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S1 A general proof for affine transformation relationship between

two micrographs

Part 1:

Typically, the projection is modeled as an affine or orthogonal projection. A classic orthogonal model is

described as follows: (
u

v

)
= sRγPRβRα


X

Y

Z

+ t, (1)

where (X,Y, Z)T is the spatial location of the ultrastructure or fiducial markers; s is the image scale change,

γ is the inplane rotation angle; α is the pitch angle of the tilt axis of the projection; β is the tilt angle of the

sample; t = (t0, t1)
T is the translation of the view; (u, v)T is the measured projection point; and P denotes

the orthogonal projection matrix. The details of Rα,Rβ ,P and Rγ are defined as follows:

Rα =


1 0 0

0 cosα sinα

0 − sinα cosα

 ,

Rβ =


cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

 ,

P =

(
1 0 0

0 1 0

)
,

Rγ =

(
cos γ sin γ

− sin γ cos γ

)
.

For two arbitrary views (micrographs), we can always construct a single transformation that serves for all

fiducial markers to align the corresponding fiducial marker projections within a limited deviation. We will

first prove a Lemma that theoretically guarantees the upper bound of deviation on any arbitrary fiducial

marker, and then apply this Lemma to prove a Theorem (in the main text) which guarantees the upper

bound over all the fiducial markers.

Lemma: Suppose the pitch angle is fixed during tilt, for any arbitrary fiducial marker (Xj , Yj , Zj)
T and its

arbitrary two projections (denoted as pij and pi′j), there is always a transformation A and t (Eq.(11) and

Eq.(12)) that can be applied to this fiducial marker (p′
ij = Apij + t) to make the deviation ∥∆j∥ = ∥p′

ij −
pi′j∥ 6 si′ | sin∆β

cosα cos βi
(Zj−Zµ)|, where α is the fixed pitch angle; si′ is the scale change of the i

′th micrograph;

βi and βi′ are the tilt angles of the corresponding projections; ∆β = βi′ − βi; and Zµ = 1
N

∑N
j=1 Zj .

Proof The main idea is to construct such a transformation and prove that the deviation of this transfor-

mation is exactly si′ | sin∆β
cosα cos βi

(Zj −Zµ)| as given in the Lemma. Therefore, the optimal transformation will

always be upper bounded by this value.

Firstly, by substituting P,Rβ ,and Rα into Eq.(1), the orthogonal projection can be rewritten as:(
u

v

)
= sRγ

(
cosβ sinα sinβ

0 cosα

)(
X

Y

)
+ sRγ

(
− sinβ cosα

sinα

)
Z +

(
t0

t1

)
, (2)



Now we let {(X,Y, Z)T } be the fiducial markers embedded in the specimen. Considering the jth fiducial

marker (Xj , Yj , Zj)
T (j = 1, 2, ..., N), its projections in the ith and i′th views (pij = (uij , vij)

T and (pi′j =

ui′j , vi′j)
T ) can be written as:(

uij

vij

)
= siRγi

(
cosβi sinαi sinβi

0 cosαi

)(
Xj

Yj

)
+ siRγi

(
− sinβi cosαi

sinαi

)
Zj + ti,

(
ui′j

vi′j

)
= si′Rγi′

(
cosβi′ sinαi′ sinβi′

0 cosαi′

)(
Xj

Yj

)
+ si′Rγi′

(
− sinβi′ cosαi′

sinαi′

)
Zj + ti′ . (3)

Considering a transformation T (·;Aii′j , tii′j) that makes p′
ij = Aii′jpij + tii′j , the deviation between p′

ij

and pi′j can be derived as following:

∆j = p′
ij − pi′j

=

[
Aii′j

[
siRγi

(
cosβi sinαi sinβi

0 cosαi

)(
Xj

Yj

)
+ siRγi

(
− sinβi cosαi

sinαi

)
Zj + ti

]
+ tii′j

]

−
[
si′Rγi′

(
cosβi′ sinαi′ sinβi′

0 cosαi′

)(
Xj

Yj

)
+ si′Rγi′

(
− sinβi′ cosαi′

sinαi′

)
Zj + ti′

]

=

[
Aii′jsiRγi

(
cosβi sinαi sinβi

0 cosαi

)
− si′Rγi′

(
cosβi′ sinαi′ sinβi′

0 cosαi′

)](
Xj

Yj

)

+

[
Aii′jsiRγi

(
− sinβi cosαi

sinαi

)
− si′Rγi′

(
− sinβi′ cosαi′

sinαi′

)]
Zj +Aii′jti + tii′j − ti′ .

We should remember that our aim is to find a transformation to minimize the total deviation of the

corresponding fiducial marker projections in the ith and i′th views, i.e., a single T (·;A, t) that is applied to

{∆j |j = 1, ...N} to minimize
∑N

j=1 ∥∆j∥.
In practice, the specimens always have a relatively small thickness z but large x − y dimensions. For

example, commonly seen values for x and y are 1024, 2048 and 4096, whereas that for z is often 50, 100 and

150. Therefore, we will construct a transformation Aii′j to make ∆j independent of Xj and Yj :

Aii′jsiRγi

(
cosβi sinαi sinβi

0 cosαi

)
− si′Rγi′

(
cosβi′ sinαi′ sinβi′

0 cosαi′

)
= 0, (4)

from which Aii′j can be solved as

Aii′j =
si′

si
Rγi′

(
cosβi′ sinαi′ sinβi′

0 cosαi′

) 1
cos βi

− sinαi sin βi
cosαi cos βi

0 1
cosαi

R−γi . (5)

Furthermore, if we represent Aii′jti + tii′j − ti′ as Tj , i.e.

tii′j = ti′ −Aii′jti +Tj , (6)

the expression of ∆j can be reduced to

∆j =

[
Aii′jsiRγi

(
− sinβi cosαi

sinαi

)
− si′Rγi′

(
− sinβi′ cosαi′

sinαi′

)]
Zj +Tj

= si′Rγi′

( cosβi′ sinαi′ sinβi′

0 cosαi′

) 1
cos βi

− sinαi sin βi
cosαi cos βi

0 1
cosαi

( − sinβi cosαi

sinαi

)
−
(

− sinβi′ cosαi′

sinαi′

)Zj +Tj

= si′Rγi′

(
∆u

∆v

)
Zj +Tj , (7)

in which

∆u = −
cosβi′ sinβi cosαi

cosβi
−

(sinαi)
2 sinβi cosβi′

cosαi cosβi
+

sinαi′ sinβi′ sinαi

cosαi
+ sinβi′ cosαi′ ,

∆v =
cosαi′ sinαi − sinαi′ cosαi

cosαi
=

sin (αi − αi′ )

cosαi
. (8)



Note that the construction of Aii′j and tii′j should all be independent of j. Therefore, for all the fiducial

markers, their Aii′j and tii′j are identical. By further denoting Aii′j as A and denoting tii′j as t (assuming

the freedom parameter Tj are identical for all the j and the value is T), we would come back to our original

problem and our aim becomes to find such T to make the transformation T (·;A, t) minimize
∑N

j=1 ∥∆j∥
for {(X,Y, Z)T }:

COST =
N∑

j=1

∥∆j∥ =
N∑

j=1

∥si′Rγi′

(
∆u

∆v

)
Zj +T∥. (9)

Let w = si′Rγi′ (∆u,∆v)T , and we can find that all the Zj have the coefficient w. By writing T as T = wl,

the cost function is derived as:

COST = ∥w∥
N∑

j=1

∥Zj + l∥ (10)

It becomes a 1-dimensional cluster problem and the optimal solution is l = −Zµ = − 1
N

∑N
j=1 Zj . Therefore,

the optimal solution for T (·;A, t) becomes

A =
si′

si
Rγi′

(
cosβi′ sinαi′ sinβi′

0 cosαi′

) 1
cos βi

− sinαi sin βi
cosαi cos βi

0 1
cosαi

R−γi (11)

and

t = ti′ −Ati −wZµ, (12)

where w = si′Rγi′ (∆u,∆v)T , Zµ = 1
N

∑N
j=1 Zj . In most electron tomography systems, the micrographs are

taken with the pitch angle fixed, which means that αi ≈ αi′ . Suppose αi = αi′ = α, and let βi′ − βi = ∆β,

∆u and ∆v can be rewritten as:

∆u =
sinα2

cosα
·
(
sinβi′ · cosβi − cosβi′ · sinβi

cosβi

)
(13)

+
cosα2

cosα
·
(
sinβi′ · cosβi − cosβi′ · sinβi

cosβi

)
=

sinα2 + cosα2

cosα
·
(
sin (βi′ − βi)

cosβi

)
=

sin∆β

cosα · cosβi
,

∆v =
sin (α− α)

cosα
= 0.

The deviation ∆j can be denoted as

∆j = si′Rγi′

 sin∆β
cosα cos βi

0

 (Zj − Zµ). (14)

By calculating the norm of ∥∆j∥, we have ∥∆j∥ = si′∥Rγi′∥|
sin∆β

cosα cos βi
(Zj−Zµ)| = si′ | sin∆β

cosα cos βi
(Zj−Zµ)|.

Since the transformation we constructed in Eq.(11) and Eq.(12) always exists, and is just one of all the pos-

sible transformations, the deviation of the optimal transformation will thus always be upper bounded by

si′ | sin∆β
cosα cos βi

(Zj − Zµ)|.

Part 2:

A more general case is to consider the geometric model, in which the pitch angle and offset are both

considered (Eq.(1) only considers the pitch angle, which implicitly assumes that the tomogram is flat and

horizontal to the x-y plane). Fig. S1 illustrates an example of geometric parameters. The introduction of

tilt angle offset (φ) will enlarge the deviation of Zj − Zµ. If we take the tilt angle offset into consideration,

we will not need the horizontal assumption. In this condition, the projection model can be generalized to:



Figure S1: Geometric parameters of the specimen.

(
u

v

)
= sRγPRβRαRφ


X

Y

Z

+ t, (15)

where all the attributes are the sample as in Eq. (1) except for Rφ

Rφ =


cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ

 . (16)

In this case, the projection model can be rewritten as:(
u

v

)
= sRγ

(
cosβ cosφ− cosα sinβ sinφ sinα sinβ

sinα sinφ cosα

)(
X

Y

)
+ sRγ

(
− cosβ sinφ− sinβ cosα cosφ

sinα cosφ

)
Z +

(
t0

t1

)
. (17)

Here we denote

T =

(
cosβ cosφ− cosα sinβ sinφ sinα sinβ

sinα sinφ cosα

)
, (18)

and

V =

(
− cosβ sinφ− sinβ cosα cosφ

sinα cosφ

)
. (19)

Now we let {(X,Y, Z)T } be the fiducial markers embedded in the specimen. Considering the jth fiducial

marker (Xj , Yj , Zj)
T (j = 1, 2, ..., N), its projections in the ith and i′th views (pij = (uij , vij)

T and (pi′j =

ui′j , vi′j)
T ) can be written as:(

uij

vij

)
= siRγiTi

(
Xj

Yj

)
+ siRγiViZj + ti,

(
ui′j

vi′j

)
= si′Rγi′Ti′

(
Xj

Yj

)
+ si′Rγi′Vi′Zj + ti′ . (20)

Just like what we have done in Part 1, we can find such a transformation T (·;Aii′j , tii′j), where

Aii′j =
si′

si
Rγi′Ti′T

−1
i R−γi , tii′j = ti′ −Aii′jti +Tj , (21)

that satisfies p′
ij = Aii′jpij + tii′j and makes

∆j = wZj +Tj ;w = si′Rγi′

(
Ti′T

−1
i Vi −Vi′

)
. (22)



Similarly, since Aii′j and tii′j are all independent of specific fiducial markers, for all the fiducial markers,

they are identical. By further denoting Aii′j as A and denoting tii′j as t (assuming the freedom parameter

Tj for all the markers are identical and the value is T), we can find such T to make the transformation

T (·;A, t) minimize
∑N

j=1 ∥∆j∥ for {(X,Y, Z)T }:

COST =
N∑

j=1

∥∆j∥ =
N∑

j=1

∥wZj +T∥. (23)

Here, the optimal solution is T = −wZµ, Zµ = 1
N

∑N
j=1 Zj .

Now we can find that the offset-considered solution has the same form with that in Part 1, in which the

optimal transformation T (·;A, t) are

A =
si′

si
Rγi′Ti′T

−1
i R−γi ,

t = ti′ −Aii′jti −wZµ, (24)

where w = si′Rγi′

(
Ti′T

−1
i Vi −Vi′

)
, Zµ = 1

N

∑N
j=1 Zj . Here we also assume the pitch angle is stable (i.e.,

αi = αi′). Considering the expression of T and V (Eq.(18) and Eq.(19)) and let βi′ − βi = ∆β, we will have

the algebraic simplified result of

Ti′T
−1
i Vi −Vi′ =

 sin (∆β)
cosα cos βi cos(φ)−sin βi sinφ

0

 . (25)

Consequently, for arbitrary {(Xj , Yj , Zj)
T } and its two projection pij and pi′j , the transformed deviation

∆j can be denoted as

∆j = si′Rγi′

 sin (∆β)
cosα cos βi cos(φ)−sin βi sinφ

0

 (Zj − Zµ). (26)

By calculating the norm of ∥∆j∥, we have

∥∆j∥ 6 si′∥Rγi′∥|
sin∆β

cosα cos βi cosφ−sin βi sinφ (Zj − Zµ)| = si′ | sin∆β
cosα cos βi cosφ−sin βi sinφ (Zj − Zµ)|. If φ = 0, we

will have the same bound in Part 1.

S2 Robustness of the algorithm

We sampled random subsets of markers of different sizes to measure the robustness of the proposed algorithm.

There are two ways to sample the subsets: 1) randomly sample a number of fiducial markers and their

corresponding projections, so that each fiducial marker has a corresponding projection; and 2) randomly

sample a number of fiducial marker projections from each micrograph, which means some markers may not

have corresponding projects.

We conducted our experiments following both ways. The first situation is simple, because all the sampled

fiducial markers have their corresponding projections, which means the dataset is noise-free (we call fiducial

markers that do not have corresponding markers in previous views as outliers). Our theorem guarantees the

small deviation for the noise-free case. Experimental results also support our theory. The proposed method

almost always achieved 100% accuracy in such cases.

The second situation is much more difficult as there are outliers (markers without corresponding ones in

previous views). According to our experiments, if the outlier ratio is controlled between 10% to 20% (e.g.,

if there are 100 fiducial markers in the (i+ 1)th view with 90 of them having corresponding markers in the



ith view, the outlier ratio is 10%), and the fiducial markers are well distributed (not degenerated), there is

almost no influence on the performance of our proposed method.

Even though our method is quite robust with respect to the outlier ratio, it cannot handle the cases where

the outlier ratio is extremely high. Here we give such an example. In our recent work Han et al. (2017),

we tested the random sampling method against several public datasets and achieved very good accuracy.

Those datasets contain about 50-150 fiducial markers. Here we also tested the proposed method on those

datasets. When there are not too many outilers, the proposed method had high accuracy and short runtime.

When there are too many outliers, the proposed method might fail. The main reason for failure is not due

to the missing markers but the introduction of markers that do not appear in previous views. Fig. S2 below

shows such an example, where Fig. S2(a) looks normal but Fig. S2(b) introduces a large number of fiducial

markers that do not appear in Fig. S2(a), which causes the total change of the probability distribution and

thus the failure of the proposed method. How to further improve the robustness of the proposed method is

our ongoing work.

(a) (b)

Figure S2: An example dataset that contains a high number of outliers.
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