
Supplementary material:

Estimating the distance to an epidemic threshold

Eamon B. O’Dea Andrew W. Park John M. Drake

June 9, 2018

Interpretation of the distance to the epidemic threshold when η > 0

When there is a small rate at which individuals can be infected from other populations or an environmental
source (0 < η � 1), there is no longer a disease-free equilibrium but the concept of an epidemic threshold is
still relevant. One can see from equation (2.6) that Y ∗ is slightly increased by the addition of η to the force
of infection. When R0 is not too close to 1, Y ∗ can be well-approximated by making a linear approximation
to the square root function starting at the point where its argument is equal to its first term, which yields

Y ∗/N0 ≈ max

(
0,
µ

β
(R0 − 1)− η

β

)
+

η

|β − γ − µ− η(γ + µ)/µ|
(S1)

≈ max

(
0,
µ

β
(R0 − 1)

)
+

η

|β − γ − µ|
. (S2)

Using this approximation, one can see that when R0 � 1, Y ∗/N0 scales with η. When R0 � 1, Y ∗/N0 is
potentially much larger and effectively independent of η. Also, a large epidemic is only possible when R0 � 1.
Therefore, we can still consider R0 = 1 as an epidemic threshold for small η. To clarify that Y ∗/N0 is not
too large when R0 ≈ 1 we need a second approximation. In this case, Y ∗/N0 can be bounded by applying
the triangle inequality to obtain

Y ∗/N0 < max

(
0,
µ

β
(R0 − 1)− η

β

)
+
√
µη/[(γ + µ)β]. (S3)

This bound on Y ∗/N0 scales with
√
η. Accordingly, Y ∗/N0 is intermediate in size to those cases when R0 is

far from 1. Thus, although when η > 0 the model never passes through an epidemic threshold, as R0 passes
through one Y ∗/N0 behaves similarly to the case where the model parameters do pass through a threshold
point (i.e., when η = 0). Thus it is still of interest to establish how close the parameters are to the point of
the epidemic threshold.

Calculation of perturbations that allow for distance estimate

We here describe a specific calculation for finding the values of D with which variable i can provide a distance
estimate. The main step is to find the set of D for which the lag-τ autocorrelation of variable i is within ε
of a reference function having the same rate of decay and frequency of oscillation as the autocorrelation of
the informative eigendirection. The reference function may differ from the autocorrelation function along the
informative eigendirection in its phase angle. We work with the autocorrelation instead of the autocovariance
because the autocorrelation always ranges from one to zero, which makes a single choice of ε correspond to
a comparable error for variables with much different variances. To obtain the reference function, we make
use of the contribution of the autocovariance along the informative eigendirection to the autocovariance of
variable i. If follows from Στ = W Σ̃τW

ᵀ that

σii,τ =

n∑
k=1

n∑
k′=1

wikwik′e
λkτ σ̃kk′ , (S4)
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where n is the dimension of the phase space. If we restrict k and k′ to the indices m and m′ of the informative
eigenvalues we obtain a reference autocovariance

rii,τ =
∑

k∈{m,m′}

∑
k′∈{m,m′}

wikwik′e
λkτ σ̃kk′ . (S5)

rii,τ states what the autocovariance of variable i would be if the contribution of eigendirections that were
not informative to the variance of i were zero. The coefficients wikwik′ in rii,τ can change the value and
phase angle of rii,τ when τ = 0 relative to the autocovariance along the eigendirections, but they preserve
the magnitude of the frequency of oscillation and the rate of decay with τ . We can obtain a reference
autocorrelation function by dividing by the autocovariance with τ = 0, which we denote rii. Therefore, we
can express the problem as finding the matrices D that satisfy

ε ≥ |σii,τ/σii − rii,τ/rii|. (S6)

Note from equations (S4) and (S5) that if n = 2 and the informative eigenvalues are a complex conjugate
pair, then the reference function always equals σii,τ/σii and any covariance matrix D will satisfy equation
(S6). If n > 2 and the informative eigenvalues are a complex conjugate pair, then equation (S6) is quadratic
in some of the elements of D and therefore not trivial to solve. However, if the informative eigenvalue is
real-valued, then equation (S6) is linear in the elements of D. In this case we can restate our problem as

ε ≥ |σii,τ/σii − eλmτ |, (S7)

εσii ≥ |σii,τ − eλmτσii|, (S8)

−εσii ≤ σii,τ − eλmτσii ≤ εσii, (S9)

εσii = σii,τ − eλmτσii, ∀ − ε ≤ ε ≤ ε. (S10)

To make the linear nature of the problem explicit, we introduce the vector ṽ which collects the lower triangle
of D̃ in a column vector. To be more precise, let ṽ` be equal to the element of D̃ corresponding to the `th
member of the lexicographic ordering of the set of index pairs (i, j) of D̃ such that i ≤ j. We may then state
the problem as

εa · ṽ = b · ṽ, ∀ − ε ≤ ε ≤ ε, (S11)

0 = (b− εa) · ṽ, ∀ − ε ≤ ε ≤ ε, (S12)

where we have first used equation (2.14) and d̃ij = d̃ji to write σii,τ in terms of the elements of ṽ. We have
then collected the coefficients of the elements of ṽ on the left and right sides of equation (S10) in the vectors
a and b. We thus obtain equation (S12), which is the equation for a plane in the basis corresponding to the
elements of the lower triangle of D̃. The plane passes through the origin and has a normal vector that is
equal to the vector pointing from εa to b. As ε varies from −ε to ε, the normal vector rotates and the union
of all of the corresponding planes defines the set of all ṽ that satisfy equation (S10). Now let v denote a
column vector that collects elements in the lower left triangle of D, and let M be a change of basis matrix
that satisfies v = M ṽ. The elements of M are determined by the relationship D = WD̃W ᵀ. The region
of space satisfying equation (S10) in the basis corresponding to the lower triangle of D is then given by
0 = (M−ᵀ(b− εa)) · v for all −ε ≤ ε ≤ ε. Thus we have a compact expression for the set of all D for which
the autocorrelation of i may be consistent with that of the reference function at a particular lag. The set of
all such feasible D may be a subset of the D that satisfy equation (S6) because variance-covariance matrices
have additional constraints on their elements.

Of course, if the decay rate of the autocorrelation is what will be used to determine the distance to the
threshold, it is important for the autocorrelation of i to be close to the reference function at multiple lags.
In general, one could find the D that ensures this by calculating the set of suitable D at each of several lags
and finding the intersection of those sets. In the case of a two dimensional system, there is a single lag at
which any deviation in the autocorrelation of variable i from that of the reference function is maximized. To
see this, observe that in this case b has one component that is 0 and two other components which include
the factor |eλ1τ − eλ2τ |. Those factors are the only places that τ enters into the normal vector components.
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Thus τ determines the magnitude of b. This magnitude is proportional to the angles between the vector
pointing from ±εa to b and the vector pointing from ±εa to ∓εa. Those vectors are the normal vectors of
the planes that bound the region in which the autocorrelation is within ε of the reference function. As the
magnitude of b approaches zero, the vectors approach being negatives of each other and almost all possible
D result in an error less than ε. This result is consistent with the intuition that for sufficiently large or small
lags, all exponentially decaying functions of the lag with the same initial value will be close to each other.
As the magnitude of b grows, the boundary plane normal vectors both rotate toward each other and the
region of suitable D contracts into itself. Therefore, to ensure that the autocorrelation of variable i is within
ε of the reference function for all lags, it suffices to find suitable D when |b| is maximal, which corresponds
to τ = (log |λ2| − log |λ1|)/(λ1 − λ2).

Equations for autocorrelations

We can use the analytic approach described in Methods of the main text to more rigorously support the
claim that the distance to the threshold typically may be estimated only from Y when R0 is much less than
1. When R0 � 1, if follows from equations (2.8) and (2.9) that the eigenvalues of F are λ1 = −µ+O(η) and
λ2 = β − γ − µ+O(η). O(η) denotes a term with a coefficient of η which we can expect to be small due to
the fact that we restrict η to be small. We take |λ2| as the distance to the threshold. For the autocorrelation
of X, we obtain

στ,11
σ11

=

∑
ij eλiτ σ̃ij∑
ij σ̃ij

, (S13)

where

σ̃11 =
(β − γ)2d11 + 2(β − γ)βd12 + β2d22 +O(η)

2λ1
,

σ̃12 = σ̃21 =
(γ − β)βd12 − β2d22 +O(η)

λ1 + λ2
,

σ̃22 =
β2d22 +O(η)

2λ2
.

(S14)

For many infectious diseases of humans µ � γ. Therefore when R0 � 1, |λ1| � |λ2|. Further, from equa-
tion (2.9) d11 will by far be the largest element of D for X sufficiently greater than Y . These two conditions
imply that for typical parameter choices, σ̃11 is by far the largest element of Σ̃. Then from equation (S13),
the autocorrelation of X should be close to eλ1τ . For the autocorrelation of Y , by neglecting O(η2) terms we
obtain

στ,22
σ22

=
(γ − β)2eλ2τ σ̃22 +O(η)

(γ − β)2σ̃22 +O(η)
. (S15)

Clearly, for sufficiently small η the autocorrelation of Y will be close to eλ2τ . Thus the value of the decay
rate of the autocorrelation of Y provides an estimate of the distance to the threshold when R0 � 1 and η is
sufficiently small.

Effects of population size on distance estimates

Because the linear noise approximation from which our distance estimates are derived becomes poorer as
population sizes decreases, we examined with simulation how the accuracy of distance estimates declined
with population size. Figure S1 shows that we found the sensitivity of the accuracy to depend on R0. In small
populations, stochastic elimination of the disease occured frequently, which made the autocorrelation function
much different from the prediction made for large populations. Consequently, the distance was consistently
overestimated for populations less than 105 when R0 = 16 (fig. S1). On the other hand, accuracy was similar
across all population sizes when R0 = 0.1. It seems that the Gaussian solution based on large population
sizes can still provide a good approximation to the autocorrelation when the population size is fairly small.
In short, it seems that in some cases our methods may be reliable with data from population sizes as small
as 100.
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Figure S1: The sensitivity of the accuracy of distance estimates to population size depends on R0. The
true value is marked with an ‘x’. One hundred data sets were simulated for each set of parameters and all
estimates obtained for each variable are plotted. Parameters besides the population size are in table 1,with
β set to R0(γ + µ).
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Effects of environmental noise on distance estimates

Although we found that observation of the number infected could provide accurate distance estimates when
the system is subject to intrinsic noise only, figure 2 indicates that deviations from intrinsic noise can change
the situation. Thus we next examined the distance estimates with increasing amounts of environmental noise
in the death rate. As expected, the R0 = 0.1 panel of figure S2 shows that for sufficiently large amounts
environmental noise, the estimates of distance based on Y become inaccurate. However, the amount of
noise required to seriously compromise accuracy is large. Figure S3 shows that environmental noise is slow
to change the decay of the autocorrelation at short lags, and thus the robustness of the accuracy is a
consequence of our distance estimates being sensitive to the rapid decay at short lags. Note that a typical
approach when calculating early warning indicators is to look for trends in the autocorrelation at a single
lag, and for large enough lags trends in such indicators could mistakenly identify increasing noise in the
death rate for an approach to an epidemic threshold. However, we have also noticed that for 20 year time
series the increases in the autocorrelation due to environmental noise are typically below their long-term
expected value (figure S4), which serves to reduce the effect relative to that expected from figure S3 and also
contributes to the robustness of our distance estimates. If the estimated autocorrelations from the 20 year
time series looked like those in figure S3, the estimates based on Y would be much more similar to those
based on X when the standard deviation in the death rate was 1 and the population size was 109.

From the definition of the m terms in equation (2.9), it can be seen that environmental noise in the
death rate increases the covariance of perturbations of X and Y . In contrast, environmental noise in the
force of infection makes that covariance more negative. To more thoroughly examine the effects of deviations
from pure intrinsic noise we also evaluated distance estimates from simulations with environmental noise in
the force of infection. Estimates in He et al. [1] for the standard deviation of such noise from measles case
reports range from 0.038 to 0.096. Estimates from the analysis of polio case reports in Martinez-Bakker et
al. [2] for the standard deviation of noise in the force of infection range from 1.6 · 10−3 to 0.68 (personal
communication with P. Rohani). Figure S5 plots distance to threshold estimates from simulations having
noise levels that bracket these noise parameter estimates. In contrast to the case of noise in the death rate,
distance estimates are not affected by high levels of noise when R0 = 0.1, but they are affected when R0 is
equal to 2 or 16. We inspected the time series in these cases and noticed that the variation in the force of
infection leads to frequent interruption of the regular cycles that characterize the dynamics in the presence
of intrinsic noise. Bretó et al. [3] have noted that environmental noise in the transmission rate can cause
such irregularities. Although one could certainly attempt to adapt the distance estimation procedure to such
dynamics, our goal was simply to describe a basic procedure and identify some of its limitations.

Estimating the rate of change in the distance

Having a method to estimate the distance to the threshold opens up the possibility of estimating whether the
distance to the threshold is changing over time. A simple way to do this is to look at the change in distance
estimates between two windows of a time series. Figure S6 shows some results using this simple approach. As
one might expect from the variance of the distance estimates apparent in figure 3, the estimated changes in
distance were also highly variable (figure S6, bottom). However, the distribution of estimates is dense in the
neighborhood of the true value, and estimates with the wrong sign are relatively infrequent. Thus it seems
one may be able to be much more confident about statements of whether or not the threshold is getting
closer than about estimates of how fast the distance is changing.
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Figure S2: The accuracy of distance estimates is not affected by environmental noise in the death rate
parameter until the variation becomes extreme, which is apparent in the case that R0 = 0.1 and N0 = 109.
The true distance is marked with an ‘×’. Parameter η was fixed to 1/(3

√
107). Other parameters were in

table 1. Parameter β was set to R0(γ + µ). The color of the plotted points indicates the state variable on
which the estimates were based.
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Figure S3: The sensitivity of the autocorrelation of the number infected to environmental noise in the
death rate depends on the lag. Points are estimate of the autocorrelation from a long (1000 year) time
series simulated according to our Markov process model. Lines represent the analytic calculations based on
equation (2.7). Parameter η was fixed to 1/(3

√
107). Other parameters were as in table 1, with β set to

0.1(γ + µ).
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Figure S4: The increase in the autocorrelation with noise in the death rate can be less for 20 year observation
periods than the long term average. Points are estimates of the autocorrelation from a 20 year time series
simulated according to our Markov process model. Lines represent the analytic calculations based on equa-
tion (2.7). The points are much lower than the lines than is the case in figure S3, where the simulations were

much longer. Parameter η was fixed to 1/(3
√

107). Other parameters are in table 1, with β set to 0.1(γ+µ).
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Figure S5: The accuracy of distance estimates is affected by environmental noise in the force of infection
when it is large (here, a standard deviation above 0.01) and there are cycles that it can interrupt (here, R0

of 2 or 16). The true distance is marked with an ‘x’. Parameter η was fixed to 1/(3
√

107). Other parameters
are in table 1. β was set to R0(γ + µ). The color of the plotted points indicates the state variable on which
the estimates were based.
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Figure S6: A series of distance estimates can be used to estimate the change in the distance to the threshold
as it is being approached. (Top) The true distance to the threshold in the model changes over time due
to changes in the transmission rate β. The true distance at a given time is calculated as the informative
eigenvalue of the Jacobian evaluated at the equilibrium based on the transmission rate at that time. (Middle)
Example of data used to estimate the change in distance. A distance estimate was obtained using the data
in each window. (Bottom) The distribution of the estimates of change in distance from 1000 replicates. The
gray line marks the change in the true distance between the middle of the windows. We consider this line to
mark the true value for the estimated change in distance. Simulation parameters are as in table 1.
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