Supplementary information

Synthesis of RU1968

All reactions were performed under an inert atmosphere of argon or nitrogen, unless otherwise stated. ¹H and ¹³C NMR spectra were obtained on a Bruker Avance DPX 400 or DPX 500 spectrometer (Bruker Daltonics, Bremen, Germany) at 298 K; chemical shifts are expressed in parts per million (ppm)with respect to the solvent signals (¹H NMR: CDCl₃ 7.27; DMSO-*d*₆ 2.50; MeOD 3.31; ¹³C NMR: CDCl₃ 77.16; MeOD 49.00). Analytical HPLC was performed on a Shimadzu Prominence system (Shimadzu, Tokyo, Japan) using a Nucleodur Isis column (4×150 mm, 5 µm Macherey&Nagel, Düren, Germany) with a binary gradient of H₂O and Acetonitrile (each containing 0.1% (v/v) trifluoroacetic acid (TFA)) at a flow rate of 1 ml/min. Preparative HPLC was performed on a Shimadzu LC-8A system using a Nucleodur Isis column (20 ml/min, 21×250 mm, 5 µm) with gradients of H₂O and Acetonitrile (each containing 0.1% (v/v) TFA) at a flow rate of 20 ml/min. High-resolution mass spectra (HRMS) were obtained on a MAT 95 XL or MAT 90 mass spectrometer (Thermo Finnigan, San Jose, USA). All reagents were obtained from Sigma-Aldrich (Munich, Germany) and were used as received. (±) Estrone methylether was synthesized as previously described (Ananchenko et al., 1962, Ananchenko and Torgov, 1963). Nitrile 1 was obtained from (±) estrone metyhlether following a published procedure (Van Leusen and Van Leusen, 2004).

1-(3-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-17-yl) ethanone (2): To a 0 °C solution of nitrile 1 (3.973 g; 13.45 mmol) in dry Et₂O (67 ml) was added MeLi (1.6 M in Et₂O, 67.3 ml; 107.6 mmol) over 20 minutes. After stirring for further 10 minutes at 0 °C, the reaction was quenched by careful addition of H₂O (20 ml) and stirred for another 30 minutes. The mixture was acidified with conc. HCl (pH = 1) and the Et₂O evaporated *in vacuo*. The resulting slurry was taken up in

DCM (200 ml), the aqueous layer separated and extracted with another portion of DCM. Organic layers were combined, washed with sat. NaHCO₃ (aq), dried (brine, MgSO₄), filtered, and the solvent evaporated *in vacuo*. The crude material was purified by flash chromatography using a silica gel column with a gradient of pentane/ethylacetate (98/2 to 92/8) to obtain **2** as an off-white solid (3.34 g, 79%, 1:1 mixture of diastereomers).

1H-NMR (400 MHz, CDCl₃) δ = 7.21 d (1H, J = 8.6 Hz), 7.18 d (1H, J = 8.6 Hz), 6.72 (m, 2H), 6.64 (m, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 2.87 (m, 3H), 2.63 (t, 1H, J = 9.1 Hz), 2.40 – 2.15 (m, 6H), 2.18 (s, 3H), 2.17 (s, 3H), 2.03 – 1.27 (m, 22H), 0.96 (s, 3H), 0.67 (s, 3H). **13C-NMR** (100 MHz, CDCl₃) δ = 212.98 (CO), 209.59 (CO), 157.62 (C), 157.57 (C), 138.15 (C), 138.04 (C), 132.63 (C), 132.49 (C), 126.36 (CH), 113.91 (CH), 113.87 (CH), 111.64 (CH), 111.59 (CH), 63.98 (CH), 61.47 (CH), 55.79 (CH), 55.30 (CH₃), 49.45 (CH), 46.13 (C), 44.53 (C), 43.79 (CH), 43.26 (CH), 39.14 (CH), 39.12 (CH₂), 38.87 (CH), 35.40 (CH₂), 33.03 (CH₃), 31.62 (CH₃), 30.02 (CH₂), 29.94 (CH₂), 28.13 (CH₂), 27.80 (CH₂), 26.78 (CH₂), 26.71 (CH₂), 25.72 (CH₂), 24.25 (CH₂), 22.99 (CH₂), 21.04 (CH₃), 13.53 (CH₃).

HRMS: Calc. for $C_{21}H_{28}O_2H$ + (M + H) 313.2168, found 313.2176.

N1-(1-(3-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-17-yl)ethyl)-N2,N2-dimethylethane-1,2-diamine (3): To a solution of 2 (1.3 g, 4.16 mmol) in 1,2-dichloroethane (25 ml) were added AcOH (50 mmol,

2.87 ml), N,N-dimethylethylenediamine (25 ml) were added ACOH (50 ml), 2.87 ml), N,N-dimethylethylenediamine (41.6 mmol, 4.5 ml), activated molsieves (4 Å; ~ 1 g), and NaBH(OAc)₃ (12.5 mmol, 2.66 g). The mixture was stirred for 18 h at RT, filtered and evaporated. The residue was taken up in Et₂O and washed with 1M NaOH, followed by sat. NaCl (aq). The organic layer was dried (MgSO₄), filtered and evaporated to obtain a crude oil that was purified by flash chromatography. Careful elution with DCM/MeOH (97/3 to 9/1) afforded **3a** (582 mg, 36%); **3b** (330 mg, 25%) was eluted with DCM/MeOH 6/4.

3a: 1H-NMR (400 MHz, CDCl₃) δ = 7.19 (m, 2H), 6.70 (m, 2H), 6.62 (m, 2H), 3.76 (s, 6H), 2.95-2.75 (m, 8H), 2.69-2.48 (m, 6H), 2.42-2.10 (m, 10H), 2.25 (s, 6H), 2.22 (s, 6H), 1.95-1.12 (m, 18H), 1.09 (d, 6H, J=6.2 Hz), 0.80 (s, 3H), 0.73 (s, 3H).

13C-NMR (100 MHz, CDCl₃) $\delta = 157.28$ (C), 137.99 (C), 137.82 (C), 132.79 (C), 132.67 (C), 126.15 (CH), 113.62 (CH), 111.33 (CH), 111.32 (CH), 58.57 (CH₂), 58.04 (CH₂), 56.55 (CH), 55.82 (CH), 55.07 (CH₃), 54.88 (CH), 54.37 (CH), 54.12 (CH), 52.07 (CH), 45.33 (CH₃), 45.14 (CH₃), 44.97 (CH₂), 44.34 (CH₂), 43.65 (CH), 43.54 (C), 43.45 (CH), 42.36 (C), 39.78 (CH₂), 39.15 (CH), 38.61 (CH), 33.89 (CH₂), 29.85 (CH₂), 29.74 (CH₂), 28.25 (CH₂), 27.53 (CH₂), 26.73 (CH₂), 26.70 (CH₂), 26.62 (CH₂), 25.64 (CH₂), 23.75 (CH₂), 22.58 (CH₂), 22.00 (CH₃), 19.95 (CH₃), 18.55 (CH₃), 12.31 (CH₃).

HRMS: Calc. for C₂₅H₄₀N₂OH+ (M + H) 385.3219, found 371.3221.

3b: **1H-NMR** (400 MHz, CDCl₃) δ = 7.20 (m, 2H), 6.70 (m, 2H), 6.62 (m, 2H), 3.77 (s, 6H), 2.94-2.72 (m, 6H), 2.68-2.40 (m, 8H), 2.40-1.20 (m, 28H), 2.24 (s, 6H), 2.23 (s, 6H), 1.15 (d, 3H, J=6.5 Hz), 1.04 (d, 3H, J=6.2 Hz), 0.85 (s, 3H), 0.72 (s, 3H).

13C-NMR (100 MHz, CDCl₃) δ = 155.15 (C), 138.32 (C), 131.78 (C), 126.74 (CH), 115.73 (CH), 113.31 (CH), 58.33 (CH₂), 55.54 (CH), 51.38 (CH), 45.11 (CH₃), 44.12 (CH₂), 43.58 (CH), 41.23 (C), 39.76 (CH), 39.31 (CH₂), 30.11 (CH₂), 28.19 (CH₂), 27.07 (CH₂), 26.91 (CH₂), 24.42 (CH₂), 16.91 (CH₃), 12.43 (CH₃).

HRMS: Calc. for C₂₅H₄₀N₂OH+ (M + H) 385.3219, found 371.3228.

17-(1-(2-(dimethylamino)ethyl)-13-methyl-7,8,9,11,12,13,14,15,16,17decahydro-6H-cyclopenta[a]phenanthren-3-ol (RU1968F1 + RU1968F2): A suspension of 3a (52 mg, 0.135 mmol) in 48% HBr (aq) (1.8 ml) was heated at 100°C in a sealed vial for 6 h, cooled to RT and diluted with ethyl acetate and water. The resulting mixture was

and diluted with ethyl acetate and water. The resulting mixture was neutralized by incremental addition of Na_2CO_3 (s), the aqueous layer separated, and extracted with ethyl acetate. Organic layers were combined, washed with brine, dried (MgSO₄), filtered, and the solvent evaporated *in vacuo*. The resulting material was purified by flash chromatography on a silica gel column (DCM/MeOH 96/4 + 0.4% NH₄OH (28% aq)) to obtain

38 mg (76%) brown foam. Further purification on preparative HPLC (Gradient: 20% Acetonitrile to 25% over 60 minutes) afforded **RU1968F1 * 2 TFA** (25 mg, 31%) and **RU1968F2 * 2 TFA** (5 mg, 6%) as white solids. **RU1968F3 + F4**: **3b** (48 mg, 0.125 mmol) was treated as described above to obtain **RU1968F3 * 2TFA** (4 mg, 5%) and **RU1968F4 * 2TFA** (19 mg, 25%) as white solids.

RU1968F1: **1H-NMR** (400 MHz, MeOD) $\delta = 7.06$ (d, 1H, J=8.5 Hz), 6.58 (dd, 1H, J₁=8.5 Hz, J₂=2.6 Hz), 6.51 (d, 1H, J=2.6 Hz), 3.20–3.06 (m, 2H), 3.02-2.92 (m, 1H), 2.86-2.63 (m, 4H), 2.35 (s, 6H), 2.25 (m, 1H), 2.16 (m, 1H), 2.09-1.95 (m, 2H), 1.91-1.78 (m, 2H), 1.70-1.26 (m, 11H), 0.75 (s, 3H).

13C-NMR (100 MHz, MeOD) $\delta = 155.15$ (C), 138.32 (C), 131.78 (C), 126.74 (C), 132.71 (C), 126.23 (CH), 126.19 (CH), 113.68 (CH), 111.38 (CH), 111.35 (CH), 59.20 (CH₂), 58.91 (CH₂), 56.90 (CH), 56.33 (CH), 55.24 (CH), 55.12 (CH₃), 54.47 (CH), 53.66 CH), 51.35 (CH), 45.45 (CH₃), 45.35 (CH₃), 44.91 (CH₂), 44.14 (CH₂), 43.62 (CH), 43.54c(CH), 43.46 (C), 42.35 (C), 39.39 (CH₂), 39.08 (CH), 38.55 (CH), 34.23 (CH₂), 29.90 (CH₂), 29.81 (CH₂), 28.20 (CH₂), 27.61 (CH₂), 27.07 (CH₂), 26.78 (CH₂), 26.55 (CH₂), 25.56, (CH₂) 23.86 (CH₂), 23.82 (CH₂), 22.02 (CH₃), 19.16 (CH₃), 18.21 (CH₃), 12.31 (CH₃). **HRMS:** Calc. for C₂₄H₃₈N₂OH+ (M + H) 371.3062, found 371.3049.

RU1968F2: **1H-NMR** (400 MHz, DMSO-d6) $\delta = 9.03$ (s, 1H), 7.04 (d, 1H, J=8.5 Hz), 6.51 (dd, 1H, J₁=8.5 Hz, J₂=2.7 Hz), 6.43 (d, 1H, J=2.7 Hz), 3.34 (m, 4H), 2.85 (s, 6H), 2.70 (m, 2H), 2.30 (m, 1H), 2.19-2.06 (m, 2H), 1.89-1.58 (m, 6H), 1.52-1.26 (m, 6H), 1.23 (d, 3H, J=6.4 Hz), 0.84 (s, 3H).

HRMS: Calc. for C₂₄H₃₈N₂OH+ (M + H) 371.3062, found 371.3060.

RU1968F3: 1H-NMR (400 MHz, DMSO-d6) 8.96 (s, 1H), 7.09 (d, 1H, J=8.3 Hz), 6.57 (dd, 1H, J₁=8.3 Hz, J₂=2.7 Hz), 6.51 (d, 1H, J=2.7 Hz), 2.30-2.22 (m, 2H), 2.13 (s, 6H), 1.86-1.50 (m, 9H), 1.41-1.15 (m, 6H), 0.96 (d, 3H, J=6.2 Hz), 0.74 (s, 3H).

HRMS: Calc. for C₂₄H₃₈N₂OH+ (M + H) 371.3062, found 371.3055.

RU1968F4: 1H-NMR (400 MHz, DMSO-d6) 9.00 (s, 1H), 7.04 (d, 1H, J=8.7 Hz), 6.50 (dd, 1H, J₁=8.7 Hz, J₂=2.5 Hz), 6.43 (d, 1H, J=2.5 Hz), 3.30 (m, 4H, below HDO), 2.82 (s, 6H, broad), 2.71 (m, 2H), 2.25 (m, 1H), 2.11 (m, 1H), 1.96 (m, 1H), 1.84-1.65 (m, 6H), 1.51 (m, 2H), 1.39-1.15 (m, 9H), 0.68 (s, 3H).

HRMS: Calc. for C₂₄H₃₈N₂OH+ (M + H) 371.3062, found 371.3067.

Supplementary Figures

Figure S1: Relative stereochemistry at C18 and C20 in 3a. Right panel: H-H COESY spectrum of 3a. C18-CH₃ groups were identified as singlets at $\delta = 0.73$ ppm (blue, major isomer) and $\delta = 0.80$ ppm (red, minor isomer). CH₃ groups at C21 were identified as overlapping doublets ($\delta = 1.09$ ppm major isomer and $\delta = 1.10$ ppm minor isomer), each of which could be cross-referenced to a multiplet at $\delta > 2.5$ ppm, which consequently was assigned to the CH-group at C20. (Major isomer, dashed blue lines, $\delta = 1.09$ ppm $\rightarrow \delta = 2.64$ ppm; minor isomer, dashed red lines, $\delta = 1.10$ ppm $\rightarrow \delta = 2.76$ ppm). Left panel: NOE experiments to assign relative stereochemistry between C18 and C20. Blue box: major isomer; irradiation of the C18-CH₃ singlet ($\delta = 0.73$ ppm) results in a strong negative NOE resonance at $\delta = 2.64$ ppm, indicating spatial proximity of C18- and C20-protons. Cis configuration was assigned for this isomer. Red box: minor isomer; irradiation of the C18-CH₃ singlet ($\delta = 0.80$ ppm) results in no observable NOE resonance at $\delta = 2.76$ ppm, indicating no spatial proximity of C18- and C20-protons. Trans configuration was assigned for this isomer.

Figure S2: Relative stereochemistry at C18 and C20 in 3b. Right panel: H-H COESY spectrum of 3b. C18-CH₃ groups are easily identified as singlets at $\delta = 0.72$ ppm (blue, major isomer) and $\delta = 0.85$ ppm (red, minor isomer). CH₃ groups at C21 are identified as doublets ($\delta = 1.16$ ppm major isomer and $\delta = 1.05$ ppm minor isomer), each of which could be cross referenced to a multiplet at $\delta > 2.5$ ppm, which consequently was assigned to the CH-group at C20. (Major isomer, dashed blue lines, $\delta = 1.16$ ppm $\rightarrow \delta = 2.55$ ppm; minor isomer, dashed red lines, $\delta = 1.05$ ppm $\rightarrow \delta = 2.64$ ppm). Left panel: NOE experiments to assign relative stereochemistry between C18 and C20. Blue box: major isomer; irradiation of the C18-CH₃ singlet ($\delta = 0.72$ ppm) results in a strong negative NOE resonance at $\delta = 2.55$ ppm, indicating spatial proximity of C18- and C20-protons. Cis configuration was assigned for this isomer. Red box: minor isomer; irradiation of the C18-CH₃ singlet ($\delta = 0.85$ ppm) results in no observable NOE resonance at $\delta = 2.64$ ppm, indicating no spatial proximity of C18- and C20protons. Trans configuration was assigned for this isomer.

Figure S3: The action of RU1968F1 itself in human sperm. (A) RU1968F1-induced Ca²⁺ signals in human sperm. (B) Dose-response relation of the RU1968F1-evoked signal amplitudes (n = 3). Error bars indicate SD. (C) RU1968F1-induced Ca²⁺ signals in human sperm at 10 nM extracellular Ca²⁺. (D) Changes in pH_i evoked by RU1968F1 or NH₄Cl in sperm loaded with the pH indicator BCECF. The signals were recorded in the FluoStar. (E) Fraction of immotile sperm in the absence (n= 9) and presence of the RU1968F1 (30 μ M), MDL12330A (100 μ M), Mibefradil (60 μ M), or NNC-55-0396 (30 μ M) (n = 5). Error bars indicate SD. *P < 0.05 versus control. (F) Fraction of vital cells in the absence and presence of the inhibitors (n = 5). Vitality was evaluated by

the Eosin test, performed according to the WHO manual. Error bars indicate SD. *P < 0.05 versus control (G) Fold increase in acrosome-reacted sperm after treatment with RU1968F1 (30 μ M), Mibefradil (40 μ M), or NNC-55-0396 (20 μ M) (n = 10). Error bars indicate SD. *P < 0.05 versus control

Figure S4: RU1968F1 inhibits depolarization- and alkaline-evoked Ca²⁺ signals in human sperm. (A) Ca²⁺ signals evoked by mixing of sperm with pH8.6-HTF and RU1968F1 in a stopped-flow apparatus. The final pH after mixing was 8.1. (B) Ca²⁺ signals evoked by mixing of sperm with K⁺-HTF and RU1968F1 in a stopped-flow apparatus. The final K⁺ concentration after mixing was 51.25 mM.

Figure S5: **RU1968F1 inhibits progesterone responses in sperm bathed in NH₄Cl.** (A) Progesterone-induced Ca²⁺ signals (500 nM) in human sperm bathed for 20 minutes in 30 mM NH₄Cl. (B) Dose-response relation of signals from (A). Mean IC₅₀: 3.1 ± 1.2 (n = 5).

Figure S6: Action of RU1968F2-F4 on their own and on CatSper-mediated Ca²⁺ signals in human sperm populations. (A) RU1968F2-induced Ca²⁺ signals in human sperm. (B) Progesterone (500 nM)-induced Ca²⁺ signals in human sperm in the presence of RU1968F2; (C) Dose-response relation of the signal amplitudes from (B) (IC₅₀ = 1.6 μ M). (D) RU1968F3-induced Ca²⁺ signals in human sperm. (E) Progesterone-induced Ca²⁺ signals in the presence of RU1968F3. (F) Dose-response relation of the signal amplitudes from (E) (IC₅₀ = 2.7

 μ M). (G) RU1968F4-induced Ca²⁺ signals in human sperm. (H) Progesterone-induced Ca²⁺ signals in human sperm in the presence of RU1968F4. (I) Dose-response relation of the signal amplitudes from (H) (IC₅₀ = 5.8 μ M)

Figure S7: Action of RU1968F1 on Hv1 currents in human sperm and ATP-evoked Ca²⁺ responses in mouse sperm. (A) Voltage-gated proton currents recorded from a human sperm cell before (blue) and after superfusion with RU1968F1 (red). (B) Mean outward current before and after application of RU1968F1 (n = 3). Arrow in panel (A) indicates the time point at which outward currents were determined. Error bars indicate SD. (C) ATP-evoked Ca²⁺ signals in CatSper1^{-/-} mouse sperm in the absence and presence of RU1968F1. The Ca²⁺ responses were recorded in the FluoStar. ATP was injected at t = 0 s.

Figure S8: RU1968F1 suppresses penetration of sperm into viscous media. (A) Number of sperm at penetration distances of 0-4 cm in a modified Kremer's sperm-mucus penetration test. Sperm were incubated in buffer (0) or RU1968F1 (n = 21). Error bars indicate SD. *P < 0.05 versus control (0, without RU1968F1). *P < 0.05 versus progesterone without RU1968F1 (B) Number of sperm after incubation in buffer (0), progesterone, or progesterone plus RU1968F1 (n = 21). Error bars indicate SD. *P < 0.05 versus control, *P < 0.05 versus progesterone without RU1968F1 (0, without progesterone). (C) Number of sperm bathed in buffer (control) or progesterone when the capillary included buffer (0) or RU1968F1 (n = 6). Error bars indicate SD. *P < 0.05 versus control (0, without progesterone), *P < 0.05 versus progesterone without RU1968F1 (0, without progesterone). (C) Number of sperm bathed in buffer (control) or progesterone when the capillary included buffer (0) or RU1968F1 (n = 6). Error bars indicate SD. *P < 0.05 versus control (0, without progesterone), *P < 0.05 versus progesterone without RU1968F1 (0, without progesterone).

Figure S9: RU1968F1 inhibits Ca_V1.2 channels. Representative whole-cell current recorded from a HEK293T cell expressing human Ca_V1.2+ $\beta_{2b}+\alpha_2\delta_1$ before (A) and after perfusion of the cell with 50 µM RU1968F1 (B). (C) Plotting the mean peak current versus voltage demonstrates the incomplete block of Ca_V1.2 by RU1968F1 (n = 5). (D) Peak currents at +20 mV recorded every 2 s while the cell was perfused with external solution or solution containing 50 µM RU1968F1. The reduction and recovery of the current during the wash-in (red) and wash-out (blue) of RU1968F1, respectively, was fitted with an exponential function. The time constants were used to calculate an approximate affinity (k_D) of 31 ± 9 µM (n = 4).

Figure S10: RU1968F1 inhibits Ca_v3.2 channels. Representative whole-cell current recorded from a HEK293T cell expressing Ca_v3.2 before (A) and after perfusion of the cell with RU1968F1 (B). (C) Plotting the mean peak current versus voltage demonstrates the incomplete block of Ca_v3.2 by RU1968F1 (n = 5). (D) Peak currents at +20 mV recorded every 2 s while the cell was perfused with external solution or solution containing 50 μ M RU1968F1. The reduction and recovery of the current during the wash-in (red) and wash-out (blue) of RU1968F1, respectively, was fitted with an exponential function. The time constants were used to calculate an approximate affinity (k_D) of 16 ± 3 μ M (n = 4).