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Table S1: List of features in the “IMGT” and “Calculation” branches. Each line repre-
sents one tab. In the third column, input and output artefacts are stated. In addition
to the resources mentioned in the main manuscript, references 1–7 have been used in the
implementation process.

IMGT branch

Upload

Implements the upload of IMGT/V-Quest files (*.tar.gz)
and allows selection of desired columns from the 11 files
comprising the V-Quest format. Enabled columns are
combined into a data table. The table can be down-
loaded and used in the context of both the “Calculate”
and “Analysis” branches. Successful upload enables the
“Annotation” tab.

IMGT input
Output table

Annotation
Optional function to extend a given table by additional
columns uploaded as a data table. The first column serves
to match the observations.

Output table

Calculation branch

Upload

Allows the upload of a data table (*.csv), with observa-
tions in rows and features in columns, respectively. May
be obtained from the “IMGT” branch. Successful upload
enables the following tabs.

Input table

Extract
Implements two different methods to extract parts from
contents in one column and to store these in a new col-
umn, attached at the rear of the table.

Output table

Calculation

Implements the calculation of 23 physico-chemical prop-
erties (see main text for details) for amino acid sequences.
The necessary columns are attached for every row (obser-
vation) at the rear or the table. Columns already present
are ignored.

Output table

Clonotype
clustering

Allows the clustering of observations into clonotypes
based on the distances between nucleotide sequences and
hierarchical clustering. In addition, a representative ob-
servation per cluster can be obtained, if required.

Output table
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Table S2: List of features in the “Analysis” branch. Each line represents one tab. In the
third column, input and output artefacts are stated.

Analysis branch

Upload

Allows the upload of a data table (*.csv), with observa-
tions in rows and features in columns, respectively. May
be obtained from the “IMGT” or “Calculation” branches.
Successful upload enables the following tabs.

Input table

Select

Allows the selection of columns which are maintained for
further analysis. Useful to reduce the complexity of a
dataset with very many columns. Of course, all columns
can be selected.

Output table

Filter
Optional feature, that implements the filtering of columns
for certain values. Numerical values can be selected by
specifying a range and nominal data by enabling levels.

Output table

Grouping

To allow comparisons within the data provided, at least
one column has to be set as grouping column. The data
can be split by the levels (numerical or ordinal) in the(se)
column(s) in the subsequent analysis steps. The selected
columns can be ordered individually.

Grouping table

Boxplot

Shows the selected numerical property for every level in
the grouping column in a box-and-whisker representa-
tion. The line in the middle represents the median, the
box limits the upper and lower quartiles, respectively and
the “whiskers” represent the remaining ones (outliers ex-
cluded).

Input table
p-values
Box data
Plot

Barplot

Shows the absolute occurrences or relative frequencies
of the selected property for every level in the grouping
column(s) or over the entire data set. Non-numerical
columns (e.g. sequences) can be transformed if necessary.
Different targets can be specified for the normalization
(by group, over all data, ...).

Input table
Output table
Plot

Distribution
analysis

This function allows to specify two different datasets,
which can be compared in terms of five statistical tests
(p-values) and three effect size measures. Multiple prop-
erties can be selected for simultaneous calculation and
the resulting plot will hold two histograms per property,
representing the two data sets.

Input table
Statistics t.
Eff. size t.
Protocol
Plot
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Analysis branch (continuation)

PCA

This function performs a linear transformation on the
specified data to maximise the (independent) variance
along so-called principal components, which is frequently
used for dimensionality reduction of data sets. A mini-
mum of two properties has to be selected. Plotting op-
tions are the calculation of means and representing the
spread as error bars and / or ellipses.

Input table
Output table
Rotations
Plot

V(D)J
gene usage

A critical task in the context of antibody repertoires is
the combinatorial frequency with which V, D and J genes
occur. This function offers 1D, 2D (circle) and 3D (bub-
ble) plots to show in which proportion each combination
occurs.

Output table
Plot

Dendrogram

To show the distance between various (sub-)groups in an-
tibody repertoire data, tree-based dendrograms are fre-
quently used. Multiple properties can be specified, which
are usually scaled and centred before the calculation
starts.

Input table
Dist. matrix
Plot

t-SNE

A rather new dimensionality reduction algorithm [8] that
tries to optimize local and global features in the data si-
multaneously. The algorithm requires the appropriate ad-
justment of various hyper-parameters. This calculation is
computationally very demanding and will take, depend-
ing on the size of the data set, quite some time.

Input table
Output table
t-SNE results
Plot
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Table S3: Description of the two (real) datasets used for the demonstration of the server’s
functions.

Vaccination dataset

The vaccination dataset, obtained by the group of Deborah Dunn-Walters [9] in 2012
(“vaccination”) contains B cell repertoire data of six young (aged 19-45) and six elderly
(aged 70-89) healthy volunteers. Three samples per donor have been taken: The first
prior to vaccination (with Influvac and Pneumovax II) called Day 0, the next seven days
later (Day 7) and the last one 28 days after vaccination (Day 28). This allows for a time-
resolved monitoring of the immune response for the two different age groups. In total,
the data set (as downloaded) contains 45784 observations. This file can be obtained from
http://doi.org/10.5281/zenodo.1161143. The largest three clonotypes in this dataset
are of a size of 527, 456 and 395, respectively (when clustered using Levenshtein distance
and a cut-off of 0.18).

PBMC dataset

The peripheral blood mononuclear cells (“PBMC”) dataset has been established by Debo-
rah Dunn-Walters and co-workers and is, as of yet, not publicly available [10]. It contains
PBMCs isolated from the repertoires of six young (aged 21-45) and eight elderly (aged
62-87) healthy volunteers. In total, the data set (as used) contains 51909 observations, all
of which are representative reads for their respective clones (as described in the main text).
The largest three clonotypes in this dataset are of a size of 847, 522 and 309, respectively.
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Table S4: Kullback-Leibler divergence [11] results computed for figure 2 (main manuscript)
and figure S7. The divergence for the Young group (Day 0 versus Day 7) is much higher than
the corresponding values for the Old one, which is also reflected in the respective figures.

Young Old

Day 0 Day 7 Day 28 Day 0 Day 7 Day 28

Young

Day 0 0.0000 0.2054 0.0424 0.0587 0.1808 0.0994

Day 7 0.2162 0.0000 0.2206 0.3035 0.2419 0.2899

Day 28 0.0394 0.1740 0.0000 0.0245 0.1068 0.0467

Old

Day 0 0.0494 0.2234 0.0249 0.0000 0.1118 0.0469

Day 7 0.1357 0.2086 0.0954 0.1054 0.0000 0.1371

Day 28 0.0705 0.1786 0.0363 0.0412 0.1102 0.0000

6



Table S5: Effect sizes (Cliff’s ∆) calculated for the comparison of IGHV2 and IGHV3 with the
other V gene families respectively (for all ten Kidera factors). The same filtering (excluding
IGHV7 and CDR3H loops longer than 35 amino acids) has been applied prior to calculation as
for figures 3 and 4 (main manuscript). For the subsequent analysis of family IGHV2, Kidera
factors with an effect size ≥ 0.1 or -0.1 have been used (supplementary figure S10). The
short description of the Kidera factors has been taken from reference 12.

Cliff’s ∆

Property IGHV2 IGHV3 Description

Kidera 1 -0.04 -0.02 Helix / bend preference

Kidera 2 0.11 -0.04 Side-chain size

Kidera 3 0.04 -0.07 Extended structure preference

Kidera 4 -0.12 0.05 Hydrophobicity

Kidera 5 0.14 0.12 Double-bend preference

Kidera 6 0.13 -0.11 Partial specific volume

Kidera 7 -0.18 -0.01 Flat extended preference

Kidera 8 -0.02 0.01 Occurrence in α region

Kidera 9 0.22 -0.04 pK-C

Kidera 10 0.00 0.01 Surrounding hydrophobicity
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a

b

Figure S1: Benchmarks for clonotype clustering (blue) and t-SNE (red), showing runtime
requirements (in seconds) and the maximum random-access memory (RAM) allocation (in
mebibyte, MiB) during execution (depending on the input size). The runtime is averaged over
three trials and shown together with the associated standard deviation (error-bars). In (a),
the construction of the distance matrix (the time-limiting step of the clonotype clustering)
is shown to increase quadratically with the size of the input, O(n2), in both execution time
and memory requirement. The adjusted R2 values as calculated by the R function lm()

are 0.9 for a quadratic model fitted to the points. In conclusion, partitioning the data (see
main manuscript and tutorials) may improve the speed of this calculation tremendously. For
real data (about 100000 reads, split into comparably large partitions) one could expect the
clustering to be completed within one to two hours. In (b), the t-SNE calculation’s runtime
complexity is proven to be of O(n*log(n)) (the adjusted R2 value is 0.99), which is achieved
by the Barnes-Hut approximation used in the algorithm [4]. In this example, 1000 iterations
and ten dimensions (Kidera factors) have been used. The maximum memory requirement at
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any given time does not exceed about 35 MiB using our parameter settings. For large data
(about 100000 reads, ten dimensions, 3000 iterations) one would expect the t-SNE calculation
to complete within 5 hours. Note, that the variation between the individual trials for t-SNE
is much higher compared to the clonotype clustering, since the precise execution of the
algorithm differs significantly depending on the initial seed set.
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Figure S2: Clonotype clustering interface. Clustering usually is performed using DNA rather
than amino acid sequences due to the higher information content. Prior to the calculation
of the distance matrix and the following clustering, it might be necessary to split the data
to reduce the size of the individual subsets. This helps in speeding up the calculation and
meliorates the memory requirement (see also supplementary figure S1). In the Dunn-Walters
group, data is usually split by sample or patient ID and the V gene family. The latter is done
in order to include also members in a clone that may have a wrong V gene assignment due to
hypermutation. However, it is worth mentioning that other groups use the less conservative
V gene partitioning instead, which will increase the speed of the calculation dramatically
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due to the much smaller partitions. Hierarchical clustering, as applied by this server, requires
the specification of a cut-off threshold, by which the tree is cut in order to group the clones.
From our experience, we propose 0.18 and 0.05 for heavy and light chain CDR3 sequences
for B cell repertoires as meaningful defaults. The server attaches two columns to every
observation in the data set, holding the clone ID and the number of members for each
clone. Moreover, in order to select a representative, typical observation for every clone, a
score is calculated internally by ranking the observed amino acid sequences and classes by
their abundance in a given clone. It is also possible, however, to simply select the first
member of each cluster. If this “representative” feature is activated, an additional column
will be added to the data set, holding either the values TRUE (if an observation has been
designated to represent the clone) or FALSE. We refer also to the (online) tutorials and
the tooltips for the interface descriptions (both available at the server’s address, http:

//mabra.biomed.kcl.ac.uk/BRepertoire).
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Figure S3: Distribution analysis interface. The statistical tests currently supported are the
t-test, the Wilcoxon Rank Sum test (WRST) [13], the Kolmogorov-Smirnov [14] (K-S) and
two types of permutational analyses, using the permutational central limit theorem (pclt)
and a monte-carlo (mc) implementation [15]. Since a t-test requires the assumption of
normally distributed sample means, WRST and K-S have been implemented as alternatives.
Moreover, WRST is not sensitive to changes in the shape (only to changes in the median).
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If, however, only little knowledge is available on the distribution of the data, the permu-
tational methods might be used. To this date, tests for statistical significance have been
often misused [16, 17], predominantly because of the misconception that a p-value below
0.05 proves H0 false and thereby confirms the initial theory. In order to strengthen repro-
ducibility [18] and to quantify the size of probable effects and confidence intervals, effect size
measures can be used. BRepertoire offers three ways to calculate effect sizes: Cohen’s d [19],
Hedge’s g [20] and Cliff’s ∆ [21]. Note, that the latter uses ranking in contrast to the others
and may be used as default.
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Figure S4: Select columns interface. In order to reduce large datasets to manageable sizes,
only selected columns will be maintained. The table on the right hand side is automatically
updated.
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Figure S5: Filter values interface. This tab operates in three steps: First, the columns for
which certain values need to be filtered out are selected. Then the data type can be adjusted
if the server’s guess is wrong. And finally, either checkbox groups (nominal data) or range
input sliders (numerical data) can be used to select certain values. The number of remaining
observations is displayed right under the (automatically updated) table on the right hand
side.
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Figure S6: Grouping interface. The columns selected here may later be used to split the data
for comparisons. The order of their elements can be adjusted in the “Data sorting”menu.
Note, however, that only levels present in the right boxes are available later on. Up to four
grouping columns can be specified at once. Columns holding equal or more than 100 different
levels (e.g. numerical values), are not available for grouping. The number of observations
per group is shown in the table to the right.
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Figure S7: Use case 1: Gene usage plot (2D) reporting the frequencies of gene families
present at Day 28 for the two age groups (vaccination dataset; compare to figure 2 in the
main manuscript). The Young repertoires seem to have returned to the original state at
Day 0, which is further illustrated by the Kullback-Leibler divergence values in table S4. In
contrast, the Old group still shows a slightly different pattern which agrees with the analysis
using the CDR3H lengths (figure 3a).
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Figure S8: Use case 1: V gene usage plot (1D) for the “Vgene” column (vaccination dataset).
Only the significantly populated genes are shown.

18



Figure S9: Use case 1: V gene family usage plot (3D) for the “Vfamily”, “Jfamily” and
“Dfamily” columns at Day 28 for both the Young and Old groups of the vaccination dataset.
In both cases, IGHV3 is dominant - but in different combinations. These plots can be rotated
and zoomed freely in the web-browser.
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Figure S10: Use case 2: Distribution of CDR3H Kidera factors of variable region sequences
encoded by IGHV2 (red) versus all other sequences (excluding those encoded by IGHV7)
(blue). In this plot, p-values with a value below 0.05 and effect size measures with non-
negligible values (according to reference 22) are shown in blue. The Cliff’s ∆ values for the
remaining Kidera factors are provided in supplementary table S5.
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Figure S11: Use case 2: Dendrogram related to figure 4 (main manuscript), showing the
result of the hierarchical clustering if only Kidera factors 1, 3, 8 and 10 are used (PBMC).
As the main contributors to the separation of IGHV2 from the other V gene families are
excluded, there is no apparent order observable. For this analysis, IGHV7 and CDR3H loops
longer than 35 amino acids have been excluded.
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Figure S12: Use case 2: PCA plot showing the separation of IGHV2 from the other V gene
families (PBMC). The same combination of Kidera factors (2, 4, 5, 6, 7 and 9) has been used
as in figure 4b (main manuscript). This plot has been generated using the “PCA plot” tab.
For this analysis, IGHV7 and CDR3H loops longer than 35 amino acids have been excluded.
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