Supplementary Data

AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses

Min Huang^{1,||}, Kun Song^{1,||}, Xinyi Liu^{1,||}, Shaoyong Lu^{1,||}, Qiancheng Shen^{1,2}, Renxiao Wang³, Jingze Gao², Yuanyuan Hong², Qian Li², Duan Ni¹, Guoqiang Chen¹, Jianrong Xu⁴, Jian Zhang^{1,2,*}

¹ Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.

² Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.

³ Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

⁴ Department of Pharmacology, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.

Key Words: AlloFinder, allosteric modulator, allosteric mechanism, allosteric metabolites

^{II}The authors wish it to be known that, in their opinion, the first four authors should be regarded as joint First Authors

*To whom correspondence should be addressed: Dr. Jian Zhang, PhD Tel: +86-21-63846590-776922 Fax: +86-21-64154900 E-mail: jian.zhang@sjtu.edu.cn

Materials and Methods

Ligand library construction

Ligand libraries used for virtual screening are provided, particularly for the availability of chemical compounds from commercial sources, including ChEMBL, SPECS, NCI Open Chemical Repository, and for-sale subset from ZINC. These pre-built ligand libraries were generated by the following procedures. First, both drug-like and allo-like filters were performed to rule out molecules with undesired physicochemical and allosteric properties. The drug-like parameters are used as follows: H-bond donors < 5, H-bond acceptors < 10, molecular weight < 650, LogP <5, and rotatable bonds \leq 7. The allo-like parameter is number of rings in the largest ring system = 1 or 2. In addition to the four libraries, Endogenous Ligands from ZINC are also provided without the filters. To guarantee chemical diversity, the molecules for each library were then clustered using the K-medoids algorithm and the Morgan fingerprint with a maximum distance of Tanimoto coefficient of 0.3 in the clusters. The cluster centroids were retained to constitute the diverse ligand library. Afterwards, to obtain the preferred conformation for each compound, the RDKit program and the UFF force field were used to generate up to 50 three-dimensional (3D) conformers for each compound. The conformer with the minimum energy for each compound was put into the ligand library. Finally, the Endogenous Ligands, ChEMBL Diversity, ZINC Diversity, SPECS Diversity, and NCI Diversity library included 10512, 40398, 48713, 10070, and 20302 compounds, respectively.

Ligand library selection for users

ZINC Diversity library contains 48713 diverse compounds, which was constructed from the "for-sale" subset of ZINC (version 15)¹. All compounds in the library are for sale, a quarter of which are available for immediate delivery. In addition, the compounds in the library are annotated with chemical properties and available commercial vendors. Thus it is very convenient for users to obtain any compound to perform experimental validation when using ZINC Diversity for allosteric modulator screening.

Endogenous Ligands library has 10512 diverse endogenous metabolites, which was built from the "endogenous" subset of ZINC (version 15)¹. The library focuses on the curation of primary metabolites observed in humans. Characterizing the potential

allosteric metabolite-protein interactions by screening the library may thus deepen our understanding of the molecular underpinnings for metabolites in feedback modulation of pathways and has profound importance in human health as a consequence of the strong interplay between metabolites and the pathogenesis of various diseases.

ChEMBL Diversity library contains 40398 diverse compounds, which was derived from ChEMBL (version 23)², an open large-scale bioactivity database. Compounds in the library were manually curated from the medicinal chemistry literature. As the result, the biological and pharmaceutical annotations of the compounds are rather rich and full of believable, such as structure-activity relationship, selectivity, and ADMET information. Users may unravel novel allosteric mechanism for these bioactive compounds when using the ChEMBL Diversity library for screening in the AlloFinder server.

SPECS Diversity library has 10070 diverse compounds, which was created from SPECS in-house compound database. SPECS (http://www.specs.net) is world's leading provider of compound management services since 1987. Their chemically diverse in-house collection consists of single synthesized, well-characterized and drug-like small molecules. Users can find novel structures using the library during the allosteric modulator screening.

NCI Diversity library contains 20302 diverse compounds from the Open National Cancer Institute (NCI) database³. Compounds in the library have been evaluated as potential anticancer and anti-HIV agents. The library is recommended for users to screen allosteric modulators on cancer-related and HIV-related targets.

Allosteric site preparation

Allosteric modulator discovery with the AlloFinder server employs the Allosite algorithm to generate all potential allosteric sites using feature-based regression combined with NMA-based perturbation^{4,5}. We built the algorithm in the AlloFinder server and a parameter of ten thousand iterations in pocket detection is used to obtain more accurate pockets throughout a query protein. In addition, other parameters are set by default. Redundant pockets are removed. The scores of both feature-based logistic regression $P_{feature}$ and NMA-based perturbation P_{NMA} are calculated on each pocket, and potential allosteric sites are outputted with $P_{Allosite} > 0.2$ in the server:

 $P_{Allosite} = 0.8 * P_{feature} + 0.2 * P_{NMA}$

Users submit the structure of proteins either with a PDB ID or by uploading PDB-formatted coordinate file. The size of the input structures should not exceed 2000 amino acids, considering normal mode analysis is time-consuming in large systems. The running time is depended on the size and the complexity of the query protein. Normally, a representative procedure of allosteric site preparation for a 500-residues protein will take 20 seconds. After all the computations are completed, a group of potential allosteric sites are well prepared and shown. Users may select one favorable site to start allosteric modulator discovery in the AlloFinder server.

Ligands preparation

To accelerate the large-scale screening of allosteric modulators at a selected allosteric site, we used a pocket-generated pharmacophore model automatically extracted from the allosteric site as a filter to quickly rule out compounds in a library that have no key pharmacophore groups for binding to the site. The pocket-based pharmacophore algorithm was from LigBuilder software developed by us⁶ and transplanted into the AlloFinder server. Compounds in the library filtered through the pharmacophore model (Feature Score of pharmacophore > 0.5) are prepared for allosteric modulator discovery in the AlloFinder server.

Allosteric modulator screening of AlloFinder

An efficient two-step protocol for allosteric modulators screening was designed by the combination of conformational sampling and allosteric scoring procedures in the AlloFinder server. The protocol used the Python programming language (http://www.python.org) to bind two separate steps together into an automatic workflow.

Conformational sampling procedure. The AutoDock Vina algorithm (v1.1.2) was built in the AlloFinder server to generate an ensemble of diverse sampling conformations for each ligand at a predicted allosteric site of query protein as before⁷ and the procedure is briefly described below. Each genetic algorithm (GA) run outputs 10 docked conformations as the result. Since a conformational ensemble is desired, 10 individual GA runs are performed to generate 100 docked conformations for each ligand. The parameters used for each GA are exhaustiveness arg = 7 and energy_range arg = 3. During sampling, all the rotatable single bonds in the ligand are allowed to rotate except those whose rotations do not result in different conformations, such as the ones connecting a terminal -CH3 group. Flexibility in cyclic parts of the

ligand is neglected. The size of the docking box is 30 Å \times 30 Å \times 30 Å, which is centered at the predicted allosteric site. Initial conformations of the ligand are generated randomly in the box. Other miscellaneous parameters are assigned the default values given by the AutoDock Vina algorithm. The protein structure is kept fixed during the sampling.

Allosteric scoring procedure. The conformational ensemble of each ligand generated from the conformational sampling procedure is directly evaluated for binding affinity of the ligand at the site by the Alloscore algorithm (built in the AlloFinder server), which is specifically designed for accurate allosteric modulator-protein interaction evaluation and outperforms other methods in the prediction of allosteric modulator-protein binding affinities⁸. The binding affinity of a given allosteric modulator-protein complex, as expressed in logarithm units (log K_a), is calculated by summing all of six energy terms, with the following resulting functions:

 $pK_d = c_0 + c_1 M_{VDW} + c_2 M_{H-bond} + c_3 M_{RT} + c_4 M_{hydrohobic} + c_5 M_{\Delta VOL} + c_6 M_{\Delta PSAS}$ where M_{VDW}, M_{H-bond} M_{RT}, M_{hydrohobic}, M_{$\Delta VOL}, and M_{<math>\Delta PSAS$} represent the binding energy terms from VDW interaction, hydrogen bond, rotatable bond, hydrophobic interaction, buried molecular volume, and buried polar surface area, respectively. The weight parameters of the Alloscore for M_{VDW}, M_{H-bond} M_{RT}, M_{hydrohobic}, M_{ΔVOL}, and M_{$\Delta PSAS$} used in the AlloFinder platform are set by default. A conformation with the best binding affinity score (or the lowest binding affinity) from the ensemble is chosen as the final "Alloscore Score" for each ligand. All ligands of a library in screening are ranked by the score in descending order and the top 100 docked ligands are outputted in the AlloFinder server.</sub>

Allosterome mapping of AlloFinder

Allosterome analysis contains two items, mapping of the predicted allosteric sites and modulators to the known allosteric sites and modulators, respectively.

Allosteric site mapping. The 3D structure of each predicted allosteric site is aligned to 636 known human allosteric sites by using the APOC algorithm⁹. The parameter "-fa" is set to 0 to perform the alignment of pocket structure only, and the normalized Pocket Similarity score (PS-score) between the predicted allosteric site and each known allosteric site is calculated for ranking. The 20 known allosteric sites that are

most similar with the predicted allosteric site are outputted. Besides, a structural homologous analysis of the predicted allosteric site with human known allosteric sites is performed to reveal evolutionary neighbors. The standard APE algorithm¹⁰ in the AlloFinder server is used for generating phylogenetic tree.

Allosteric modulator mapping. The 2D structure of each predicted allosteric modulator is searched with the 263 endogenous and 70390 exogenous allosteric modulator libraries, respectively, using the MACCS Fingerprint of Open babel Fastsearch algorithm¹¹. For similarity searching, 50 allosteric modulators in each library that are most similar to the predicted allosteric modulator are produced. The physicochemical properties of modulators such as TPSA, logP, and MW are calculated by the Pybel method¹². In addition, the server also aligns the 2D structure of each predicted allosteric modulator with the 17323 allosteric metabolites engaged in pathways/networks annotated in AlloFinder and KEGG database¹³ by using the same searching method. The pathways and networks of the predicted allosteric metabolite or its most similar metabolite are provided, revealing the potential metabolic mechanism engaged in by the modulator.

Protein expression and purification

E. coli cells were grown at 37°C and induced at 25°C with 0.5 mM IPTG. Ni Sepharose 6 Fast Flow (Qiagen) was used to purify STAT3. Lysis buffer: 20 mM Tris, 0.3 M NaCl, 10% glycerol, 20 mM imidazole, β -ME, pH 8.0. Wash buffer: 20 mM Tris, 0.1 M NaCl, 50 mM imidazole, β -ME, pH 8.0. Elution buffer: 20 mM Tris, 0.1 M NaCl, 400 mM imidazole, β -ME, pH 8.0. Gel filtration chromatography was used to purify STAT3 by AKTA explorer. We used PD-10 columns (GE Healthcare) to change the protein buffer to 20 mM HEPES, 0.1 M NaCl, pH 7.5. STAT3 CCD is the construction of STAT3 amino acid from 127 to 320. Mutants of STAT3 CCD (N175G/K177G, Q212A/M213G) and mutants of STAT3 (R595G, K591A/S611G, I634S/Q635G, K591A) are used the same purify assay.

Fluorescence polarization assay

The detailed fluorescence polarization assay was described previously¹⁴. We used the fluorescent probe peptide Ac-pYLPQTV-NH₂ (protected from light) as a negative control and the non-phosphorylated Ac-pYLPQTV-NH₂ peptide as a positive control.

The small compounds were purchased from SPECS library. Varying concentrations of small molecular compounds were prepared in black 96-well round-bottom plates (Corning 3560), and STAT3 protein (0.5 μ M) was incubated with these compounds for 1.5 h on a shaker. Next, the fluorescent tracer was added to the sample wells at 1 nM. The assay buffer contained 10 mM HEPES, 50 mM NaCl, 1 mM EDTA, 0.1% NP-40, and 2 mM DTT. An additional 1.5 h was used for smaller compounds and probes to combine with STAT3 protein. The fluorescence polarization value was measured on a BioTek Plate reader with excitation at 485 nm and emission at 520 nm. Data were processed using GraphPad Prism 5.

Surface plasmon resonance (SPR)

SPR experiments were performed at 25 °C using a Biacore T200 instrument. First, the baseline RU of the chip, when bathed in PBS buffer, was determined. Second, K116 were injected into the flow cell and flowed for 90 s. The association phase showed increasing resonance units (RUs) during the flow of K116. Finally, the flow of K116 was terminated, and PBS buffer flow was initiated for 90 s. The concentration of K116 was tested in twofold dilutions from 25μ M to 0.39μ M. This is known as the dissociation phase. Subsequently, we obtained the exact binding affinity of K116 with STAT3 CCD and mutants. The kinetic parameter K_d for each interaction was determined by globally fitting the experimental data with the Biacore T200 Evaluation Software 4.1 (GE Healthcare).

Cell growth assay

MDA-MB-468 and DU145 cells were plated at equal confluence in 96-well plates and were left either untreated or treated of K116 with concentrations ranging from 1 mM to 0.18 mM continually during the indicated time for 24 h. Cells from individual wells were supplied with 10 μ l of CCK8 for 4 h at 37°C. Absorption was measured on a BioTek Plate reader at 450 nm. Data were processed using GraphPad Prism 5. Graphs represent the total cell numbers at each time interval, and the error bars represent the s.e.m. Half-maximal inhibitory concentrations (IC₅₀) were calculated using GraphPad Prism 5.

Cell apoptosis assay

MDA-MB-468 cells were seeded in 6-well plates at a density of 5×10^5 cells per well and grown with L15 at 37 °C in a humidified incubator without 5% CO₂. Cells were

treated with K116 (1 μ M, 10 μ M, 20 μ M, 30 μ M, and 50 μ M) or 0.1% DMSO for 24 h. Cell morphology was visualized using light microscopy.

Immunoblotting assay

Protein samples were separated using SDS-PAGE and transferred onto a NC membrane. After blockade with 5% nonfat milk, the proteins were analyzed by standard procedures using antibodies to STAT3 (Cell Signaling Technology), phospho-STAT3 (pY705STAT3, Cell Signaling Technology), Src (Cell Signaling Technology), phospho-Src (p-Src, Cell Signaling Technology), Cyclin D1, the anti-apoptotic gene Bcl-xL, and C-Myc. Alternatively, secondary antibodies of peroxidase-labeled mouse-specific or rabbit HRP-specific antibodies were detected.

Fig	ures					
А	Job Submit					
	Job Name Query Protein	ALLOFINDER_EX	AMPLE1	Example 1	Example 2	News 2017.10 AlloFinder V1.01 is released.
	Ligand Library	PDB File Endogeous Ligar Run	Upload File		v	2017.6 Allosterome mapping is optimized. 2016.12 Endogenous ligand & NCI library are added. 2016.5 AlloFinder V1.00 is released.
В	> Job Progres	s				
	[2018-04-14 12:36: [2018-04-14 12:37: Please select site 20%	46] Job: 20180414 05] (1/5): Allosteri 	12343030_87 c site identific	1 Started. Begin a ation finished.	allosteric site hunting.	Next Step Bookmark the Result
	> Job Result		_			
	Site 1 Score: 0.729					
С	Job Result Download predicted	allosteric site(s)	Download p	redicted allo-ligar	nd(s) Download allos	terome
			Proteir	Name	Thyroid hormone	receptor alpha Retinoic acid receptor RXR-alpha
	2-5	S	PDB ID)	3UVV (UniProt ID:	P04625)
		9	Alloste	ric Site Score	0.729	
	- And	2.5	Drug-li Dertur	ike Score	0.647	
		NP.	Volume	e(Å ³)	1006.578	
	2	ب) JSmc	Site Al	losterome Mappii	Site anaylses	based on known allosteric sites
	Rank Structure		MW	AlloScore	Display	Ligand Allosterome Mapping
	1	×	316.2	7.12	Show Ligand	Endogenous Exogenous Ligand analyses based on known allosteric modulators
	2 5~	Ð	302.2	7.04	Show Ligand	Endogenous Exogenous
	3	3	316.2	7	Show Ligand	Endogenous Exogenous

Figure S1. Screenshots of the procedure from Example 1 application of the AlloFinder webserver to the discovery of potential allosteric metabolites of TR:RXR

heterodimers (PDB ID: 3UVV)¹⁵. (A) Input parameters for the screening. (B) Selection of predicted allosteric site "Site 1" for the screening. (C) Job result of the screening as output.

Figure S2. The binding result of 9-cis retinoic acid at the predicted allosteric site in Example 1. Left: The TR (palegreen): RXR (lightpink) heterodimer is represented as surface and cartoon, with the docked 9-cis retinoic acid and site residues shown as stick. Right: The zoom-in version of the binding site of 9-cis retinoic acid. As shown at the site, the 2,6,6-trimethylcyclohexen group of 9-cis retinoic acid is embedded into a hydrophobic subpocket formed by F438^B, V342^B, L345^B, L436^B, and the 3,7-dimethyl group makes hydrophobic contacts with residues A271^B, L326^B, I310^B and F313^B. More importantly, the terminal carboxyl group forms a salt bridge with the side chain of R316^B. All of the atomic interactions together contribute to the high-ranked binding affinity of 9-cis retinoic acid at the predicted allosteric site of TR: RXR.

А	Job Submit					
	Job Name	ALLOFINDER_EX	AMPLE2	Example 1	Example 2	News
	Query Protein	PDB ID	3QEL			2017.10 AlloFinder V1.01 is released.
		PDB File	Upload File			2017.6 Allosterome mapping is optimized.
	Ligand Library	ZINC Diversity			Ŧ	2016.12 Endogenous ligand & NCI library are added
		Run	Reset			2016.5
						AlloFinder V1.00 is released.
В	> Job Progres	S				
	[2018-04-14 13:00:4 [2018-04-14 13:01:0	49] Job: 201804141 08] (1/5): Allosterio	L2582929_77 c site identific	7 Started. Begi ation finished.	n allosteric site hunting.	
	20%					
						> Next Step Bookmark the Result
	> Job Result		/			
Г				_		
	Site 1 Score: 0.647	Site 2 Score: 0.520				
С	> Job Result					
	Download predicted a	allosteric site(s)	Download pre	edicted allo-liga	nd(s) Download alloster	ome
			Protein	Name		
		~	Protein	name	RECEPTOR SUBUNIT GL	UN1 AND GLUN2B IN COMPLEX WITH IFENPRODIL
		and a	PDB ID	ic Cito Coore	3QEL (UniProt ID: Q919	77)
	Contractory		Drug-lik	e Score	0.513	
	5	And the second	Perturba	ation Score	0.092	
	Contraction of the second seco		Volume((Å ³)	1192.993	
		JSmol	Site Allo	osterome Mappi	ng Site anaylses ba	sed on known allosteric sites
	Rank Structure	ı	WW	AlloScore	Display	Ligand Allosterome Mapping
	1 0	Ą	413.3	7.63	Show Ligand	Endogenous Exogenous Ligand analyses based on
	2 20	0	387.3	7.37	Show Ligand	Known allosteric modulators Endogenous Exogenous

Figure S3. Screenshots of the procedure from Example 2 application of the AlloFinder webserver to the discovery of potential allosteric modulators of GluN1b:GluN2B NMDA receptors (PDB ID: 3QEL)¹⁶. (A) Input parameters for the screening. (B) Selection of predicted allosteric site "Site 1" for the screening. (C) Job

result of the screening as output.

Figure S4. The binding result of ifenprodil at the predicted allosteric site in Example 2. Left: The GluN1b (palegreen): GluN2B (lightpink) NMDA receptor is represented as surface and cartoon, with the docked ifenprodil and pocket residues shown as stick. Right: The zoom-in version of the binding site of ifenprodil. According to the result of AlloFinder, two hydrogen bonds are formed between ifenprodil and the side chains of E236^B and Q110^B. In addition, the benzyl group of ifenprodil forms hydrophobic interactions with L135^A and F176^B, and the terminal benzene group creates hydrophobic interactions with Y109^A, F114^B, I82^B, I111^B and P78^B. The rich interactions between ifenprodil and GluN1b: GluN2B explain the better binding affinity at the top 2 of ranked benchmark dataset.

MDA-MB-468

Figure S5. Biological evaluation of K116 against STAT3. (A) Identification of the inhibition of K116 by FP. Ac-pYLPQTV-NH2 as a negative control (peptide). Positive control (CY-252) is non-phosphorylated Ac-YLPQTV-NH2 peptide. (B) The binding affinity of K116 with mutants (N175G/K177G, Q212A/M213G, R595G, K591A/S611G, I634S/Q635G, K591A) of STAT3 by SPR. (C) K116 inhibits the growth of MDA-MB-468 and DU145 cells. (D) Down-regulation of STAT3 target genes (CyclinD1, Bcl-xL, and C-Myc) in MDA-MB-468 and DU145 cells treated with K116 for 24 h. (E) K116 induced MDA-MB-468 cell apoptosis. Cell morphology features were visualized using light microscopy, and increasing Caspase-3 levels were detected after treatment with DMSO or 1 μ M, 10 μ M, 20 μ M, 30 μ M K116 for 24 h. Quantitative analysis of cells from three independent experiments was performed.

Tables

Table S1.	Enrichment factors	(EFs) of known	allosteric mo	odulators for	60 proteins in
the bench	mark by AlloFinder.				

Protoin alass	D rotain(sita) ^a	PDB	Resolution	Number of		EE5	EE20
r Iotenii ciass	Floteni(site)	ID	(Å)	actives	LTI	EF3	EF20
	ABL1	3PYY	1.9	34	20.6	8.2	3.1
	AKT1	3096	2.7	34	29.4	17.1	4.7
	Chk1	3F9N	1.9	35	28.6	18.9	4.9
	CDK2	3PXF	1.8	32	28.1	15.0	4.7
	FAK	4EBW	2.7	5	100.0	20.0	5.0
	GK	3H1V	2.1	26	30.8	10.0	3.3
Kinase	IGF-1R	3LW0	1.8	18	38.9	15.6	4.4
	JAK2	5UT6	1.7	1	0.0	20.0	5.0
	LIMK2	4TPT	2.6	34	29.4	19.4	5.0
	MAPK7	4ZSJ	2.5	1	100.0	20.0	5.0
	MAPK8	302M	2.7	41	22.0	9.8	3.8
	PAK1	4ZLO	2.5	3	66.7	20.0	5.0
	WNK1	5WDY	2.5	3	66.7	13.3	5.0
	CASP6	4NBN	1.8	6	33.3	10.0	3.3
	ClpP	5DL1	3.0	1	0.0	20.0	5.0
	CTSK	4LEG	2.2	1	0.0	0.0	5.0
Protease	IN	4NYF	1.9	48	18.8	8.8	3.6
	KSHV_Pr	3NJQ	2.0	1	100.0	20.0	5.0
	MALT1	4I1R	2.7	1	0.0	20.0	5.0
	Bcy1	30F1	2.2	30	33.3	15.3	4.0
	DAHPS	1KFL	2.8	4	0.0	10.0	2.5
	Ep	1MP3	2.2	21	23.8	8.6	3.6
Transferase	FPPS	3N1V	2.2	50	20.0	12.4	3.5
	GP	3CEH	2.8	1	100.0	20.0	5.0
	UAP	4BQH	1.8	10	60.0	16.0	4.0
	UPPs	4Q9M	2.1	1	100.0	20.0	5.0
	BRR2	5URK	3.0	1	100.0	20.0	5.0
	FBP1	2JJK	2.0	18	33.3	8.9	3.6
	FBP2	3IFA	1.9	16	12.5	8.8	4.1
Hydrolase	GLS	3UO9	2.3	39	17.9	8.7	3.8
	SHP2	5EHP	1.9	2	100.0	20.0	5.0
	Sirt1	5BTR	3.2	1	100.0	20.0	5.0
	Sirt3	4C7B	2.1	5	40.0	16.0	4.0
	IDH1	5DE1	2.3	1	100.0	20.0	5.0
	IDH2	4JA8	1.6	11	63.6	18.2	4.5
Oxidoreductase	NAD-IDH	5GRE	2.7	1	100.0	20.0	5.0
	RNR	1XJF	2.4	7	0.0	5.7	2.9

	MurI(site 1)	2W4I	1.9	1	100.0	20.0	5.0
Isomerase	MurI(site 2)	4B1F	2.1	1	100.0	20.0	5.0
	Ugd	3PJG	2.7	3	33.3	20.0	5.0
	β2AR	5X7D	2.7	1	100.0	20.0	5.0
GPCR	CCR5	4MBS	2.7	24	41.7	18.3	5.0
	mGlu5	ite 1) $2W4I$ 1.9 1 ite 2) $4B1F$ 2.1 1 $3PJG$ 2.7 3 $5X7D$ 2.7 1 $4MBS$ 2.7 24 $4OO9$ 2.6 1 $1W96$ 1.8 32 $4W11$ 1.7 27 t $5C4T$ 1.8 4 $3UVV$ 3.0 1 R $5AFJ$ 2.2 1 B $3QEL$ 2.6 18 $3MKS$ 2.6 1 $4BBG$ 2.8 1 $3LU6$ 2.7 1 $2D60$ 1.7 1 $1te 1$) $2JHR$ 2.8 1 $2VPR$ 2.5 1 $4OYA$ 2.0 9 $3M6F$ 1.9 28 $4NLD$ 2.8 3 $3HO6$ 1.6 2	1	0.0	20.0	5.0	
Linne	ACC	1W96	1.8	32	25.0	8.1	2.7
Ligase	ProRS4WRORγt5C4TR3UVnAChR5AF	4WI1	1.7	27	25.9	14.1	4.8
Nuclear	RORyt	5C4T	1.8	4	100.0	20.0	5.0
receptor	TR	3UVV	3.0	1	100.0	20.0	5.0
	nAChR	5AFJ	2.2	1	100.0	20.0	5.0
Channel	GluN2B	3QEL	2.6	18	16.7	10.0	3.9
Call anala	Cdc4	3MKS	2.6	1	100.0	20.0	5.0
Cell cycle	KSP	ProRS 4WI1 1.7 RORγt 5C4T 1.8 TR 3UVV 3.0 nAChR 5AFJ 2.2 GluN2B 3QEL 2.6 Cdc4 3MKS 2.6 KSP 4BBG 2.8 HAS 3LU6 2.7 HBA 2D60 1.7 Myo(site 1) 2JHR 2.8 Myo(site 2) 3BZ7 2.0	2.8	1	100.0	20.0	5.0
Trease and a set	HAS	3LU6	2.7	1	100.0	20.0	5.0
Transport	HBA	2D60	1.7	1	100.0	20.0	5.0
Matananatain	Myo(site 1)	2JHR	2.8	1	100.0	20.0	5.0
Motor protein	Myo(site 2)	3BZ7	2.0	2.11 100.0 20.0 2.7 3 33.3 20.0 2.7 1 100.0 20.0 2.7 24 41.7 18.3 2.6 1 0.0 20.0 1.8 32 25.0 8.1 1.7 27 25.9 14.1 1.8 4 100.0 20.0 3.0 1 100.0 20.0 2.6 18 16.7 10.0 2.6 18 16.7 10.0 2.6 1 100.0 20.0 2.6 18 16.7 10.0 2.6 1 100.0 20.0 2.6 1 100.0 20.0 2.6 1 100.0 20.0 2.6 1 100.0 20.0 2.7 1 100.0 20.0 2.8 1 100.0 20.0 2.7 1 100.0 20.0 2.8 1 100.0 20.0 2.8 1 100.0 20.0 2.5 1 100.0 20.0 2.5 1 100.0 20.0 2.6 $3.5.7$ 20.0 2.8 $3.5.7$ 20.0 2.8 $3.5.7$ 20.0 2.8 $3.5.7$ 20.0 2.8 $3.5.7$ 20.0 2.8 $3.5.7$ 20.0 2.8 $3.5.7$ 20.0 2.8 $3.5.7$ 20.0 2.8 $3.5.7$ 20.0 2.8	20.0	5.0	
Transcription	T-4D	21/00	2.5	1	100.0	20.0	5.0
Factor	Telk	ZVPK	2.5	1	100.0	20.0	5.0
Lyase	AC	40YA	2.0	9	22.2	8.9	3.9
Cell adhesion	LFA-1	3M6F	1.9	28	35.7	20.0	5.0
Other Proteins	NS5B	4NLD	2.8	3	66.7	20.0	5.0
Other Proteins	TcdA	3HO6	1.6	2	50.0	20.0	5.0

^aAbbreviations: ABL1, Tyrosine-protein kinase ABL1; AKT1, RAC-alpha serine/threonine-protein kinase; Chk1, Serine/threonine-protein kinase Chk1; CDK2, Cyclin-dependent kinase 2; FAK, Focal adhesion kinase 1; GK, Glucokinase; IGF-1R, Insulin-like growth factor 1 receptor; JAK2, Tyrosine-protein kinase JAK2; LIMK2, LIM domain kinase 2; MAPK7, Mitogen-activated protein kinase 7; MAPK8, Mitogen-activated protein kinase 8; PAK1, Serine/threonine-protein kinase PAK 1; WNK1, Serine/threonine-protein kinase WNK1; CASP6, Caspase-6; ClpP, ATP-dependent Clp protease proteolytic subunit; CTSK, Cathepsin K; IN, HIV-1 integrase; KSHV Pr, Capsid scaffolding protein; MALT1, Mucosa-associated lymphoid tissue lymphoma translocation protein 1; Bcv1, cAMP-dependent protein kinase regulatory subunit; DAHPS, Phospho-2-dehydro-3-deoxyheptonate aldolase, Phe-sensitive; Ep, Glucose-1-phosphate thymidylyltransferase; FPPS, Farnesyl pyrophosphate synthase; GP, Glycogen phosphorylase, liver form; UAP, UDP-N-acetylglucosamine pyrophosphorylase; UPPs, Isoprenyl transferase; BRR2, U5 small nuclear ribonucleoprotein 200 kDa helicase; FBP1, Fructose-1,6-bisphosphatase 1; FBP2, Fructose-1,6-bisphosphatase isozyme 2; GLS, Glutaminase kidney isoform, mitochondrial; SHP2, Tyrosine-protein phosphatase non-receptor type 11; Sirt1, NAD-dependent protein deacetylase sirtuin-1; Sirt3, NAD-dependent protein deacetylase sirtuin-3, mitochondrial; IDH1, Isocitrate dehydrogenase [NADP] cytoplasmic; IDH2, Isocitrate dehydrogenase [NADP], mitochondrial; NAD-IDH, Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial; RNR, Ribonucleotide reductase; MurI, Glutamate racemase; Ugd, UDP-glucose 6-dehydrogenase; ACC, Acetyl-CoA carboxylase; ProRS, Proline--tRNA ligase; AC, Adenylate cyclase type 10; β2AR, Beta-2 adrenergic receptor; CCR5, C-C chemokine receptor type 5; mGlu5, Metabotropic glutamate receptor; RORyt, Nuclear receptor ROR-gamma; TR, Thyroid hormone receptor alpha; GluN2B, Glutamate receptor ionotropic, NMDA 2B; nAChR, Neuronal acetylcholine receptor subunit alpha-7; Cdc4, Cell division control protein 4; KSP, Kinesin-like protein KIF11; HAS, Serum albumin; HBA, Hemoglobin subunit beta; Myo, Myosin-2 heavy chain; TetR, Tetracycline repressor protein class H; LFA-1, Integrin alpha-L; NS5B, HCV NS5B polymerase; TcdA, Toxin A.

 ${}^{b}EF(n)$ is the concentration of the known ligands among n% top-scoring hits compared to their concentration throughout the entire library.

Supplementary Table S2: Hit Rate (HR) of known allosteric modulators for 60 proteins in the benchmark by AlloFinder.^a

Protein class	Protein(site)	PDB ID	Resolution	Number of	НВ _р
1 loteni elass	Tiotein(site)	I DD ID	(Å)	actives	IIK
	ABL1	3PYY	1.9	34	0.62
	AKT1	3096	2.7	34	0.94
	Chk1	3F9N	1.9	35	0.97
	CDK2	3PXF	1.8	32	0.94
	FAK	4EBW	2.7	5	1.00
	GK	3H1V	2.1	26	0.65
Kinase	IGF-1R	3LW0	1.8	18	0.89
	JAK2	5UT6	1.7	1	1.00
	LIMK2	4TPT	2.6	34	1.00
	MAPK7	4ZSJ	2.5	1	1.00
	MAPK8	302M	2.7	41	0.76
	PAK1	4ZLO	2.5	3	1.00
	WNK1	5WDY	2.5	3	1.00
	CASP6	4NBN	1.8	6	0.67
	ClpP	5DL1	3.0	1	1.00
Drotoogo	CTSK	4LEG	2.2	1	1.00
Protease	IN	4NYF	1.9	48	0.73
	KSHV Pr	3NJQ	2.0	1	1.00
	MALT1	4I1R	2.7	1	1.00
	Bcy1	30F1	2.2	30	0.80
	DAHPS	1KFL	2.8	4	0.50
	Ep	1MP3	2.2	21	0.71
Transferase	FPPS	3N1V	2.2	50	0.70
Transferase	GP	3CEH	2.8	1	1.00
	UAP	4BQH	1.8	10	0.80
	UPPs	4Q9M	2.1	1	1.00
	BRR2	5URK	3.0	1	1.00
	FBP1	2JJK	2.0	18	0.72
	FBP2	3IFA	1.9	16	0.81
Hydrolase	GLS	3UO9	2.3	39	0.77
-	SHP2	5EHP	1.9	2	1.00
	Sirt1	5BTR	3.2	1	1.00
	Sirt3	4C7B	2.1	5	0.80
	IDH1	5DE1	2.3	1	1.00
Oxidoreducta	IDH2	4JA8	1.6	11	0.91
se	NAD-IDH	5GRE	2.7	1	1.00
	RNR	1XJF	2.4	7	0.57
	MurI(site 1)	2W4I	1.9	1	1.00
Isomerase	MurI(site 2)	4B1F	2.1	1	1.00
	Ugd	3PJG	2.7	3	1.00
	β2AR	5X7D	2.7	1	1.00
GPCR	CCR5	4MBS	2.7	24	1.00
	mGlu5	4009	2.6	1	1.00
	ACC	1W96	1.8	32	0.53
Ligase	ProRS	4WI1	1.7	27	0.96
Nuclear	RORvt	5C4T	1.8	4	1 00
receptor	TR	3UVV	3.0	1	1.00
	nAChR	5AFI	2.2	1	1.00
Channel	GluN2B	3OEL	2.6	18	0.78
	Cdc4	3MKS	2.0	1	1.00
Cell cycle	KSP	4BBG	2.8	1	1.00
		.220	2.0	-	1.00

Transat	HAS	3LU6	2.7	1	1.00
Transport	HBA	2D60	1.7	1	1.00
Matan	Myo(site 1)	2JHR	2.8	1	1.00
Motor protein	Myo(site 2)	3BZ7	2.0	1	1.00
Transcription	TotP	21/DD	2.5	1	1.00
Factor	TetK	2 V F K	2.3	1	1.00
Lyase	AC	40YA	2.0	9	0.78
Cell adhesion	LFA-1	3M6F	1.9	28	1.00
Other	NS5B	4NLD	2.8	3	1.00
Proteins	TcdA	3HO6	1.6	2	1.00

^aAbbreviations of proteins are the same as those in Table S1. ^bHR value represents the ratio of the EF20 (in Table S1) to ideal EF20 (here it is the number of known allosteric modulators) of the ranked benchmark dataset as described before¹⁷.

Supplementary Table S3. Area Under Curve (AUC) values on proteins with ≥ 10 known allosteric modulators in the benchmark by AlloFinder.^a

Protein class	Protein	PDB ID	Resolution (Å)	Number of actives	AUC values ^b
	ABL1	3PYY	1.9	34	0.839
	AKT1	3096	2.7	34	0.979
	Chk1	3F9N	1.9	35	0.987
Vinasa	CDK2	3PXF	1.8	32	0.958
Kinase	GK	3H1V	2.1	26	0.773
	IGF-1R	3LW0	1.8	18	0.946
	LIMK2	4TPT	2.6	34	0.999
	MAPK8	302M	2.7	41	0.853
Protease	IN	4NYF	1.9	48	0.847
	Bcy1	30F1	2.2	30	0.910
T	Ep	1MP3	2.2	21	0.866
Transferase	FPPS	3N1V	2.2	50	0.869
	UAP	4BQH	1.8	10	0.949
	FBP1	2JJK	2.0	18	0.850
Hydrolase	FBP2	3IFA	1.9	16	0.900
	GLS	3UO9	2.3	39	0.877
Oxidoreductase	IDH2	4JA8	1.6	11	0.937
GPCR	CCR5	4MBS	2.7	24	0.992
T	ACC	1W96	1.8	32	0.706
Ligase	ProRS	4WI1	1.7	27	0.957
Channel	GluN2B	3QEL	2.6	18	0.889
Cell adhesion	LFA-1	3M6F	1.9	28	0.999

^aAbbreviations of proteins are the same as those in Table S1.

^bAUC value is the area under an ROC curve for the screening.

Rank	Compound Id ^a	Allosteric metabolites	Molecule Weight (MW)	Alloscore Score ^b
1	ZINC000030731390		316.2	7.12
2	ZINC000012661824	° L'''	302.2	7.04
3	ZINC000030731384	ilder to	316.2	7
4	ZINC000012496833		316.2	6.98
5	ZINC000036766734	, ila (302.2	6.95
6	ZINC000036766734	.ilat	302.2	6.95
7	ZINC000030731379	idad.	318.2	6.91

Supplementary Table S4. The whole 100 ranked allosteric metabolites as the result of Example 1 by AlloFinder.

8	ZINC000001697340		258.2	6.69
9	ZINC000096014710		300.2	6.68
10	ZINC000014685555	int t	328.2	6.68
11	ZINC000012496774	$\langle \cdot , \cdot \rangle$	286.2	6.65
12	ZINC000033943508	° _ ~ ~ \ \ \	300.2	6.62
13	ZINC000012496767		286.2	6.61
14	ZINC000022066345	end of the second se	284.2	6.6
15	ZINC000012953146		284.2	6.58

16	ZINC000004215527	$\langle \cdot , \cdot \rangle$	284.2	6.56
17	ZINC000012496837	"Îlanda de de la companya	316.2	6.56
18	ZINC000012358651	»	300.2	6.55
19	ZINC000014453726	HO	238.1	6.53
20	ZINC000085664079		264.2	6.53
21	ZINC000014453725	HO K	238.1	6.52
22	ZINC000012496764		286.2	6.52
23	ZINC00006030794	**	222.1	6.49

24	ZINC000034206309	°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	300.2	6.48
25	ZINC000015201058	× + + +	222.1	6.47
26	ZINC000003870195	° L	284.2	6.46
27	ZINC000034206308	°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	300.2	6.46
28	ZINC000014493252		222.1	6.4
29	ZINC000014493255		222.1	6.38
30	ZINC000004228262	°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	284.2	6.37
31	ZINC000015048171	T T	252.1	6.36

32	ZINC000013303509	HO-CHCCHC CHC	266.1	6.36
33	ZINC000014724752	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	194.1	6.35
34	ZINC000014724754		194.1	6.34
35	ZINC000085664071		222.1	6.34
36	ZINC000004801872		314.2	6.32
37	ZINC000002015523		258.2	6.32
38	ZINC000085664083		264.2	6.31
39	ZINC00000394327	ix	262.2	6.31

40	ZINC000001319187	i X	262.2	6.3
41	ZINC000095619540		210.1	6.3
42	ZINC000006037475		222.1	6.3
43	ZINC000230080207	,t t	222.1	6.3
44	ZINC000085664074		222.1	6.3
45	ZINC000004096952	°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	282.2	6.3
46	ZINC000014411632		282.1	6.29
47	ZINC000003831417	*	286.2	6.29

48	ZINC000000132915		220.1	6.28
49	ZINC000015657741	ST-CH	232.1	6.28
50	ZINC000013783213		232.1	6.28
51	ZINC000013303571		282.1	6.28
52	ZINC000013303506		266.1	6.28
53	ZINC000012502479		300.2	6.28
54	ZINC000013303512	HO - C - C - C - C - C - C - C - C - C -	266.1	6.26
55	ZINC000140984829	€ ↓ on () () () () () () () () () ()	232.1	6.25

56	ZINC000013377435		218.1	6.25
57	ZINC000013303515	HO	266.1	6.25
58	ZINC000085757038		234.1	6.24
59	ZINC000006030793	**	222.1	6.23
60	ZINC000015201060	r, ↓ ↓ ↓	222.1	6.22
61	ZINC000100778697		220.1	6.22
62	ZINC000013415989	il and the	314.2	6.22
63	ZINC000100778696		220.1	6.21

64	ZINC000085589170		298.2	6.18
65	ZINC000015048177		252.1	6.17
66	ZINC000085925336		194.1	6.16
67	ZINC000014442515		250.1	6.15
68	ZINC000095618230		206.1	6.14
69	ZINC000085848467		236.1	6.13
70	ZINC000085874223	i ft	278.2	6.13
71	ZINC000013303578		282.1	6.12

72	ZINC000038611118	J.X	206.1	6.12
73	ZINC000004578920	i.x	264.2	6.12
74	ZINC000012417829	i.x	264.2	6.1
75	ZINC000013377434		218.1	6.09
76	ZINC000095618231	<u>المرکم</u>	206.1	6.09
77	ZINC000100781957	i,X	264.2	6.09
78	ZINC000100778694		220.1	6.08
79	ZINC000013303627	HO Ore	252.1	6.08

80	ZINC000005766979		194.1	6.08
81	ZINC000033985877		234.1	6.08
82	ZINC000001531537	1	206.1	6.08
83	ZINC000015149987		264.2	6.07
84	ZINC000014724749		194.1	6.07
85	ZINC000003875521	l	206.1	6.07
86	ZINC000002584370	i y	206.1	6.07
87	ZINC000085664116		234.1	6.07

88	ZINC000014724750		194.1	6.06
89	ZINC000140122154	not and the	226.1	6.06
90	ZINC000015207976		232.1	6.06
91	ZINC000085664072		222.1	6.06
92	ZINC000015149979		222.1	6.06
93	ZINC000085664081		264.2	6.06
94	ZINC000004578919	ix	264.2	6.06
95	ZINC000013783212		232.1	6.05

^aCompound ID of each modulator is the same as the ID of the compound in ZINC (version 15). The known allosteric metabolite is highlighted in blue. ^bAlloscore Score is calculated by the Alloscore algorithm (8).

Rank	Compound Id ^a	Allosteric modualtor	Molecule Weight (MW)	Alloscore Score ^b
1	ZINC000012454396	oroj Ç	413.3	7.63
2	ZINC000003484557	w loo	387.3	7.37
3	ZINC000000014551		325.2	7.2
4	ZINC000010460579		380.3	7.15
5	ZINC000001672573	rato	293.2	7.13
6	ZINC000002651813		279.2	7.07
7	ZINC000005515780		321.2	6.97

Supplementary Table S5. The whole 100 ranked allosteric modulators as the result of Example 2 by AlloFinder.

8	ZINC000012907490		269.2	6.95
9	ZINC000000135251		329.6	6.93
10	ZINC000012769146		383.3	6.87
11	ZINC000014755282		382.3	6.83
12	ZINC000002020697		305.2	6.81
13	ZINC000004725584		368.2	6.76
14	ZINC000009987912	302	333.2	6.75
15	ZINC000000142645		337.2	6.7

16	ZINC000009410579		464.3	6.69
17	ZINC000006777537		307.2	6.69
18	ZINC000002696119	Juit	305.2	6.63
19	ZINC000005536045	J.	295.6	6.62
20	ZINC000001446457	0,00	392.3	6.62
21	ZINC000002122938		349.2	6.61
22	ZINC000012810542		363.2	6.6
23	ZINC000006121450		356.2	6.59

24	ZINC000006976394		346.2	6.58
25	ZINC000013669625		352.2	6.58
26	ZINC000014882802	000	401.3	6.57
27	ZINC000012200626	Logo	406.3	6.57
28	ZINC000013154395	X	325.2	6.55
29	ZINC000000599027		350.2	6.54
30	ZINC000005672601		295.2	6.54
31	ZINC000005697782		323.2	6.53

32	ZINC000011861546		275.2	6.51
33	ZINC000008142595		290.2	6.51
34	ZINC000001619789	July .	395.2	6.51
35	ZINC000015045432	207	409.3	6.51
36	ZINC000011753571	00100	378.3	6.49
37	ZINC000002760672	301	372.7	6.49
38	ZINC000000122731		311.2	6.46
39	ZINC000004752027		322.2	6.46

40	ZINC000009035184	and	388.3	6.46
41	ZINC000009497767		287.2	6.46
42	ZINC000013185723		395.3	6.45
43	ZINC000010227811	Sil	355.2	6.44
44	ZINC000003880343		281.2	6.43
45	ZINC000005235524		311.2	6.43
46	ZINC000005102075		347.7	6.42
47	ZINC000014396620	×0	303.2	6.41

48	ZINC000009983384		367.2	6.4
49	ZINC000015063239	to a	397.3	6.38
50	ZINC000013709298		312.2	6.37
51	ZINC000000898765		295.2	6.37
52	ZINC000010775710	otot	352.2	6.37
53	ZINC000008570308		275.2	6.36
54	ZINC000006468367		275.2	6.36
55	ZINC000001083454	A C	368.1	6.36

56	ZINC000005843999		323.2	6.36
57	ZINC000000202023		296.2	6.36
58	ZINC000007115860		324.2	6.35
59	ZINC000004689526		396.3	6.35
60	ZINC000000000681	- Ju	245.2	6.33
61	ZINC000012292520	+30-6	395.2	6.33
62	ZINC000009188298		337.2	6.3
63	ZINC000014746818	als	425.3	6.3

64	ZINC000009547646		379.2	6.3
65	ZINC000006471396	Y	263.2	6.29
66	ZINC000012567989		305.2	6.28
67	ZINC000008415961	200	340.2	6.27
68	ZINC000006175576		283.2	6.26
69	ZINC00000808190		319.2	6.26
70	ZINC000006982754	-8-4	328.2	6.26
71	ZINC000003355892		444.1	6.26

72	ZINC000005079221	-40- 500	371.2	6.26
73	ZINC000001480343		281.6	6.23
74	ZINC000000473873		281.6	6.23
75	ZINC000012034317		290.2	6.22
76	ZINC000008360937	, coniç	324.2	6.22
77	ZINC000012207068		379.2	6.22
78	ZINC000003237214	of Orio	367.3	6.21
79	ZINC000012974265		247.2	6.21

80	ZINC000011817411	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	339.2	6.2
81	ZINC000014992436		341.2	6.2
82	ZINC000002694403		319.2	6.19
83	ZINC000006624264	att by	420.3	6.18
84	ZINC000001844767		253.2	6.17
85	ZINC000002456988		398.2	6.17
86	ZINC000012227333	and a second	365.2	6.16
87	ZINC000007620349		339.2	6.16

88	ZINC000005967438		273.2	6.15
89	ZINC000012588866		385.7	6.15
90	ZINC000003747794	iaq Z	355.2	6.15
91	ZINC000001466537		245.2	6.14
92	ZINC000010113682		338.2	6.14
93	ZINC000005735275		359.7	6.14
94	ZINC000008299601	R C	344.2	6.14
95	ZINC000005160488		354.2	6.14

^aCompound ID of each modulator is the same as the ID of the compound in ZINC (version 15). The known allosteric modulator is highlighted in blue. ^bAlloscore Score is calculated by the Alloscore algorithm (8).

Rank	Compound Id ^a	Allosteric modualtor	Molecule Weight (MW)	Alloscore Score ^b
1	Specs_AT-057_42304490	the second	339.2	5.28
2	Specs_AT-057_42304548	Jest -	295.2	5.25
3	Specs_AP-853_41269897	a a	382.3	5.09
4	Specs_AP-064_41684622	art	306.6	4.85
5	Specs_AR-270_43409614		246.2	4.79
6	Specs_AH-034_11963955		278.2	4.11
7	Specs_AN-329_40275188		252.2	4.1

Supplementary Table S6. The whole 100 ranked allosteric modulators as the result of STAT3 by AlloFinder.

8	Specs_AS-871_43475754		248.2	4.1
9	Specs_AO-476_43250228	oonif	427.3	4.1
10	Specs_AS-871_40340909		298.2	4.1
11	Specs_AS-871_43239534	MAN D	421.7	4.1
12	Specs_AE-848_42278486	TO ELE	288.2	4.09
13	Specs_AK-968_15605076		281.6	4.09
14	Specs_AG-690_40750303	Val pp	369.3	4.09
15	Specs_AK-968_37156099	-Ort-L	264.2	4.09

16	Specs_AI-204_43372123	JAN P	305.2	4.09
17	Specs_AO-476_43417608		346.3	4.09
18	Specs_AT-057_43468141	Joff .	303.2	4.09
19	Specs_AP-185_43377638		211.1	4.09
20	Specs_AS-871_43170215		324.2	4.09
21	Specs_AO-080_43441540		292.6	4.08
22	Specs_AT-057_40822043	-d-fig	369.3	4.08
23	Specs_AS-871_43477158		315.2	4.08

24	Specs_AN-648_15240030	i.J.	268.3	4.08
25	Specs_AN-919_14790018		317.3	4.08
26	Specs_AK-968_10815012		289.2	4.08
27	Specs_AO-081_42298135	offer	373.3	4.07
28	Specs_AP-970_43492187	"	204.1	4.07
29	Specs_AS-871_43475091	9-000	424.3	4.07
30	Specs_AS-871_43478445	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	302.3	4.06
31	Specs_AK-968_15605868		304.2	4.06

32	Specs_AG-205_32458033		380.4	4.06
33	Specs_AH-034_07286049		344.3	4.06
34	Specs_AK-968_37005275	- Ji-J	298	4.06
35	Specs_AK-968_36977127		232.1	4.06
36	Specs_AN-655_15531018		194.1	4.06
37	Specs_AG-205_11957309	J.	260.2	4.06
38	Specs_AG-690_40144611		307.2	4.06
39	Specs_AE-848_34078025		309.2	4.06

40	Specs_AH-487_34187016	CT-	326.2	4.06
41	Specs_AN-329_09187036		264.6	4.06
42	Specs_AE-848_13005012	affi	466.4	4.06
43	Specs_AR-270_43409754		166.1	4.05
44	Specs_AS-871_43476174		264.2	4.05
45	Specs_AN-758_13664004	-	457.3	4.05
46	Specs_AM-900_15050008	-alpo	285.2	4.05
47	Specs_AT-057_41349241	Qt Qt	319.3	4.05

48	Specs_AT-057_42189162		369.2	4.05
49	Specs_AN-988_40679903		401.3	4.05
50	Specs_AG-690_33250063	Joh fr	362.2	4.05
51	Specs_AF-399_41753362		287.2	4.05
52	Specs_AO-365_43368513	of a	392.3	4.04
53	Specs_AI-204_31720039		356.3	4.04
54	Specs_AK-968_41170900	autio	449.3	4.04
55	Specs_AG-205_33159015		297.2	4.04

56	Specs_AH-487_41660228		335.2	4.03
57	Specs_AE-848_36255015		346.3	4.03
58	Specs_AG-690_11636562	to the	370.2	4.03
59	Specs_AK-968_12117115	ori f	362.3	4.03
60	Specs_AN-988_40680531	Chinit.	406.3	4.03
61	Specs_AK-918_11909063		257.2	4.02
62	Specs_AN-652_11760408		255.2	4.02
63	Specs_AP-970_43012288		341.3	4.02

64	Specs_AH-487_41663592	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	351.2	4.02
65	Specs_AN-698_40718564		368.3	4.02
66	Specs_AG-690_03036047		339.2	4.02
67	Specs_AK-968_41922043	A if	308.3	4.02
68	Specs_AN-329_42504558		312.3	4.02
69	Specs_AP-970_43374117		256.2	4.02
70	Specs_AK-968_41926710	-Qif	285.2	4.02
71	Specs_AK-968_37171079		252.1	4.02

72	Specs_AO-022_41399309		437.3	4.02
73	Specs_AJ-292_12641038		413.3	4.02
74	Specs_AK-968_40340372		405.7	4.02
75	Specs_AK-968_41017619	-HC	397.3	4.01
76	Specs_AN-329_40602098		242.2	4.01
77	Specs_AS-871_43478439	~5,400	350.3	4.01
78	Specs_AM-879_11808031	J-Lille	426.3	4.01
79	Specs_AG-690_36169011		281.1	4

80	Specs_AS-871_43477393		210.2	4
81	Specs_AG-690_11634414	and the second sec	292.1	4
82	Specs_AF-399_40714847		312.6	4
83	Specs_AN-652_11380105	J.J.	315.2	4
84	Specs_AG-670_34988020		351.6	4
85	Specs_AK-968_40734154	- FF	281.3	4
86	Specs_AK-968_15256326	-HC	300.2	4
87	Specs_AK-778_41182446	of o'	354.2	4

88	Specs_AG-690_36808019	app for	352.3	4
89	Specs_AJ-333_36115046		186.2	3.99
90	Specs_AE-848_11104122	AT	365.3	3.99
91	Specs_AN-648_40682186	gr S	303.2	3.99
92	Specs_AN-465_43369870		317.2	3.99
93	Specs_AS-871_43475282	1000	369.3	3.99
94	Specs_AP-906_40900953		268.2	3.98
95	Specs_AG-690_11171282	or the	355.2	3.98

^aCompound ID of each modulator is the same as the ID of the compound in SPECS (<u>http://www.specs.net</u>). The active allosteric inhibitor of STAT3 found in the study is highlighted in blue. ^bAlloscore Score is calculated by the Alloscore algorithm (8).

Reference

- 1. Sterling, T. and Irwin, J.J. (2015) ZINC 15—ligand discovery for everyone. *J. Chem. Inf. Model.*, **55**, 2324–2337. DOI:10.1021/acs.jcim.5b0055
- Gaulton, A., Hersey, A., Patr, A., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L.J., Cibri, E., Davies, M., *et al.* (2017) The ChEMBL database in 2017. *Nucleic Acids Res.*, 45, D945–D954. DOI:10.1093/nar/gkw1074
- Ihlenfeldt, W.D., Voigt, J.H., Bienfait, B., Oellien, F. and Nicklaus, M.C. (2002) Enhanced CACTVS browser of the Open NCI Database. J. Chem. Inf. Comput. Sci.,

42, 46-57. DOI:10.1021/ci010056s

 Huang, W., Lu, S., Huang, Z., Liu, X., Mou, L., Luo, Y., Zhao, Y., Liu, Y., Chen, Z., Hou, T. and Zhang, J. (2013) Allosite: A method for predicting allosteric sites. *Bioinformatics*, 29, 2357–2359. DOI:10.1093/bioinformatics/btt399

- Song,K., Liu,X., Huang,W., Lu,S., Shen,Q., Zhang,L. and Zhang,J. (2017) Improved Method for the Identification and Validation of Allosteric Sites. J. *Chem. Inf. Model.*, 57, 2358–2363. DOI:10.1021/acs.jcim.7b00014
- Chen, J. and Lai, L. (2006) Pocket v.2: Further developments on receptor-based pharmacophore modeling. J. Chem. Inf. Model., 46, 2684–2691. DOI:10.1021/ci600246s
- Wang,R., Lu,Y. and Wang,S. (2003) Comparative evaluation of 11 scoring functions for molecular docking. *J. Med. Chem.*, 46, 2287–2303. DOI:10.1021/jm0203783
- Li,S., Shen,Q., Su,M., Liu,X., Lu,S., Chen,Z., Wang,R. and Zhang,J. (2016) Alloscore: A method for predicting allosteric ligand-protein interactions. *Bioinformatics*, **32**, 1574–1576. DOI:10.1093/bioinformatics/btw036
- Gao,M. and Skolnick,J. (2013) APoc: large-scale identification of similar protein pockets. *Bioinformatics*, 29, 597–604. DOI: 10.1093/bioinformatics/btt024
- Paradis,E., Claude,J. and Strimmer,K. (2004) APE: Analyses of Phylogenetics and Evolution in R language. *Bioinformatics*, 20, 289-290. DOI:10.1093/bioinformatics/btg412
- O'Boyle,N.M., Banck,M., James,C.A., Morley,C., Vandermeersch,T. and Hutchison,G.R. (2011) Open Babel: an open chemical toolbox. *J. Cheminf.*, **3**, 33. DOI:10.1186/1758-2946-3-33
- O'Boyle,N.M., Morley,C. and Hutchison,G.R. (2008) Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. *Chem. Cent. J.*, 2, 5. DOI:10.1186/1752-153X-2-5
- Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res.*, 28, 27–30. DOI:10.1093/nar/28.1.27
- Huang,M., Chen,Z., Zhang,L., Huang,Z., Chen,Y., Xu,J., Zhang,J. and Shu,X. (2016) Screening and biological evaluation of a novel STAT3 signaling pathway inhibitor against cancer. *Bioorganic & Medicinal Chemistry Letters.*, 26, 5172-5176. DOI:10.1016/j.bmcl.2016.09.073
- 15. Forouhar, F., Anderson, J.L.R., Mowat, C.G., Vorobiev, S.M., Hussain, A., Abashidze, M., Bruckmann, C., Thackray, S.J., Seetharaman, J., Tucker, T., *et al.*

(2007) Molecular insights into substrate recognition and catalysis by tryptophan
2,3-dioxygenase. *Proc. Natl. Acad. Sci.*, **104**, 473–478.
DOI:10.1073/pnas.0610007104

- Karakas, E., Simorowski, N. and Furukawa, H. (2011) Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. *Nature*, 475, 249–253. DOI:10.1038/nature10180
- Roy,A., Srinivasan,B. and Skolnick,J. (2015) PoLi: a virtual screening pipeline based on template pocket and ligand similarity. J. Chem. Inf. Model., 55, 1757-1770. DOI: 10.1021/acs.jcim.5b00232