Science Advances

advances.sciencemag.org/cgi/content/full/4/7/eaap7523/DC1

Supplementary Materials for

Capacity to support predators scales with habitat size

Angus R. McIntosh*, Peter A. McHugh, Michael J. Plank, Phillip G. Jellyman, Helen J. Warburton, Hamish S. Greig

*Corresponding author. Email: angus.mcintosh@canterbury.ac.nz

Published 4 July 2018, *Sci. Adv.* **4**, eaap7523 (2018) DOI: 10.1126/sciadv.aap7523

This PDF file includes:

Section S1. Drivers of secondary production

Section S2. Intermediate predators

Fig. S1. Variation in major drivers of secondary production.

Fig. S2. Variation in stream water–specific conductivity in relation to discharge from 15 rivers in the Waimakariri and Rakaia river catchments, New Zealand.

Fig. S3. Patterns in abundance of predatory invertebrates.

Table S1. Location (New Zealand map grid) and habitat size (measured in terms of discharge and stream order) of sites sampled from the Waimakariri and Rakaia river catchments of the South Island, New Zealand to provide information on predator and prey abundance, together with the source of the data.

Supplementary Materials

Section S1. Drivers of secondary production

Across the habitat size gradient we sampled, there was no systematic variation in major drivers of secondary production in streams (*39*), stream temperature or individual primary consumer biomass (fig. S1).

Fig. S1. Variation in major drivers of secondary production. Variation in (**A**) mean annual temperature and the (**B**) mean individual biomass of primary consumer invertebrates in relation to discharge from 15 rivers in the Waimakariri and Rakaia River catchments, New Zealand.

Moreover, nutrient concentrations are consistently very low across the range of streams we sampled (*36*), and a surrogate measure of collective nutrient concentrations, specific conductivity, also shows no consistent relationship across the subset of 15 streams where we have measured it, and it is certainly not higher for larger streams (fig. S2).

Fig. S2. Variation in stream water–specific conductivity in relation to discharge from 15 rivers in the Waimakariri and Rakaia river catchments, New Zealand.

Section S2. Intermediate predators

Alternative metrics of the body size of predators in the rivers studied, including maximum predator size and mean predator size, had fits with habitat size similar to that of our P₅₀ measure of predator body size in rivers (maximum fish size [g DM] = 91.2 $H^{0.89}$, $R^2 = 0.54$, $F_{1,22} = 25.53$, P<0.001; mean fish size [g DM] = 6.3 $H^{0.62}$, $R^2 = 0.49$, $F_{1,22} = 21.41$, P<0.001).

Although not part of our predictions, the increases in median predator body size of predators with habitat size were, not unexpectedly, associated with reductions in the abundance of a subcategory of smaller, intermediate, predators along the habitat size gradient. Predatory invertebrate biomass per-unit-area declined with habitat size ($R^2 = 0.21$, $F_{1,27} = 7.337$, P = 0.012; fig. S3 A), and was also negatively related to predator P₅₀ size ($R^2 = 0.25$, $F_{1,25} = 8.51$, P < 0.01; fig. S3 B).

Fig. S3. Patterns in abundance of predatory invertebrates. Biomass per-unit-area (measured by dry mass) of predatory invertebrates across the gradients of habitat size (A) and predator size
(B) measured in 29 grassland river food webs.

The decline in smaller intermediate predators as habitat size increased is likely indicative of the strengthening of top-down control as predator body sizes increased. This is not unexpected given the role body size plays in controlling the strength of trophic interactions (*6*). Importantly, however, top-down control did not cascade down to primary consumer level such that the abundance of primary consumers was reduced as habitat size increased. Therefore, increasing top-down control with increased habitat size cannot explain the altered predator-prey biomass

ratios we observed. Top-down forcing is an important mechanism for the control of trophic structure and its influence on primary consumers and producers is highly contingent, so it could still act in concert with the mechanisms we describe. Table S1. Location (New Zealand map grid) and habitat size (measured in terms of discharge and stream order) of sites sampled from the Waimakariri and Rakaia river catchments of the South Island, New Zealand to provide information on predator and prey abundance, together with the source of the data.

Site name	NZMG		Discharge	Stream	Source [†]
	Easting	Northing	(m ³ ·s ⁻¹)	Order	
Acheron River	2402460	5763670	0.145	3	1
Antipodes Creek Lower	2402885	5763135	0.017	3	1
Broken River	2406520	5778765	1.251	4	1
Cave Stream	2407050	5782325	0.051	2	2
Coach Stream	2409200	5765985	0.025	2	1
Coopers Creek	2438820	5767755	0.104	4	3
Craigieburn River	2409640	5785225	0.359	3	3
Dry Gorge River	2406615	5770860	0.043	2	3
Dry Spring	2405475	5771425	0.015	2	1
Emanon Stream	2406330	5767885	0.033	2	3
Fan Stream	2414190	5796295	0.043	1	4
Ghost Stream	2407610	5773575	0.177	3	3
Grasmere River	2408765	5796365	0.791	4	1
Helm Stream	2402620	5762215	0.077	3	4
Binser Stream	2413010	5799530	0.114	3	4
Middle Bush Stream	2409255	5796250	0.029	1	4
Pylon Gully Stream	2406300	5796175	0.145	2	4
Little Kowai River	2423265	5765255	0.055	2	3
Lower Farm Stream	2412935	5799995	0.199	3	1
Manson's Creek	2409635	5785435	0.197	2	5

Mt White Hut Creek	2422960	5795895	0.150	2	4
One Tree Swamp Stream	2406440	5800130	2.31	2	1
Pass Stream	2406445	5767460	0.035	2	1
Porter River	2406955	5773080	2.21	4	1
Pudding Hill Stream	2392245	5732895	0.074	1	3
Rayban Stream	2405290	5770825	0.405	1	4
Slip Spring	2405145	5771525	0.339	3	1
Tussock Creek	2404075	5764710	0.0077	1	1
Waimakariri Spring	2413500	5798075	0.206	1	1

† 1, McHugh *et al* (21); 2, Unpublished data, P.G. Jellyman – sampled January 2009; 3, P.A. McHugh, R.A.

Thompson & A. R. McIntosh unpublished data – sampled January 2010; 4, Nyström *et al.* (*36*); 5, A.R. McIntosh, unpublished data, sampled December 2005.