(i)}^{(j)}$ ³⁵ and where probabilities $\nu_{(i_1,...,i_M)}^{(j)}(k;n)$ are stored in the ³⁶ column vectors $\nu^{(j)}(k; n)$, as in subsection 1.1 of this Sup-³⁷ plementary Material.

³⁸ 2 Parameter values for case studies $39 \hspace{1.5cm} 1\text{-}5$

 In Tables S1-S5, we report parameter values considered in case studies 1-5 in Ref. [1], directly obtained from Refs. [2, 3, 4, 5, 6]. In Table S6, we summarise the 43 functional forms of rates $\lambda_j(i_1,\ldots,i_M), \mu_j(i_1,\ldots,i_M)$ and $\delta(i_1,\ldots,i_M)$ for case studies 1-5, according to the cor- responding model assumptions and model parameters de-scribed in Ref. [1].

⁴⁷ References

- $_{48}$ [1] López-García M, Kypraios T (2018) A unified stochas-⁴⁹ tic modelling framework for the spread of nosoco-⁵⁰ mial infections. Journal of the Royal Society Interface ⁵¹ 20180060. http://dx.doi.org/10.1098/rsif.2018.0060.
- 52 [2] Artalejo, JR (2014) On the Markovian approach for ⁵³ modeling the dynamics of nosocomial infections. Acta ⁵⁴ Biotheoretica, 62: 15-34.

	Meaning	Value
N_p	Number of patients	20
N_{HCW}	Number of HCWs	3
μ	Patient discharge rate	0.1
γ	Patient detection rate	0.1
μ^{\prime}	HCW hand-washing rate	14
ß	HCW-to-patient colonization rate	
$\overline{\beta'}$	Patient-to-HCW contamination rate	គី
σ	Fraction of admitted patients colonized	0.01

Table S1: Parameter values from Artalejo (2014) [2], for the spread of MRSA in an hypothetical intensive care unit. Time units: *days*. Case study 1

	Meaning	RICU
N_P	Number of patients	7
N_{HCW}	Number of HCWs	14
N_V	Number of volunteers	\mathfrak{D}
φ	Fraction of admitted patients colonized	0.165
	Length of stay, non-colonized patients	7
$\frac{\frac{1}{\delta_U}}{\frac{1}{\delta_C}}$	Length of stay, colonized patients	13
η	Hygienic level, HCW-patient	0.46
ξ	Hygienic level, volunteer-patient	0.23
β_{PH}	Patient-HCW contact rate	0.72
β_{PV}	Patient-volunteer contact rate	0.20
γ_H	HCW hand-washing rate	24
γ_V	Volunteer hand-washing rate	12

Table S2: Parameter values from Wang et al. (2011) [3], for the spread of MRSA in the Respiratory Intensive Care Unit (RICU) at Beijing Tongren Hospital. Time units: days. Case study 2

	Meaning	Value
N_p	Number of patients	20
N_{s}	Number of HCWs	5
N_e	Number of surfaces	100
ϕ	Fraction of admitted patients colonized	0.1
γ	Discharge rate, non-colonized patients	0.1
γ'	Discharge rate, colonized patients	0.05
μ	Staff decontamination rate	24
κ	Surfaces decontamination rate	1
β_{sp}	Staff-to-patient colonization rate	0.3
β_{se}	Staff-to-surface contamination rate	$\overline{2}$
β_{ps}	Patient-to-staff contamination rate	$\overline{2}$
β_{pe}	Patient-to-surface contamination rate	$\overline{2}$
β_{es}	Surface-to-staff contamination rate	$\overline{2}$
β_{ep}	Surface-to-patient colonization rate	0.3

Table S3: Parameter values from Wolkewitz et al. (2008) [4], for an VRE outbreak in the onco-haematological unit at the University Medical Center Freiburg in Germany. Time units: days. Case study 3

- [3] Wang J, Wang L, Magal P, Wang Y, Zhuo J, Lu X, ⁵⁵ Ruan S (2011) Modelling the transmission dynamics 56 of meticillin-resistant Staphylococcus aureus in Bei- ⁵⁷ jing Tongren hospital. Journal of Hospital Infection, sa 79: 302-308. ⁵⁹
- [4] Wolkewitz M, Dettenkofer M, Bertz H, Schumacher 60

,

				Rate function	
CS	M	$\mu_i(i_1,\ldots,i_M) = \mu_i i_i$		$\lambda_j(i_1,\ldots,i_M)=(N_j-i_j)\left(\lambda_j+\sum\lambda_{kj}i_k\right)$	$\delta(i_1,\ldots,i_M)$
$\mathbf{1}$	2	$\mu_1 = (1 - \sigma)\mu, \mu_2 = \mu'$	$\lambda_1 = \sigma \mu$, $\lambda_2 = 0$	$\lambda_{12} = \beta', \lambda_{21} = \beta$	$\delta(i_1, i_2) = \gamma i_1$
$\overline{2}$	\mathcal{S}	$\mu_1 = \delta_C(1-\varphi), \mu_2 = \gamma_H$	$\lambda_1 = \delta_U \varphi, \lambda_2 = 0$	$\lambda_{12} = \frac{1-\eta}{N_P} \beta_{PH}, \lambda_{13} = \frac{1-\xi}{N_P} \beta_{PV}$	$\delta(i_1, i_2, i_3) = 0$
		$\mu_3 = \gamma_V$	$\lambda_3=0$	$\lambda_{21} = \frac{1-\eta}{N_P} \beta_{PH}, \lambda_{23} = 0$	
				$\lambda_{31}=\frac{1-\xi}{N_P}\beta_{PV},\,\lambda_{32}=0$	
3		3 $\mu_1 = \gamma'(1-\phi), \mu_2 = \mu$	$\lambda_1 = \gamma \phi$, $\lambda_2 = 0$	$\lambda_{12} = \frac{\beta_{ps}}{N_p}, \lambda_{13} = \frac{\beta_{pe}}{N_p}$	$\delta(i_1, i_2, i_3) = 0$
		$\mu_3 = \kappa$	$\lambda_3=0$	$\lambda_{21} = \frac{\beta_{sp}}{N}, \lambda_{23} = \frac{\beta_{se}}{N}$	
				$\lambda_{31} = \frac{\beta_{ep}}{N}, \, \lambda_{32} = \frac{\beta_{es}}{N_{s}}$	
$\overline{4}$	$\overline{4}$	$\mu_i = \nu(1 - p_C), \ 1 \leq j \leq 4 \mid \lambda_i = \nu p_C + \lambda, \ 1 \leq j \leq 4$		$\lambda_{ik} = \beta_{DR}, 1 \leq j \neq k \leq 4$	$\delta(i_1,\ldots,i_4)=0$
				$\lambda_{ij} = \beta_{SR}, 1 \leq j \leq 4$	
5°	11	$\mu_j = \gamma, 1 \leq j \leq 4$	$\lambda_i = 0, 1 \leq j \leq 11$	$\lambda_{51} = \lambda_{15} = \lambda_{62} = \lambda_{26} = \beta_{AP1}$	$\delta(i_1, \ldots, i_{11}) = 0$
		$\mu_i = \mu, 5 \leq j \leq 11$		$\lambda_{73} = \lambda_{37} = \lambda_{84} = \lambda_{48} = \beta_{AP1}$	
				$\lambda_{91}=\lambda_{19}=\lambda_{92}=\lambda_{29}=\beta_{AP2}$	
				$\lambda_{10,3} = \lambda_{3,10} = \lambda_{10,4} = \lambda_{4,10} = \beta_{AP2}$	
				$\lambda_{11,1} = \lambda_{1,11} = \lambda_{11,2} = \lambda_{2,11} = \beta_{Peri}$	
				$\lambda_{11,3} = \lambda_{3,11} = \lambda_{11,4} = \lambda_{4,11} = \beta_{Peri}$	
				For others (j,k) : $\lambda_{jk} = 0$	

Table S6: Functional forms for case studies 1-5 (CS 1-5)

	Meaning	Value
N_p	Number of patients	9
ν	Discharge rate	0.1
p_C	Fraction of admitted patients colonized	0.01
β_{DR}	Cross-colonization rate, different rooms	0.0238
β_{SR}	Cross-colonization rate, same room	0.0366
	Spontaneous colonization rate	0.0037

Table S4: Parameter values from López-García (2016) [5], for an MRSA outbreak in an intensive care unit with four rooms. Parameter values ν and p_C from Artalejo et al. (2014) [2]. Time units: days. Case study 4

	Meaning	Value
β_{AP1}	Patient-AP1 transmission rate	0.35
β_{AP2}	Patient-AP2 transmission rate	0.12
β_{Peri}	Patient-peripatetic transmission rate	0.07
μ	Hand-washing rate for all HCWs	$1 - 24$
	Length of stay for all patients	10

Table S5: Parameter values from Temime et al. (2009) [6], for a bacterial outbreak in an hypothetical intensive-care unit. Time units: days. Case study 5

 M, Huebner J (2008) Environmental contamination as an important route for the transmission of the hospi- tal pathogen VRE: modelling and prediction of classical interventions. Infectious Diseases: Research and Treat-⁶⁵ ment, 1.

- ⁶⁶ [5] López-García M (2016) Stochastic descriptors in an ⁶⁷ SIR epidemic model for heterogeneous individuals in ⁶⁸ small networks. Mathematical Biosciences, 271: 42-61.
- ⁶⁹ [6] Temime L, Opatowski L, Pannet Y, Brun-Buisson C, 70 Boëlle PY, Guillemot D (2009) Peripatetic health-care

workers as potential superspreaders. Proceedings of the $\frac{71}{71}$ National Academy of Sciences, 106: 18420-18425.