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Figure S1. Small RNA loci detection accuracy on DASHR and ENCODE datasets for SPAR and 
other methods (bgrSegmenter, blockbuster). Accuracy of calling miRNA loci is estimated using 
mature miRNA annotations from mirBase as the reference set. For each DASHR and ENCODE 
dataset, accuracy is computed as [ #(correct 5’ start sites) / #(expressed miRNAs) ]. 
 
  



Supplementary Methods 
 
Annotation resources 
 
The annotation information for miRNAs is based on miRBase (v19 for GRCh19/hg19, v21 for 
GRCh38/hg38 and GRCm38/mm10 genomes) (Kozomara & Griffiths-Jones, 2014); snRNA, 
snoRNA, scRNA and rRNA annotations are from UCSC Genome Browser (Tyner et al., 2017) and 
GENCODE (Harrow et al., 2012); tRNA information is based on tRNAdb (Jühling et al., 2009); and 
piRNA annotation for both human and mouse is derived from NCBI (Pruitt, Tatusova, Klimke, & 
Maglott, 2009) piRNA sequences by mapping to reference genomes. The current SPAR 
annotation also includes tRNA fragment (tRF) annotations (Leung et al., 2016) that are created 
based on 5p and 3p 50 nt sequences upstream and downstream of the known tRNA genes as 
well as obtained from tRFdb (Kumar, Mudunuri, Anaya, & Dutta, 2015). Long non-coding RNA 
annotations are obtained from LNCipedia 4.1 (Volders et al., 2015) for human genome and 
NONCODE v5.0  (Zhao et al., 2016) for mouth genome. Annotations for mRNA genes and repeat 
elements are obtained from UCSC Genome Browser (Tyner et al., 2017) (knownGene, kgXref, 
RMSK tables).  
 
SPAR pipeline 
 
The SPAR pipeline involves the following steps: 

1. Call peaks corresponding to smRNA sites (ab initio annotation-free segmentation) 
2. Annotate called peaks by using integrated RNA annotation from DASHR 
3. Construct genome-wide tracks with called peaks and raw read coverage information 
4. Integrate called peaks with DASHR and ENCODE reference expression information 
5. Conservation, genomic location, sequence analyses 

 
 
SPAR peak caller 
The inputs to the algorithm are mapped reads from the small RNA-seq experiment (BAM) or 
genome-wide read coverage profile (BigWig). The parameters are the minimum peak height (10 
reads by default), and the minimum fold change in read depth (2 by default) for detecting peak 
starts. The minimum peak width / read length (15 nts by default) and the maximum peak width 
/ read length (44 nts by default) are other optional parameters that can be used to select the 
desired RNA length range for analysis. 
 
SPAR peak calling algorithm (Leung et al., 2016) identifies peaks with evidence of specific 
processing patterns, i.e. mature RNA products (e.g., low 5p read entropy). To do this, the peak 
calling algorithm scans the genomic sequence and identifies the start of the peak by finding two 
adjacent positions with at least a 2-fold increase in the number of mapped reads. Similarly, the 
corresponding end of the peak is found by looking for adjacent positions with at least a 2-fold 
decrease in the number of mapped reads. Additionally, the detected peaks need to have at 
least 10 reads by default.  



 
After identifying peaks (the mature sncRNA locations), we then quantified the number of reads 
falling within these regions as expression for each sncRNA. The raw expression values provided 
in the SPAR output are weighted by the number of hits as 1/h, where h is the number of places 
that the read has been aligned to. 
 
To enable comparison across tissues, we take into account the library size information for each 
of the sequencing experiments and report the read count in ‘reads per million’ (RPM), since this 
is the most commonly used normalization method to account for differences in library size 
across different experiments (Anders et al., 2013). 
 
Annotation of mature RNA products  
 
The peaks with evidence of specific processing identified in the previous step are overlapped 
with SPAR annotations ((Leung et al., 2016); also see Annotation resources).  
Each peak is assigned to its mature sncRNA product class (mir-3p, mir-5p, etc) or precursor 
sncRNA gene (miRNAprimary, snRNA, snoRNA, etc).  
Annotation algorithm uses hierarchical/prioritized assignment starting from annotated mature 
products (mir-3p, mir-5p, mir-5p3pno, tRFs) and snRNA, snoRNA genes followed by miRNA 
primary genes, piRNAs, and rRNA genes. Remaining un-assigned loci (i.e. loci without any 
overlaps with annotated sncRNA genes or mature products) are classified into un-annotated 
category. 
For all sncRNA loci, SPAR computes multiple features describing 1) processing / cleavage 
patterns; 2) co-localization with non-small RNA genes and other genomic elements such as 
repeat elements, promoters, exons, introns, lncRNA exons, lncRNA introns; and 3) evolutionary 
conservation scores derived from the UCSC phastCons conservation tracks for human and 
mouse(Siepel et al., 2005; Tyner et al., 2017).  
 
Conservation computation The evolutionary conservation scores were derived from the UCSC 
100-way phastCons conservation track (Siepel et al., 2005; Tyner et al., 2017). We computed 
conservation for each sncRNA locus as a mean of per-nucleotide conservation values along the 
locus, !

"
∑ 𝑐%% 	, where 𝑐% is conservation score (phastCons probability) for position i, or 0 if 

missing. The resulting mean conservation score, as well as minimum and maximum per-
nucleotide conservation values along the locus are reported by SPAR for each sncRNA locus.  
 
Specific processing computation For each sncRNA locus, specificity of 5’ RNA cleavage is 
computed as  

(1 − 𝐻+′)	
where 𝐻+. = −∑ 𝑝1 log5 𝑝1/ log5 𝑛+.!818"9: 	 normalized entropy of 5’ reads ends across 𝑛+. 
alternative 5’ positions, and 𝑝1 is proportion of reads with 5’ ends at position 𝑎. Values of (1 −
𝐻+.) closer to 1 are indicative of specific processing/cleavage as opposed to random, non-
specific processing. Additionally, the position of most common 5’ read end among the reads 
mapping to the locus, and relative proportion of the reads with the 5’ end coinciding with that 



position are reported for each sncRNA locus by SPAR. Similarly, 3’ specificity, 3’ most common 
cleavage position, and proportion are computed and reported for each sncRNA locus.  
SPAR evaluation 
We systematically evaluated the accuracy of SPAR in detecting smRNA sites using ENCODE and 
DASHR smRNA-seq datasets. To compute accuracy, we used miRNA loci from mirBase as the 
reference set. We also analyzed the accuracy of the baseline peak detectors (bgrSegmenter 
(Habegger et al., 2011), blockbuster (Langenberger et al., 2009)) on the same data. 
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