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A Fitting ion channel parameters

A.1 I-V equations

A variety of methods were used to fit permeability constants P for the GHK equations used for
the bond graph model. For some channels, P could be determined algebraically (such as the
Na+ and L-type Ca2+ channels). For others, optimisation was required to reduce error between
the fitted I-V curve IGHK(V ) (see Eq. 2.14) and Luo-Rudy I-V curve ILR(V ). In these cases,
fitting was weighted towards −90 mV ≤ V ≤ −30 mV for IK1, −20 mV ≤ V < 30 mV for IK,
and 0 mV ≤ V ≤ 60 mV for IKp. These regions were chosen based on when those channels
activated. Where applicable, the optimisation problem was carried out by using particle swarm
optimisation [1] followed by a local nonlinear optimiser. The permeabilities from fitting I-V
curves are summarised in Table S1.

Table S1: Permeabilities of the GHK equations used for the bond graph model.

Permeability Value (pL/s)

PNa 9.0602
PK1 1.1200
PK 0.2299
PKp 0.0136
PCaL 28.2471
PKL 0.0222

A.1.1 Sodium current

The permeability was chosen so match the linear equation at the negative of the Nernst potential
[2]:

PNa =
2ḠNa(1 − exp [FENa/(RT )])

[Na+i ] − [Na+e ] exp [FENa/(RT )]

RT

F 2
(S1)

where

ENa =
RT

F
ln

(
[Na+e ]

[Na+i ]

)
(S2)

ḠNa = 2.45 µA/mV (S3)

A.1.2 Time-independent K+ current

PK1 = arg min
P

{ −30∑
V=−90

[IK1,LR(V ) − IK1,GHK(V, P )]
2

}
(S4)

IK1,LR(V ) = ḠK1(V − EK) (S5)

ḠK1 = 1.1505 × 10−4 µA/mV (S6)

EK =
RT

F
ln

(
[K+

e ]

[K+
i ]

)
(S7)

(S8)
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A.1.3 Time-dependent K+ current

PK = arg min
P

{
29∑

V=−20
[IK,LR(V ) − IK,GHK(V, P )]

2

}
(S9)

IK,LR(V ) = ḠK(V − EK,LR) (S10)

ḠK = 4.3259 × 10−5 µA/mV (S11)

EK,LR =
RT

F
ln

(
[K+

e ] + PNa,K[Na+e ]

[K+
i ] + PNa,K[Na+i ]

)
(S12)

PNa,K = 0.01833 (S13)

Note that the Luo and Rudy I-V relationship for the time-dependent K+ current (Eq. S10) is
thermodynamically inconsistent because EK,LR is not the Nernst potential defined in Eq. S7.
As a result, nonzero currents can result at the Nernst potential, where the current should be
zero from thermodynamic constraints. Despite this thermodynamic inconsistency, it is possible
to define IK,GHK(V ), a thermodynamically consistent approximation to the I-V curve in Luo and
Rudy.

A.1.4 Plateau K+ current

PKp = arg min
P

{
60∑
V=0

[IKp,LR(V ) − IKp,GHK(V, P )]
2

}
(S14)

IKp,LR(V ) = ḠKp(V − EK) (S15)

ḠKp = 2.8072 × 10−6 µA/mV (S16)

(S17)

EK same as for the time-independent K+ current.

A.1.5 L-type Ca2+ channel

For the L-type Ca2+ channel, Luo and Rudy [3] use the I-V equation

ICa = PCa
z2F 2V

RT

γCai[Ca2+i ] exp(zFV/RT ) − γCae[Ca2+e ]

exp(zFV/RT ) − 1
(S18)

which resembles the GHK equation, but allows thermodynamic laws to be broken through the
use of different partitioning factors γsi and γso. In the case of the Ca2+ component of the current,
this was resolved by setting both factors to the value of γCao, with little effect on the I-V curve.
Thus the permeabilities of the GHK equations are calculated as follows:

PCaL = PCaL,LRγCae (S19)

PKL = PKL,LRγKe = PKL,LRγKi (S20)

where

PCaL,LR = 8.2836 × 10−8 cm3/s (S21)

PKL,LR = 2.9606 × 10−11 cm3/s (S22)

γCae = 0.341 (S23)

γKe = γKi = 0.75 (S24)
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A.2 Gating transition parameters

The parameters derived for gate transition are summarised in Table S2, with further detail
described below.

Table S2: Gate transition parameters.

Gate α0 (s−1) zf β0 (s−1) zr

m 12516.4361 0.4954 79.9996 −2.4284
h 0.00033539 −4.1892 799.9028 1.2995
j 0.00013079 −4.0381 422.7582 1.4281

K1 1127.3395 0.0336 13544806.3586 3.1153
X 2.2317 0.5192 0.5750 −0.7317
Xi 995.8931 0 172.6026 0.8322
Kp 999.8464 0 3497.4018 −4.4669
d 486.7619 2.1404 98.0239 −2.1404
f See § B.3

A.2.1 m, h, j, K1 and X-gates

A vector quantity p = (α0, zf , β0, zr) was optimised based on the quality of fits to the transition
parameters, steady-state open probability and time constant in the range −120 mV ≤ V ≤
60 mV:

pg = arg min

{
60∑

V=−120
a(V )

(
aα [αg,LR(V ) − αg(V,p)]

2
+ aβ [βg,LR(V ) − βg(V,p)]

2

+agss [gss,LR(V ) − gss(V,p)]
2

+ aτ [τg,LR(V ) − τg(V,p)]
2
)}

(S25)

where g is replaced with m, h, j, K1 or X depending on the gate. a(V ) = 1 and aα = aβ =
agss = aτ = 1 for the m, h and j gates. For the K1 gate, a(V ) = 1, aα = aβ = 0, aτ = 1 and
agss = 1000. For the X gate,

agss = 100, a(V ) =

{
1, V < 0 mV

25, V ≥ 0 mV
(S26)

The parameters αg and βg have unit ms−1 and τg has unit ms. Optimisation was carried out
using particle swarm optimisation followed by a local optimiser.

A.2.2 Xi-gate

To give a perfect fit for Xiss,

α0 = KXi (S27)

β0 = KXie
56.26/32.1 (S28)

zf = 0 (S29)

zr =
RT

F

1000mV/V

32.1mV
= 0.8322 (S30)

To achieve a time constant of less than 1ms in the range −120 mV ≤ V ≤ 60 mV, we chose

KXi = 0.9959 (S31)
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A.2.3 Kp-gate

To give a perfect fit for Kpss,

α0 = KKp (S32)

β0 = KKpe
7.488/5.98 (S33)

zf = 0 (S34)

zr =
RT

F

1000mV/V

5.98mV
= −4.4669 (S35)

To achieve a time constant of less than 1ms in the range −120 mV ≤ V ≤ 60 mV, we chose

KKp = 0.9998 (S36)

A.2.4 d-gate

To give a perfect fit for dss,

α0 = Kde
10/12.48 (S37)

β0 = Kde
−10/12.48 (S38)

zf =
RT

F

1000mV/V

12.48mV
= 2.1404 (S39)

zr = −RT
F

1000mV/V

12.48mV
= −2.1404 (S40)

Kd was chosen to match the peak time constant because that is where changes would be most
likely to make a difference given that the time constant is small:

Kd = 0.2184 (S41)

B Channel-specific modelling issues

B.1 K+ regulation of K+ currents

For the K and K1 channels, Luo and Rudy [3] describe a dependence of the permeability on the
square root of extracellular K+ concentration:

G = Gch

√
[K+]e (S42)

where Gch is a constant value that differs between the two channels. This was incorporated by
assigning an additional extracellular K+ stoichiometry of 0.5 to both sides of the ion transport
reaction, which results in an ion channel current of

v = κ(V )
(
K0.5
Kex

0.5
KeKKixKie

zFV/RT −K1.5
Kex

1.5
Ke

)
(S43)

= κ(V )
√
KKexKe

(
KKixKie

zFV/RT −KKexKe

)
(S44)

B.2 Ca2+ inactivation of L-type Ca2+ current

Luo and Rudy [3] describe a mechanism whereby the L-type Ca2+ channel is inactivated by
intracellular Ca2+, using the function:

fCa =
1

1 + ([Ca2+i ]/Km,Ca)2
(S45)
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This mechanism was incorporated into the bond graph framework through the reaction:

A+ 2Cai 
 I (S46)

with a dissociation constant equal to K2
m,Ca. It can be shown that at equilibrium:

xA
xA + xI

=
1

1 + ([Ca2+i ]/Km,Ca)2
= fCa (S47)

Therefore Ca2+ inactivation was incorporated by applying the reaction in Eq. S46 to each of the
states that result from independent d and f gating, using kinetic constants that were sufficiently
high to approximate rapid equilibrium.

B.3 f-gate of the L-type Ca2+ channel

Luo and Rudy use the equations from Rasmusson et al. [4] for their L-type Ca2+ channel f -gate,
resulting in U-shaped functions for both the steady-state open probability fss and time constant
τf . Using the exponential dependence in Eq. 2.21, fss must have a monotonic and sigmoidal
shape, and τf must either be bell-shaped or monotonic. As neither the fss nor τf could be made
U-shaped with the current formulation, we used an alternative mechanism to describe the f -
gate. We observed that the f -gate activated at both negative and positive voltages, and that the
minima of fss, and τf of the Rasmusson equations appeared to coincide. We modelled the gate

using the reaction network O1
β1−⇀↽−
α1

C
α2−⇀↽−
β2

O2

k−3−−⇀↽−−
k+3

O1 with the final reaction assumed to be at

quasi-equilibrium. The rationale behind using this three-state model was that: (a) there were two
open states, one that activated at negative voltages and one that activated at positive voltages,
and; (b) the inactivation parameters could be chosen such that the gate inactivated faster than
it activated. The initial spike in membrane potential during an action potential implies that the
open probability is unable to change, thus we used a reaction in rapid equilibrium to convert
between the two open states; without this, the gate would need to pass the closed states to move
between the open states.

Similar to the transition parameters in other gates an exponential dependence on voltage was
assumed. Since the mechanism involves a biochemical cycle, a detailed balance constraint was
used to determine parameters for the third reaction between the two open states:

k+3 (V )

k−3 (V )
=
β1(V )α2(V )

α1(V )β2(V )
(S48)

The following information was used to parameterise the f -gate:

1. The difference between the steady-state open probabilities in the Luo-Rudy model (fss) and
bond graph model (fss,BG) over the range −90 mV ≤ V ≤ 50 mV. The open probability of
the bond graph formulation was calculated by rapid equilibrium arguments [5]:

fss,BG =
α1/β1 + α2/β2

1 + α1/β1 + α2/β2
(S49)

Differences were taken between the natural logarithms of each of the open probabilities prior
to calculating differences to better match lower values.

2. Simulations of the f -gate were run with the voltage held constant. The open probabilities
over time were compared to solutions obtained from the Luo-Rudy formulation of the f -gate.
The conditions for the simulations are summarised in Table S3. For computational efficiency,
the third reaction was neglected for the bond graph simulations. All simulations involve either
activation/inactiation processes involving one of the open states. It was assumed that very
little of the of the other open state would become open.
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Table S3: Summary of conditions used to simulate f-gate for fitting parameters. o1,
c and o2 represent the proportion of the three states representing the inactivation process.

# Voltage (mV) Initial conditions Description

1 −80 o1 = 0, c = 1, o2 = 0 Activation at −80 mV
2 −40 o1 = 1, c = 0, o2 = 0 Inactivation at −40 mV
3 −40 o1 = 0, c = 1, o2 = 0 Activation at −40 mV
4 0 o1 = 1, c = 0, o2 = 0 Inactivation at 0 mV from O1

5 0 o1 = 0, c = 0, o2 = 1 Inactivation at 0 mV from O2

6 40 o1 = 0, c = 0, o2 = 1 Inactivation at 40 mV

The transition rates for the f -gate are

α1(V ) = α0,1 exp

(
zf,1FV

RT

)
(S50)

β1(V ) = β0,1 exp

(
zr,1FV

RT

)
(S51)

α2(V ) = α0,2 exp

(
zf,2FV

RT

)
(S52)

β2(V ) = β0,2 exp

(
zr,2FV

RT

)
(S53)

k+3 (V ) = r3K3,0 exp

(
zf,3FV

RT

)
(S54)

k−3 = r3 (S55)

with the constants

α0,1 = 0.8140 s−1, zf,1 = −1.1669 (S56)

β0,1 = 36.1898 s−1, zr,1 = 1.6709 (S57)

α0,2 = 1.6369 s−1, zf,2 = 0.7312 (S58)

β0,2 = 35.5248 s−1, zr,2 = −0.5150 (S59)

r3 = 10000 s−1, K3,0 = 2.0485 (S60)

zf,3 = zr,1 + zf,2 − zf,1 − zr,2 = 4.0839 (S61)

The three-state scheme in the bond graph framework produced a similar curve for fss to the f -gate
of the Luo-Rudy model (Figure S1A). Since there is no direct time constant for our three-state
model we compared the dynamic behaviour of the f -gates by simulating to an action potential-
like voltage waveform (Figure S1B). During the depolarised phase of the action potential where
the f -gate steadily inactivates, the bond graph model provides a very good fit to the Luo and
Rudy model (Figure S1C). In the resting phase the bond graph model reactivates faster, but still
provides a reasonable fit.

C Ion transporters

C.1 Na+/K+ ATPase

We used the 15-state bond graph model described in Pan et al. [6], with a pump density of 4625
µm−2 (0.1178 fmol per cell).
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Figure S1: Fitting the f-gate of the L-type Ca2+ channel. (A) The steady-state open
probability of the f -gate, calculated by adding the proportion of the two open states. (B) The
action potential waveform used to compare the behaviour of the Luo and Rudy (LRd) and bond
graph (BG) formulations of the f -gate. This was obtained by simulating the Luo-Rudy model
with the ion channels used in this study, and holding the ion concentrations constant. (C) The
response of the f -gates to the voltage signal in B.

C.2 Na+-Ca2+ exchanger

The NCX was modelled using the bond graph shown in Figure S2. The reaction scheme was
based on the ping-pong mechanism proposed in Giladi et al. [7], with reactions r1, r2, r4
and r5 modelled by fast rate constants to approximate rapid equilibrium. We assigned voltage
dependence to translocation of Na+, based on experimental findings from Hilgemann et al. [8].

Using similar methods to Luo and Rudy [3], the NCX model was fitted to the following data,
assuming steady-state operation:

1. Dependence of cycling rate on extracellular Na+ and voltage, from Kimura et al. [9].

2. Dependence of cycling rate on extracellular Ca2+, from Kimura et al. [9]. Data obtained at
V < −50 mV and [Ca2+]e = 1 mM were excluded from the fitting process.

3. To incorporate behaviour for another intracellular Ca2+ concentration, data from Beuckel-
mann and Wier [10] were used. Data obtained at V < −120 mV were excluded from the
fitting process.

Parameters of the model were identified using particle swarm optimisation followed by a local
optimiser, and a comparison between the model and data is shown in Figure S3. The model
closely matched the data describing extracellular Na+ dependence (Figure S3A). Reasonable
fits were obtained for the other data, although there was some discrepancy at negative voltages
in Figure S3B. There was some difference between the model and data from Beuckelmann and
Wier [10] (Figure S3C), although this appears to have resulted from differences in the equilibrium
point.

The cycling velocity was normalised to 700 s−1 at the normalisation point of Figure S3A to
approximately match experimental currents at a membrane capacitance of 200 pF and 300 sites
per µm−2. To ensure that the exchanger current had a similar magnitude to that of Luo and
Rudy [3], we used a site density of 170 µm−2 (0.0043 fmol per cell) in our cardiac action potential
model.
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Figure S2: The bond graph model of NCX.
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Figure S3: Fit of NCX model to data. (A) Comparison of model to Fig. 8B of Kimura
et al. [9]. Fluxes were normalised to the value at [Na+]e = 140 mM and V = −110 mV.
[Na+]i = 0 mM, [Ca2+]e = 1 mM, [Ca2+]i = 430 nM. (B) Comparison of model to Fig. 9A of
Kimura et al. [9]. Fluxes were normalised to the value at [Ca2+]e = 4 mM and V = 40 mV.
[Na+]e = 140 mM, [Na+]i = 10 mM, [Ca2+]i = 172 nM. (C) Comparison of model to Fig. 6B
of Beuckelmann and Wier [10]. Fluxes were normalised to the value at V = 60 mV. [Na+]e =
135 mM, [Na+]i = 15 mM, [Ca2+]e = 2 mM, [Ca2+]i = 450 nM.
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D Ca2+ buffering

The model of Ca2+ buffering was based on the equations described in Luo and Rudy [3]. These
equations represent the reactions

TRPN + Ca2+i 
TRPNCa (S62)

CMDN + Ca2+i 
CMDNCa (S63)

with the dissociation constants Kd,TRPN = 0.5 µM and Kd,CMDN = 2.38 µM. The total con-
centrations of each buffer were 70 µM for troponin and 50 µM for calmodulin. The reactions
were modelled using sufficiently fast kinetic constants to approximate rapid equilibrium, and the
amount of Ca2+ bound to each buffer was initialised to the value at equilibrium for the initial
intracellular Ca2+ concentration of 0.12 µM.

E Bond graph parameters

E.1 Calculating bond graph parameters

Bond graph parameters were found by using an extension of the method presented in Gawthrop
et al. [11]. The kinetic parameters and bond graph parameters can be related through the matrix
equation

Ln(k) = MLn(Wλ) (S64)

where

k =

[
k+

k−

]
, M =

[
Inr×nr

NfT

Inr×nr NrT

]
, λ =

[
κ
K

]
(S65)

k+ is a column vector consisting of the forward kinetic constants, k− is a column vector consisting
of the reverse kinetic constants, Nf and Nr are the forward and reverse stoichiometric matrices
respectively, κ is a column vector of bond graph reaction rate constants, and K is column vector
of thermodynamic constants. To account for the volumes of each compartment, W is a diagonal
matrix where the i-th diagonal element is the volume corresponding to i-th bond graph compo-
nent (either a reaction or species). Depending on compartment, the elements corresponding to
each ion were set to either the intracellular volume of Wi = 38 pL or the extracellular volume
of We = 5.182 pL. All other diagonal entries were set to 1. Assuming that detailed balance
constraints are satisfied, a solution to Eq. S64 is

λ0 = W−1Exp(M†Ln(k)) (S66)

where M† is the pseudo-inverse of M. All parameters were identified using T = 310 K.

For reactions involved in ion transport that use the GHK equation, both the forward and reverse
rate constants were set to P/xch, where P is the permeability constant found by fitting to Eq.
2.14, and xch is the total number of channels. The values of xch used for each channel are given
in Table S4. Since the bond graph paramters of the NCX model were fitted to kinetic data, the
bond graph paramters were converted back to kinetic paramters [11] to parameterise the action
potential model.
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Table S4: Amounts of each ion channel per cell. A geometric area of 0.767 × 10−4 cm2

was used to convert between channel density and channels per cell (xch).
*Quantity cited from reference.

Ion channel Channel density (µm−2) Channels per cell Reference

Na 16* 122720 [12]
K1 1.8* 4261 [13]
K 0.7* 5369 [14]
Kp 0.095 725* [15]
LCC 6.5 50000* [16]

F Charge conserved moiety

In Table 1 of the main text, Σ is defined as

Σ = + 3.0818CK1 − 1.6697S00,K − 0.4188S10,K + 0.8322S20,K − 2.5019S01,K

− 1.2509S11,K − 4.4669CKp + 2.1835S000,Na + 5.1073S100,Na + 8.0311S200,Na

+ 10.9549S300,Na − 3.3052S010,Na − 0.3814S110,Na + 2.5424S210,Na + 5.4662S310,Na

− 3.2827S001,Na − 0.3589S101,Na + 2.5649S201,Na + 5.4887S301,Na − 8.7714S011,Na

− 5.8476S111,Na − 2.9238S211,Na − 1.5253S000,LCC − 4.5742S010,LCC − 0.2808S020,LCC

+ 2.7555S100,LCC − 0.2933S110,LCC + 4S120,LCC − 5.5253S001,LCC − 8.5742S011,LCC

− 4.2808S021,LCC − 1.2445S101,LCC − 4.2933S111,LCC + P2NaK + P3NaK + P4NaK

−0.9450P6NaK − 0.9450P7NaK − 0.9450P8NaK − P1NCX + 2P2NCX (S67)
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