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Abstract

In this Supplementary Material, we discuss about how systems of equations in Ref. [1] can be represented in matrix
form and iteratively solved. Moreover, we report here parameter values considered in case studies 1-5 in Ref. [1],
obtained from Refs. [2, 3, 4, 5, 6], and summarise in Table S6 the function rates λj(i1, . . . , iM ), µj(i1, . . . , iM ) and
δ(i1, . . . , iM ) for these case studies.

1 Matrix-oriented solutions1

1.1 Number of infections caused by an in-2

dividual at compartment j until he/she3

is removed or the outbreak is detected4

The objective here is to compute probabilities5

ν
(j)
(i1,...,iM )(n) = P(R(j)

(i1,...,iM ) = n), n ≥ 0,

by solving the systems of equations given by [1, Eq. (2.3)].6

We can rewrite this system into a matrix equation of the7

form8

D(j)ν(j)(n) = e(j)(n), (1)

where matrix D(j) is independent of the value n ≥ 0, while
column vectors ν(j)(n) and e(j)(n) depend on this value. In
particular,

(D(j))(i1,...,iM ),(i1,...,ik−1,...,iM ) =
1

θ(i1,...,iM )
µk (ik1k 6=j

+(ik − 1)1k=j) , 1 ≤ k ≤M,

(D(j))(i1,...,iM ),(i1,...,ik+1,...,iM ) =
1

θ(i1,...,iM )

(
λk

+
M∑

l=1, l 6=j

λlkil + (ij − 1)λjk

)
(Nk − ik), 1 ≤ k ≤M,

(e(j)(n))(i1,...,iM ) =
1

θ(i1,...,iM )

(
1n>0

M∑
k=1

(Nk − ik)λjk

× ν(j)
(i1,...,ik+1,...,iM )(n− 1) + 1n=0(µj + δ(i1, . . . , iM ))

)
.

Dimensionality of system in Eq. (1) is not #C =9 ∏M
k=1(Nk + 1), but Nj

∏M
k=1, k 6=j(Nk + 1), since probabili-10

ties ν(j)
(i1,...,iM )(n) are only defined for states (i1, . . . , iM ) ∈ C11
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with ij > 0. Moreover, we are storing in Eq. (1) probabili- 12

ties ν(j)
(i1,...,iM )(n) in the column vector 13

ν(j)(n) =



ν
(j)
(0,0,...,0,0)(n)

ν
(j)
(0,0,...,0,1)(n)

ν
(j)
(0,0,...,0,2)(n)

...
ν

(j)
(0,0,...,0,NM )(n)

ν
(j)
(0,0,...,1,0)(n)

ν
(j)
(0,0,...,1,1)(n)

ν
(j)
(0,0,...,1,2)(n)

...
ν

(j)
(N1,N2,...,NM−1,NM )(n)



,

so that each row in this matrix system represents a state 14

(i1, . . . , iM ) ∈ C, with ij > 0. Due to the lexico- 15

graphic order followed above when ordering these states 16

by rows, each state (i1, . . . , iM ) with ij > 0 corresponds 17

to the
∑M
k=1(1k 6=jik + 1k=j(ij −1))

∏M
p=k+1(1p 6=j(Np+ 1) + 18

1p=jNp)th row (i.e., equation) in Eq. (1). Finally, since 19

matrix D(j) is significantly sparse, for numerical results in 20

[1, Section 3] we solve this system of linear equations by 21

using the scipy.sparse.linalg Python package. This involves 22

solving Eq. (1) for n = 0, and then iteratively solving it for 23

values n ≥ 1 using probabilities ν(j)
(i1,...,iM )(n−1), which are 24

stored in column vector ν(j)(n− 1) previously computed. 25
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1.2 Number of infections caused by an26

individual at compartment j, among27

individuals at compartment k, until28

he/she is removed or the outbreak is29

detected30

The objective here is to compute probabilities31

ν
(j)
(i1,...,iM )(k;n) = P(R(j)

(i1,...,iM )(k) = n), n ≥ 0,

by solving the systems of equations given by [1, Eq. (2.2)].32

Again, we can construct and iteratively solve matrix sys-33

tems of the form34

D(j)(k)ν(j)(k;n) = e(j)(k;n),

where

(D(j)(k))(i1,...,iM ),(i1,...,il−1,...,iM ) =
1

θ(i1,...,iM )
µl (il1l 6=j

+(il − 1)1l=j) , 1 ≤ l ≤M,

(D(j)(k))(i1,...,iM ),(i1,...,il+1,...,iM ) =
1

θ(i1,...,iM )

(
1l 6=k (λl

+
M∑
p=1

λplip)(Nl − il) + 1l=k(λl +
M∑

p=1, p 6=j

λplip

+λjl(ij − 1)) (Nl − il)
)
, 1 ≤ l ≤M,

(e(j)(k;n))(i1,...,iM ) =
1

θ(i1,...,iM )

(
1n>0(Nk − ik)λjk

× ν(j)
(i1,...,ik+1,...,iM )(k;n− 1) + 1n=0(µj + δ(i1, . . . , iM ))

)
,

and where probabilities ν
(j)
(i1,...,iM )(k;n) are stored in the35

column vectors ν(j)(k;n), as in subsection 1.1 of this Sup-36

plementary Material.37

2 Parameter values for case studies38
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In Tables S1-S5, we report parameter values considered40

in case studies 1-5 in Ref. [1], directly obtained from41

Refs. [2, 3, 4, 5, 6]. In Table S6, we summarise the42

functional forms of rates λj(i1, . . . , iM ), µj(i1, . . . , iM ) and43

δ(i1, . . . , iM ) for case studies 1-5, according to the cor-44

responding model assumptions and model parameters de-45

scribed in Ref. [1].46
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Meaning Value
Np Number of patients 20
NHCW Number of HCWs 3
µ Patient discharge rate 0.1
γ Patient detection rate 0.1
µ′ HCW hand-washing rate 14
β HCW-to-patient colonization rate 1

6

β′ Patient-to-HCW contamination rate 1
6

σ Fraction of admitted patients colonized 0.01

Table S1: Parameter values from Artalejo (2014) [2], for the
spread of MRSA in an hypothetical intensive care unit. Time
units: days. Case study 1

Meaning RICU
NP Number of patients 7
NHCW Number of HCWs 14
NV Number of volunteers 2
ϕ Fraction of admitted patients colonized 0.165
1
δU

Length of stay, non-colonized patients 7
1
δC

Length of stay, colonized patients 13
η Hygienic level, HCW-patient 0.46
ξ Hygienic level, volunteer-patient 0.23
βPH Patient-HCW contact rate 0.72
βPV Patient-volunteer contact rate 0.20
γH HCW hand-washing rate 24
γV Volunteer hand-washing rate 12

Table S2: Parameter values from Wang et al. (2011) [3], for the
spread of MRSA in the Respiratory Intensive Care Unit (RICU)
at Beijing Tongren Hospital. Time units: days. Case study 2

Meaning Value
Np Number of patients 20
Ns Number of HCWs 5
Ne Number of surfaces 100
φ Fraction of admitted patients colonized 0.1
γ Discharge rate, non-colonized patients 0.1
γ′ Discharge rate, colonized patients 0.05
µ Staff decontamination rate 24
κ Surfaces decontamination rate 1
βsp Staff-to-patient colonization rate 0.3
βse Staff-to-surface contamination rate 2
βps Patient-to-staff contamination rate 2
βpe Patient-to-surface contamination rate 2
βes Surface-to-staff contamination rate 2
βep Surface-to-patient colonization rate 0.3

Table S3: Parameter values from Wolkewitz et al. (2008) [4],
for an VRE outbreak in the onco-haematological unit at the
University Medical Center Freiburg in Germany. Time units:
days. Case study 3
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Rate function

CS M µj(i1, . . . , iM ) = µjij λj(i1, . . . , iM ) = (Nj − ij)
(
λj +

M∑
k=1

λkjik

)
δ(i1, . . . , iM )

1 2 µ1 = (1− σ)µ, µ2 = µ′ λ1 = σµ, λ2 = 0 λ12 = β′, λ21 = β δ(i1, i2) = γi1
2 3 µ1 = δC(1− ϕ), µ2 = γH λ1 = δUϕ, λ2 = 0 λ12 = 1−η

NP
βPH , λ13 = 1−ξ

NP
βPV δ(i1, i2, i3) = 0

µ3 = γV λ3 = 0 λ21 = 1−η
NP

βPH , λ23 = 0
λ31 = 1−ξ

NP
βPV , λ32 = 0

3 3 µ1 = γ′(1− φ), µ2 = µ λ1 = γφ, λ2 = 0 λ12 = βps

Np
, λ13 = βpe

Np
δ(i1, i2, i3) = 0

µ3 = κ λ3 = 0 λ21 = βsp

Ns
, λ23 = βse

Ns

λ31 = βep

Ne
, λ32 = βes

Ne

4 4 µj = ν(1− pC), 1 ≤ j ≤ 4 λj = νpC + λ, 1 ≤ j ≤ 4 λjk = βDR, 1 ≤ j 6= k ≤ 4 δ(i1, . . . , i4) = 0
λjj = βSR, 1 ≤ j ≤ 4

5 11 µj = γ, 1 ≤ j ≤ 4 λj = 0, 1 ≤ j ≤ 11 λ51 = λ15 = λ62 = λ26 = βAP1 δ(i1, . . . , i11) = 0
µj = µ, 5 ≤ j ≤ 11 λ73 = λ37 = λ84 = λ48 = βAP1

λ91 = λ19 = λ92 = λ29 = βAP2

λ10,3 = λ3,10 = λ10,4 = λ4,10 = βAP2

λ11,1 = λ1,11 = λ11,2 = λ2,11 = βPeri
λ11,3 = λ3,11 = λ11,4 = λ4,11 = βPeri
For others (j, k): λjk = 0

Table S6: Functional forms for case studies 1-5 (CS 1-5)

Meaning Value
Np Number of patients 9
ν Discharge rate 0.1
pC Fraction of admitted patients colonized 0.01
βDR Cross-colonization rate, different rooms 0.0238
βSR Cross-colonization rate, same room 0.0366
λ Spontaneous colonization rate 0.0037

Table S4: Parameter values from López-Garćıa (2016) [5], for
an MRSA outbreak in an intensive care unit with four rooms.
Parameter values ν and pC from Artalejo et al. (2014) [2]. Time
units: days. Case study 4

Meaning Value
βAP1 Patient-AP1 transmission rate 0.35
βAP2 Patient-AP2 transmission rate 0.12
βPeri Patient-peripatetic transmission rate 0.07
µ Hand-washing rate for all HCWs 1− 24
γ−1 Length of stay for all patients 10

Table S5: Parameter values from Temime et al. (2009) [6], for a
bacterial outbreak in an hypothetical intensive-care unit. Time
units: days. Case study 5

M, Huebner J (2008) Environmental contamination as61

an important route for the transmission of the hospi-62

tal pathogen VRE: modelling and prediction of classical63

interventions. Infectious Diseases: Research and Treat-64

ment, 1.65
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