
Supplemental Methods 
 
The methods in this GIANT update follow as previously described in the 2015 paper (1), except where 
noted. 

Data download and processing 
 
We collected 1540 genome-scale data sets including 61,400 conditions from an estimated 24,900 
publications. Interaction data were downloaded from BioGRID (2), IntAct (3), MINT (4) and MIPs (5). 
Shared transcription factor regulation was estimated from JASPAR (6) binding motifs. Chemical and 
genetic perturbation (c2:CGP) and microRNA target (c3:MIR) profiles were downloaded from the 
Molecular Signatures Database (MSigDB) (7). All datasets were processed as previously described (1) 
and those methods are reproduced here with updated summary counts: 
 
BioGRID edges were discretized into five bins, labeled 0 to 4, where the bin number reflected the number 
of experiments supporting the interaction. For the remaining databases, edges were discretized into the 
presence or absence of an interaction. 

To estimate shared transcription factor regulation, binding motifs were downloaded from JASPAR. Genes 
were scored for the presence of transcription factor binding sites using the MEME software suite (8). 
FIMO (9) was used to scan for each transcription factor profile within the 1-kb sequence upstream of each 
gene. Motif matches were treated as binary scores (present if P < 0.001). The final score for each gene 
pair was obtained by calculating the Pearson correlation between the motif association vectors for the 
genes. 

Chemical and genetic perturbation (c2:CGP) and microRNA target (c3:MIR) profiles were downloaded 
from the Molecular Signatures Database (MSigDB) (7). Each gene pair's score was the sum of shared 
profiles weighted by the specificity of each profile (1/len(genes)). The resulting scores were converted to z 
scores and discretized into bins ((−infinity, −1.5), [−1.5, −0.5), [–0.5, 0.5), [0.5, 1.5), [1.5, 2.5), [2.5, 3.5), 
[3.5, 4.5), [4.5, infinity)). 

We downloaded all gene expression data sets from NCBI's Gene Expression Omnibus (GEO) (10) and 
collapsed duplicate samples. GEO contains 1533 human data sets. Genes with more than 30% of values 
missing were removed, and remaining missing values were imputed using ten neighbors. Non-log-
transformed data sets were log transformed. Expression measurements were summarized to Entrez 
identifiers, and duplicate identifiers were merged. The Pearson correlation was calculated for each gene 
pair, normalized with Fisher's z transform, mean subtracted and divided by the standard deviation. The 
resulting z scores were discretized into bins ((−infinity, −1.5), [–1.5, −0.5), [–0.5, 0.5), [0.5, 1.5), [1.5, 2.5), 
[2.5, 3.5), [3.5, infinity)). 

 
Hierarchically aware gold standard construction  
 



Functional knowledge extraction. We constructed a tissue-naive functional relationship gold standard 
as described previously but with updated GO annotations (11). We processed experimentally derived 
gene annotations (GO evidence codes: EXP, IDA, IPI, IMP, IGI and IEP) from a set of 618 expert-
selected GO biological process terms. To increase the coverage of functional interactions, we transferred 
experimentally confirmed mouse GO annotations to human functional analogs identified by FKT (12), a 
high-specificity annotation transfer method, for the 592 GO terms with mouse annotations. This resulted 
in a tissue-naive gold standard of 1,393,224 functionally related gene pairs (positive examples) and 
16,281,559 potentially unrelated pairs (negative examples). 
 
Ontology-aware gene-tissue annotations. Gene-to-tissue annotations were derived from GTEx (13) 
and FANTOM5 (14) RNA-seq data. Expression data, in transcripts per million (TPM) units, from both 
resources were quantile normalized to enable cross-sample comparisons. Samples were mapped to 
tissue and cell-type terms in UBERON (15) and Cell Ontology and propagated along a shared hierarchy. 
Genes were assigned to tissues (designated as ‘tissue-expressed’) given the following rules: 

1. A gene was declared in a sample as: 
o ‘ON’ if its TPM ≥ 6 and TPM ≥ gene_median 
o ‘OFF’ if its TPM ≤ 1 and TPM < gene_median 

2. A gene was declared in a tissue as: 
o ‘not-expressed’ if the gene is ‘OFF’ in ≥ 3 samples and ‘ON’ in ≤ 1 sample 
o ‘tissue-expressed’ if ‘ON’ in ≥ 3 samples and ‘not-expressed’ ≥ 2 unrelated tissues (based 

on the tissue/cell-type ontology) 
 
where gene_median is the median TPM of a gene across all samples. 
 
Integration of tissue-specific and functional knowledge. We combined the above gene-to-tissue 
annotations with the tissue-naive functional gold standard to construct a hierarchical tissue-specific 
knowledgebase. We labeled each gene pair (positive or negative) in the tissue-naive functional 
relationship standard as specifically coexpressed in a tissue if both genes were designated as tissue-
expressed (T, T).  
 
After labeling specifically coexpressed gene pairs (edges) across all tissues, we considered four classes 
of edges—C1, C2, C3 and C4—to constitute each tissue standard. 
 
     C1: positive functional edges between genes specifically co-expressed in the tissue [T–T].     

C2: positive functional edges between a gene expressed in the tissue and another specifically 
expressed in an unrelated tissue [T–T′].     

C3: negative functional edges between genes specifically co-expressed in the tissue [T–T].     
C4: negative functional edges between one gene expressed in the tissue and another specifically 

expressed in an unrelated tissue [T–T′]. 
 

Among the four tissue classes, C1 represented tissue-specific functional relationships. To identify 
tissue-specific relationships, we constructed a specific gold standard for each tissue by labeling edges in 
C1 as positives and edges in the other classes as negatives. Because C3 is defined on the basis of 
tissue-expressed genes and C2 and C4 are defined on the basis of non-expressed genes, the number of 
edges in these classes varied across tissues according to how specific (cell type, tissue, organ or 
system), well studied (or easily studied) and well curated (literature bias) they are. To construct 
comparable networks across tissues, we used a negative set composed of equal proportions of edges 
from C2, C3 and C4.  
 



Tissue-specific weighting. We calculated a weight for each C1 edge corresponding to its tissue-
specificity. For every gene represented in FANTOM5 (14) and GTEx (13) (as processed above), we 
calculated tissue expression as the median TPM of the gene across all samples corresponding to the 
tissue. We calculated tissue-specificity as the z-score of a gene’s expression in a tissue (xi) compared to 
its mean (u) and standard deviation expression across all non-related tissues - defined as tissues that do 
not share the same tissue system (e.g. for brain, non-related tissue were all tissues not part of the 
nervous system). 

 

 

For a positive edge with incident genes g1 and g2, cg1g2 is the number of counts the edge will contribute to 
the conditional probability table during the learning phase of the naive bayes classifier. Note that gene 
pairs whose constituent genes are not specifically expressed (both gene z-scores are less than 0) will 
effectively be excluded during learning. 
 
Data Integration. We constructed functional networks from genome-scale data by performing a weighted 
tissue-specific Bayesian integration. We trained one naive Bayesian classifier for each tissue using the 
tissue-specific standards described above, where each positive edge was additionally weighted by the 
tissue-specific expression of the incident genes, as described above. 

In each case, we constructed a class node, i.e., the presence or absence of a functional relationship 
between a pair of genes that is conditioned on nodes for each data set. For large-scale genomics data 
sets, the assumption of conditional independence required for a naive Bayes classifier is often not met, so 
we calculated and corrected for non-biological conditional dependency (12). 

Each tissue model trained on the hierarchy-aware tissue-specific knowledge was used to make genome-
wide predictions by estimating the probability of tissue-specific functional interaction between all pairs of 
genes. We also estimated the probability of global functional interactions for the tissue-naive network. We 
assigned a prior probability of a functional relationship of 0.1 for all models, allowing edge probabilities to 
be compared across tissues. 

Network-based reprioritization of genome-wide association study. 
 
NetWAS was implemented as previously described (1). We trained a support vector machine classifier 
using nominally significant (P < user defined cutoff) genes as positive examples and 10,000 randomly 
selected non-significant (P ≥ user defined cutoff) genes as negatives. The classifier was constructed 
using the chosen tissue network, where the features of the classifier were the edge weights of the labeled 
examples to all the genes in the network. Genes were re-ranked using their distance from the hyperplane. 
 



Bayesian integration and NetWAS analysis was performed with the open-source C++ software, Sleipnir 
Library for Computational Functional Genomics (16), available at: http://libsleipnir.bitbucket.io/ 
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