CHEMISTRY A European Journal

Supporting Information

Tetraacylstannanes as Long-Wavelength Visible-Light Photoinitiators with Intriguing Low Toxicity

Judith Radebner,^{*[a]} Anna Eibel,^[b] Mario Leypold,^[a] Nina Jungwirth,^[a] Thomas Pickl,^[a] Ana Torvisco,^[a] Roland Fischer,^[a] Urs Karl Fischer,^[c] Norbert Moszner,^[c] Georg Gescheidt,^[b] Harald Stueger,^[a] and Michael Haas^{*[a]}

chem_201801622_sm_miscellaneous_information.pdf

CONTENT

Experimental Section	. 2
General Considerations	. 2
Synthesis of 1a	. 3
Synthesis of 1b	. 3
Analytical Section	. 4
NMR-Spectroscopy	. 4
Steady-State Photolysis (SSP) / UV-Vis Spectroscopy	. 6
CIDNP Spectroscopy	. 6
X-ray Crystallography	. 7
Photo-DSC	. 8
Computational Section	. 8
References	31

Experimental Section

General Considerations

All experiments were performed under a nitrogen atmosphere using standard Schlenk techniques. Solvents were dried using a column solvent purification system.^[1] Commercial KOtBu (97%), 2,4,6-Trimethylbenzoyl chloride (99%) and 2,6-Dimethylbenzoic acid (97%) were used without any further purification.

¹H (299.95 MHz), ¹³C (75.43 MHz) and ²⁹Si (59.59 MHz) NMR spectra were recorded on a Varian INOVA 300 spectrometer in C_6D_6 or CDCl₃ solution and referenced versus TMS using the internal ²H-lock signal of the solvent. Tetrakis(trimethylsilyl)stannane, 2,4,6-Trimethylbenzoyl fluoride and 2,6-Dimethylbenzoyl fluoride were prepared according to published procedures.^[2]

HRMS spectra were run on a Kratos Profile mass spectrometer. Infrared spectra were obtained on a Bruker Alpha-P Diamond ATR Spectrometer from the solid sample. Melting points were determined using Stuart SMP50 apparatus and are uncorrected. Elemental analyses were carried out on a Hanau Vario Elementar EL apparatus.

CIDNP experiments were carried out on a 200 MHz Bruker AVANCE DPX spectrometer equipped with a custom-made CIDNP probe head. A Hg-Xe UV lamp (Hamamatsu Lightningcure LC4, 3500 mW/cm², λ_{max} = 365 nm) served as the light source. The typical CIDNP timing sequence consists of the following parts: composite pulse presaturation, lamp flash, 90° radiofrequency detection pulse (2.2 µs), and FID. "Dummy" CIDNP spectra employing the same pulse sequence but without the lamp pulse were always measured and subtracted from the CIDNP spectra. Samples were prepared in deuterated acetonitrile and deoxygenated by bubbling with argon before the experiment. Chemical shifts (δ) are reported in ppm relative to tetramethylsilane (TMS) using the residual deuterated solvent signals as an internal reference (CD₃CN, $\delta_{H} = 1.94$ ppm).

UV absorption spectra were recorded on a Perkin Elmer Lambda 5 spectrometer. Photobleaching experiments (steady state photolysis, SSP) were performed on a TIDAS UV- VIS spectrometer (J&M, Germany). Samples (0.6 mM photoinitiator in acetonitrile) were irradiated in a quartz cuvette (1 cm x 1 cm) from the side with a 470 nm LED (Roithner Lasertechnik, Vienna) while UV-Vis spectra were recorded. A spectroradiometer (GL Spectis, GL Optics, Germany) was used to measure the output power of the LED and to ensure an equal photon flux for SSP experiments (13.1 mW, photon flux: 0.05 μ mol s⁻¹ at 20 mA, peak wavelength: 462.5 nm).

Materials and Solvents for Spectroscopic Investigations. Bis(acyl)phosphane oxide BAPO Irgacure 819 (**3**) was obtained from TCI. Tetraacylgermanes **2a** and **2b** were synthesized as described previously.^[3] The monomer butyl acrylate (BA, purity \geq 99.0 %) was obtained from Fluka and freed from stabilizers by passing through a column of basic alumina before use. The solvents acetonitrile (MeCN, Sigma Aldrich, \geq 99.9 %), and CD₂Cl₂ (Sigma Aldrich, 99.9 %) were employed as received. All experiments were performed at ambient temperature.

Photo-DSC. Experiments were performed on a photo-DSC instrument from Perkin Elmer (DSC 7). All formulations were analyzed in triplicate. After an equilibration phase

(4 min) the samples were irradiated for 3 min with blue LED light (Bluephase Lamp, 1200 mW·cm⁻², Ivoclar Vivadent AG) at 30°C under constant N₂ flow (20 mL min⁻¹). The heat flow of the polymerization reaction was recorded as a function of time. From the theoretical heat of polymerization of the monomer HDDA ($\Delta H_{0,HDDA} = 761.92 \text{ J g}^{-1}$ or 172.4 kJ mol⁻¹ determined from 86.2 kJ mol⁻¹ per acrylate unit)^[4]. The double bond conversion (DBC) was calculated by dividing the measured heat of polymerization ΔH through $\Delta H_{0,HDDA}$. The maximum rate of polymerization $R_{P,max}$ was determined using equation 1, with h as the height of the exothermic polymerization signal in mW mg⁻¹ and $\rho = 1010 \text{ g L}^{-1}$ as the density for HDDA at 25 °C.^[5]

$$R_{P,max} = \frac{h \times \rho}{\Delta H_{0,HDDA}} \quad (1)$$

Synthesis of 1a

A solution of (Me₃Si)₃SnK in 10 mL of DME was freshly prepared from 1.00 g Sn(SiMe₃)₄ (2.43 mmol) and 0.30 g KOtBu (2.67 mmol) and slowly added to a solution of 1.66 g (9.96 mmol) 2,4,6-trimethylbenzoyl fluoride in 15 mL DME at 0°C. The mixture was stirred for another 10 min. For the work up the volatile components were evaporated under reduced pressure. The solid residue was extracted with pentane/toluene and filtered. The filtrate was pumped down. The obtained crude product was recrystallized from toluene, giving orange crystals of **1a**. Yield: 0.86 g (50%) of analytically pure **1a** as orange crystals.

mp: 122-125°C. **Anal. Calc.**: C, 67.91; H, 6.27 % **Found**: C, 67.24; H, 5.99 %. ¹¹⁹**Sn**-**NMR** (CDCl₃, TMS, ppm): -499.02. ¹³**C-NMR** (CDCl₃, TMS, ppm): 243.88 (C=O); 143.71, 139.53, 131.95, 128.99 (Mes-C); 21.33, 18.84 (Mes-CH₃).¹**H-NMR** (CDCl₃, TMS, ppm): 6.61 (s, 2H, Mes-H); 2.24 (s, 3H, Mes-CH₃); 2.05 (s, 6H, Mes-CH₃). IR (neat): v(C=O) = 1662, 1622 cm⁻¹. **HRMS**: **Calc**. 561.1458 for (M⁺-Acyl) **Found**: 561.1450. **UV-VIS**: λ [nm] (ϵ [L mol⁻¹ cm⁻¹]) = 399 (1727).

Synthesis of 1b

A solution of (Me₃Si)₃SnK in 10 mL of DME was freshly prepared from 1.00 g Sn(SiMe₃)₄ (2.43 mmol) and 0.30 g KOtBu (2.67 mmol) and slowly added to a solution of 1.52 g (9.96 mmol) 2,6-dimethylbenzoyl fluoride in 15 mL DME at 0°C. The mixture was stirred for another 10 min. For the work up the volatile components were evaporated under reduced pressure. The solid residue was extracted with pentane/toluene and filtered. The filtrate was pumped down. The obtained crude product was recrystallized from toluene, giving orange crystals of **1b**. Yield: 0.98 g (62%) of analytically pure **1b** as orange crystals.

mp: 130-135°C. **Anal. Calc.**: C, 66.38; H, 5.57 % **Found**: C, 66.03; H, 5.81 %. ¹¹⁹**Sn**-**NMR** (C₆D₆, TMS, ppm): -505.88. ¹³**C-NMR** (C₆D₆, TMS, ppm): 243.18 (C=O); 146.99,

131.88, 129.66, 128.66 (Aryl-C); 18.82 (Aryl-*o*CH₃).¹**H-NMR** (C₆D₆, TMS, ppm): 7.05 (t, 1H, Aryl-H); 6.84 (s, 2H, Aryl-H); 2.04 (s, 6H, Aryl-*o*CH₃). IR (neat): v(C=O) = 1669, 1633 cm⁻¹. **HRMS**: **Calc**. 519.1027 for (M⁺-Acyl) **Found**: 519.0988 **UV-VIS**: λ [nm] (ε [L mol⁻¹ cm⁻¹]) = 396 (1758).

Analytical Section NMR-Spectroscopy

Figure S2: ¹H-, ¹³C-, ¹¹⁹Sn and 2D-HSQC-NMR spectra of **1b** (C_6D_6 solution, vs. ext. TMS, ppm)

Steady-State Photolysis (SSP) / UV-Vis Spectroscopy

Figure S3: Comparison of the UV-Vis absorption spectra of compounds **1a,b** and **2–5** (samples: 0.6 mM solutions in acetonitrile).

CIDNP Spectroscopy

Figure S4: ¹H NMR and CIDNP spectra of **1b** (10 mM solution in acetonitrile- d_3) recorded in presence of butyl acrylate **BA** (50 mM).

X-ray Crystallography

All crystals suitable for single crystal X-ray diffractometry were removed from a vial and immediately covered with a layer of silicone oil. A single crystal was selected, mounted on a glass rod on a copper pin, and placed in the cold N₂ stream provided by an Oxford Cryosystems cryostream. XRD data collection was performed for all compounds on a Bruker APEX II diffractometer with use of an Incoatec microfocus sealed tube of Mo Ka radiation (λ = 0.71073 Å) and a CCD area detector. Empirical absorption corrections were applied using SADABS or TWINABS.^[6] The structures were solved with use of the intrinsic phasing option in SHELXT and refined by the full-matrix least-squares procedures in SHELXL.^[7] The space group assignments and structural solutions were evaluated using PLATON.^[8] Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located in calculated positions corresponding to standard bond lengths and angles. CCDC 1824373 and 1824374 contain the supplementary crystallographic data for all compounds. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif. Table S1 contains crystallographic data and details of measurements and refinement for compounds 1a.b.

Table S1: Crystallographic data and details of measurements for compounds **1a**,**b** Mo K α (λ =0.71073Å). R₁ = Σ / |F₀|- |F_c|/| Σ |F_d; wR2 = [Σ_w (F₀²-F₂²)²/ Σ_w (F₀²)²]^{1/2}

Compound	1a	1b
Formula	C40H44O4Sn	C ₃₆ H ₃₆ O ₄ Sn
Fw (g mol⁻¹)	707.44	651.34
a (Å)	10.8064(4)	15.062(3)
b (Å)	12.0573(4)	11.477(2)
<i>c</i> (Å)	14.7267(6)	17.674(3)
α (°)	112.379(2)	90
β (°)	96.797(2)	90
γ (°)	94.499(2)	90
V (Å ³)	1745.83(11)	3055.2(10)
Z	2	4
Crystal size (mm)	0.15 × 0.13 × 0.12	0.16 × 0.13 × 0.09
Crystal habit	Block, yellow	Block, orange
Crystal system	Triclinic	Orthorhombic
Space group	<i>P</i> -1	Pca21
<i>d_{calc}</i> (mg/m³)	1.346	1.416
μ (mm ⁻¹)	0.77	0.87
<i>T</i> (K)	100(2)	100(2)
2θ range (°)	2.6–27.7	2.3–33.1
F(000)	732	1336
Rint	0.107	0.084
independent reflns	6143	11687
No. of params	418	378
$P1 \rightarrow P2$ (all data)	R1 = 0.0337	R1 = 0.0390
ri, wrz (all uala)	wR2 = 0.0744	wR2 = 0.0588
$P1 \rightarrow P2 (> 2\sigma)$	R1 = 0.0240	R1 = 0.0297
RI, WRZ (>20)	wR2 = 0.0516	wR2 = 0.0714

Photo-DSC

Table S2: Time to peak maximum t_{max} , maximum rate of photopolymerization $R_{P.max}$ and final double bond conversion DBC acquired from photo-DSC.

	PI [w%]	t _{max} [S]	R _{P,max} [mol L ⁻¹ s ⁻¹]	DBC [%]
1a	0.30	4.5	0.31	59 ± 1
2a	0.30	5.1	0.25	57 ± 1

Computational Section

All computational studies were executed on a computing cluster with blade architecture using the Gaussian09 software package.^[9] Geometry optimizations were performed in the gas phase with B3LYP as hydride density functional^[10] together with the LANL2DZdp-ECP for Sn^[11] as well as 6-31+G(d,p) split-valence basis set for H, C and O.^[12] Minimum structures were characterized by harmonic frequency calculations, yielding none imaginary frequency. Vertical excitations were calculated via time-dependent DFT (TD-DFT) at the LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O) level of theory^[13,14] and solvent effects were considered by applying the polarized continuum model (PCM).^[15] Chloroform (CHCl₃) was used as a solvent with a dielectric constant of $\varepsilon = 4.7113$. All structures and the simulated UV-Vis spectra were plotted using the Gabedit software package.^[16]

Table	S3:	Experimental	and	PCM(CHCI	3) TD-DF	т са	M-B3LYP/LA	NL2DZdp-EC	P(Sn),def2-
TZVP(H	,C,O)/	/B3LYP/LANL2	2DZdp·	-ECP(Sn),6-	·31+G(d)(H	,C,O)	calculated	Wavelength	Absorption
Maxima	λ [nm], Extinction C	oefficie	ents e [dm ² •	mol ⁻¹] and	Oscilla	tor Strength:	s f for 1a , b as	well as the
correspo	onding	ı trimethylstanr	ane de	erivatives.					

	$\lambda_{max,}exp$ (c)	Tetra $\lambda_{max,}$ calc (f)	Mono $\lambda_{max,}$ calc (f)	Absorption Edge	Assignment
1a	398 (1776)	416, 409, 389 (0.0221, 0.0051, 0.0137)	414 (0.0038)	480	n/σ-π*(CO/Aryl)
1b	396 (1735)	417, 409, 389 (0.0167, 0.0053, 0.0131)	415 (0.0036)	480	n/σ-π*(CO/Aryl)

Optimized cartesian coordinates and zero point vibrational energy corrected absolute energy in Hartree of **1a** (calculated with B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O)).

E = -1854.267064 a.u.

Sn	0.004788	0.000882	-0.002314
С	1.048907	-1.569791	1.231538
0	0.288015	-2.458006	1.587541
0	0.280764	2.460842	-1.592415
С	1.043562	1.573741	-1.237921
0	-0.284579	2.401092	1.678188
С	-1.042735	1.527086	1.283823
0	-0.284994	-2.400141	-1.682300
С	-1.043299	-1.527262	-1.285715
С	3.207094	-2.819545	1.019220
С	2.525476	-1.649753	1.437345
С	4.598763	-2.856536	1.144127
Н	5.128930	-3.743851	0.803329
С	5.326272	-1.799947	1.700310
С	4.624677	-0.670237	2.131371
Н	5.170484	0.155628	2.583198
С	3.237735	-0.567303	2.002069
С	2.488971	-4.015598	0.430343
Н	3.208932	-4.697531	-0.033219
Н	1.751500	-3.728439	-0.326217
Н	1.945231	-4.568746	1.203311
С	2.537351	0.664647	2.531549
Н	1.745941	0.412189	3.246112
Н	2.069864	1.269303	1.745277
Н	3.249879	1.316517	3.046406
С	6.825053	-1.892432	1.864204
Н	7.090109	-2.349427	2.827305
Н	7.294138	-0.903074	1.835238
Н	7.277118	-2.507743	1.078931
С	2.519833	1.654659	-1.443841

С	3.232084	0.573082	-2.011302
С	3.200694	2.825765	-1.029483
С	2.530390	-0.655423	-2.547238
Н	3.242687	-1.306293	-3.063668
Н	1.740345	-0.398784	-3.261880
Н	2.060744	-1.262665	-1.764239
С	6.825735	1.869820	-1.815154
Н	7.304461	1.392813	-0.949234
Н	7.181216	2.904778	-1.855145
Н	7.186435	1.350453	-2.709723
С	2.482051	4.024986	-0.447763
Н	1.744336	3.741316	0.309876
Н	1.938558	4.574098	-1.223758
Н	3.201584	4.709335	0.012881
С	-2.521551	1.598076	1.476877
С	-3.201029	2.781327	1.096136
С	-4.594721	2.809787	1.204314
Н	-5.122476	3.710887	0.897906
С	-5.326591	1.728502	1.703439
С	-4.625976	0.588444	2.109450
Н	-5.173828	-0.252193	2.530558
С	-3.237612	0.494427	1.994707
С	-2.478345	4.003518	0.569944
Н	-1.941404	4.520410	1.372124
Н	-3.194278	4.705979	0.131529
Н	-1.734470	3.750422	-0.192446
С	-6.833676	1.782712	1.788527
Н	-7.206851	1.227535	2.656059
н	-7.295765	1.338359	0.896396
Н	-7.195002	2.813773	1.862580

С	-2.538569	-0.749871	2.496419
н	-1.755555	-0.515551	3.226250
Н	-2.061280	-1.329957	1.697682
Н	-3.254387	-1.418603	2.984356
С	-2.522547	-1.600304	-1.474645
С	-3.241426	-0.497753	-1.990907
С	-4.629992	-0.593519	-2.101605
Н	-5.180085	0.246245	-2.521534
С	-5.328040	-1.734250	-1.693052
С	-4.593417	-2.814448	-1.195635
Н	-5.119195	-3.716066	-0.887352
С	-3.199446	-2.784239	-1.091501
С	-2.545337	0.747176	-2.495211
Н	-2.067291	1.328786	-1.698022
Н	-3.263232	1.414337	-2.982251
Н	-1.763505	0.513427	-3.226478
С	-6.835306	-1.790275	-1.773652
Н	-7.195634	-2.821792	-1.846180
Н	-7.211717	-1.235899	-2.640298
Н	-7.295251	-1.346069	-0.880334
С	-2.473703	-4.005343	-0.567011
Н	-1.727463	-3.751020	0.192639
Н	-1.939038	-4.522224	-1.370735
Н	-3.187387	-4.708277	-0.125684
С	4.592445	2.863998	-1.157304
Н	5.121533	3.755345	-0.825647
С	5.320569	1.805184	-1.707403
С	4.618176	0.677340	-2.143533
Н	5.162901	-0.144807	-2.603324

Optimized cartesian coordinates and zero point vibrational energy corrected absolute energy in Hartree of **1b** (calculated with B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O)).

E = -1697.105806 a.u.

С	4.633268	0.630465	-2.100668
С	3.242043	0.537775	-1.998287
С	2.530703	1.624968	-1.440875
С	3.203360	2.793537	-1.004892
С	4.598821	2.827337	-1.103243
С	5.310760	1.759479	-1.645551
С	1.048573	1.547896	-1.260874
0	0.291534	2.421334	-1.656143
С	2.537050	-0.683479	-2.545830
С	2.471827	3.989680	-0.433112
Н	6.393853	1.810518	-1.720579
Sn	0.000013	0.000171	-0.000027
С	-1.048525	-1.547579	-1.260895
С	-2.530631	-1.624689	-1.441012
С	-3.242004	-0.537353	-1.998114
С	-4.633228	-0.630038	-2.100549
С	-5.310699	-1.759213	-1.645801
С	-4.598734	-2.827225	-1.103826
С	-3.203279	-2.793417	-1.005424
С	-2.537085	0.684117	-2.545288
Н	-6.393789	-1.810257	-1.720858
С	-2.471783	-3.989707	-0.433892
С	1.048613	-1.547918	1.260325
С	2.530663	-1.624912	1.440711
С	3.203447	-2.793628	1.005294
С	4.598882	-2.827452	1.104114
С	5.310691	-1.759461	1.646305
С	4.633089	-0.630270	2.100840
С	3.241904	-0.537570	1.998012
С	2.472202	-3.989934	0.433464

н	6 393759	-1 810497	1 721691
c	2 536890	0.683916	2 545037
C.	-1 048651	1 547858	1 260731
c C	-2 530744	1 62/636	1 // 1060
c c	-3 203737	2 7031/6	1 005/22
c c	-0.200707	2.735140	1 10/106
C C	5 210795	1 759550	1.104100
C C	4 632060	0.620579	2 101100
0	-4.032909	0.029570	1 000202
	-3.241748	0.537184	1.998393
0	-2.4/2632	3.989538	0.433589
н	-6.393870	1.809361	1.721671
С	-2.536418	-0.684117	2.545401
0	0.291583	-2.421614	1.655066
0	-0.291754	2.421576	1.655670
0	-0.291421	-2.420931	-1.656233
Н	5.129285	-3.711291	0.758066
Н	5.185892	0.193944	2.544421
Н	3.182640	-4.676385	-0.037880
Н	1.724816	-3.704351	-0.314035
Н	1.938899	-4.538044	1.217272
Н	1.759747	0.419407	3.270953
Н	2.050913	1.287689	1.769155
Н	3.250628	1.340539	3.052048
Н	3.250867	-1.340151	-3.052666
Н	1.760285	-0.418651	-3.272032
Н	2.050574	-1.287276	-1.770268
Н	1.724730	3.703975	0.314657
Н	1.938107	4.537403	-1.216899
Н	3.182103	4.676512	0.037920
Н	-5.129781	3.710321	0.757907

Н	-5.185614	-0.194711	2.544745
Н	-1.939078	4.537478	1.217333
Н	-3.183177	4.676099	-0.037432
Н	-1.725464	3.704078	-0.314201
Н	-1.759238	-0.419413	3.271203
Н	-2.050413	-1.287815	1.769468
Н	-3.249936	-1.340872	3.052550
Н	-5.186139	0.194177	-2.543998
Н	-5.129064	-3.711056	-0.757643
Н	-2.051217	1.288034	-1.769444
Н	-3.250852	1.340596	-3.052443
Н	-1.759869	0.419588	-3.271111
Н	-1.724671	-3.704146	0.313911
Н	-1.938094	-4.537304	-1.217786
Н	-3.182088	-4.676590	0.037016
Н	5.129170	3.711042	-0.756767
Н	5.186175	-0.193611	-2.544384

Optimized cartesian coordinates and zero point vibrational energy corrected absolute energy in Hartree of mesitoyltrimethylstannane (calculated with B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O)).

E = -585.731313 a.u.

С	1.329949	-3.539780	0.741244
С	1.124650	-3.231738	-0.623331
С	1.796659	-3.977328	-1.624560
С	2.615289	-5.040823	-1.232591
С	2.824069	-5.367253	0.110280
С	2.185996	-4.590075	1.081230
С	0.182495	-2.137352	-1.030248
0	0.474243	-1.344151	-1.920408
С	1.663699	-3.673985	-3.102023
С	3.701288	-6.533366	0.500003
С	0.700580	-2.729184	1.856486
Sn	-1.927876	-1.878463	-0.353924
С	-2.050191	-0.083159	0.830698
С	-2.960199	-1.588504	-2.218177
С	-2.783316	-3.558523	0.706400
Н	-3.093918	0.228724	0.945122
Н	-1.625318	-0.235527	1.828026
Н	-1.501313	0.726837	0.339677
Н	-3.806132	-3.737347	0.357691
Н	-2.198850	-4.467505	0.530032
Н	-2.817847	-3.374382	1.785117
Н	-3.922547	-1.089140	-2.062934
Н	-2.343703	-0.968623	-2.876092
Н	-3.145589	-2.545919	-2.716480
Н	3.116210	-5.624428	-2.002710
Н	2.362333	-4.804204	2.133709
Н	-0.370039	-2.941987	1.968452
Н	1.172464	-2.971001	2.814125
Н	0.809147	-1.650875	1.699495
н	4.163244	-6.377796	1.480761

Н	3.119691	-7.463400	0.558283
Н	4.500298	-6.696401	-0.231135
Н	2.093584	-4.487621	-3.694997
Н	0.621029	-3.541385	-3.408505
Н	2.179612	-2.745206	-3.363288

Optimized cartesian coordinates and zero point vibrational energy corrected absolute energy in Hartree of 2,6-dimethylbenzoyltrimethylstannane (calculated with B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O)).

E = -546.441003 a.u.

С	1.374843	-3.487835	0.780919
С	1.164042	-3.197027	-0.586454
С	1.815430	-3.953829	-1.591862
С	2.632685	-5.020730	-1.200450
С	2.839985	-5.316350	0.144748
С	2.225013	-4.542989	1.126653
С	0.220214	-2.100292	-0.994378
0	0.532087	-1.278699	-1.849771
С	1.658951	-3.657501	-3.068493
Н	3.487144	-6.142438	0.427670
С	0.754288	-2.656910	1.885770
Sn	-1.910607	-1.899591	-0.364452
С	-2.098198	-0.103127	0.809349
С	-2.913046	-1.644378	-2.250362
С	-2.729451	-3.599178	0.690893
Н	-3.152426	0.170295	0.925470
Н	-1.664485	-0.233886	1.805952
Н	-1.581005	0.723610	0.311934
Н	-3.759060	-3.780203	0.364123
Н	-2.142825	-4.501152	0.488150
Н	-2.739088	-3.430501	1.772646
Н	-3.900699	-1.191034	-2.114454
Н	-2.311657	-0.991397	-2.890187
Н	-3.042174	-2.605551	-2.758950
Н	3.120792	-5.618904	-1.966129
Н	2.406872	-4.754789	2.177635
Н	-0.320379	-2.850130	1.996740
Н	1.219293	-2.895942	2.847453
Н	0.880790	-1.582088	1.717481
Н	2.084698	-4.470825	-3.664675

Н	0.610713	-3.534042	-3.360642
Н	2.165616	-2.726954	-3.341314

Simulation of UV-Vis spectra

Figure S5: Simulated UV-Vis spectrum of **1a** at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Figure S6: Simulated UV-Vis spectrum of **1b** at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Figure S7: Simulated UV-Vis spectrum of mesitoyltrimethylstannane at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Figure S8: Simulated UV-Vis spectrum of 2,6-dimethylbenzoyltrimethylstannane at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Calculated UV-Vis spectrum of **1a** for the first ten singlet excitations at the $PCM(CHCI_3)$ TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP /LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Excited State 1: Singlet-A 2.9792 eV 416.17 nm f=0.0221 <S**2>=0.000

149 -> 163	0.15217
150 -> 162	-0.15891
158 -> 164	-0.30266
159 -> 162	0.28674
160 -> 161	0.46652

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1854.57798038

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State	2: Singlet-A	3.0304 eV	409.14 nm	f=0.0051	<s**2>=0.000</s**2>
149 -> 164	-0.16043				
150 -> 161	-0.17832				
158 -> 163	0.31363				
159 -> 161	0.34640				
160 -> 162	0.40471				
Excited State	3: Singlet-A	3.0884 eV	401.45 nm	f=0.0000	<\$**2>=0.000
149 -> 162	0.17046				
150 -> 163	-0.15826				
152 -> 161	-0.11829				
158 -> 161	0.42035				
159 -> 163	0.26820				
160 -> 164	-0.35889				
Excited State	4: Singlet-A	3.1849 eV	389.29 nm	f=0.0137	<s**2>=0.000</s**2>
149 -> 161	0.17940				
150 -> 164	0.17941				
152 -> 162	-0.12075				
158 -> 162	0.37024				
159 -> 164	-0.27753				
160 -> 163	0.37282				
Excited State	5: Singlet-A	4.3130 eV	287.47 nm	f=0.0836	<\$**2>=0.000
151 -> 164	0.16330				
152 -> 163	0.11688				
155 -> 162	0.21939				
157 -> 163	-0.12108				
159 -> 161	0.50162				
160 -> 162	-0.27106				
160 -> 165	0.13418				
Excited State	6: Singlet-A	4.3590 eV	284.43 nm	f=0.2560	<s**2>=0.000</s**2>
150 -> 162	0.20724				
152 -> 164	-0.13000				
158 -> 164	0.25117				
158 -> 166	0.10052				

159 -> 162	-0.27018	
160 -> 161	0.49577	
Excited State	7: Singlet-A	4.4640 eV 277.74 nm f=0.0006 <s**2>=0.000</s**2>
155 -> 164	-0.10389	
158 -> 161	0.49196	
160 -> 164	0.43354	
160 -> 166	0.13594	
Excited State	8: Singlet-A	4.5246 eV 274.03 nm f=0.0362 <s**2>=0.000</s**2>
150 -> 164	0.18470	
151 -> 161	0.31155	
152 -> 162	-0.16223	
154 -> 161	0.13180	
155 -> 163	-0.29058	
157 -> 162	0.21814	
158 -> 162	-0.24529	
159 -> 164	0.26050	
160 -> 163	0.10070	
Excited State	9: Singlet-A	4.5421 eV 272.97 nm f=0.7916 <s**2>=0.000</s**2>
150 -> 162	0.19718	
151 -> 163	-0.22590	
152 -> 164	-0.12836	
154 -> 163	-0.13978	
155 -> 161	0.36482	
157 -> 164	0.22230	
159 -> 162	0.37424	
Excited State	10: Singlet-A	4.5573 eV 272.06 nm f=0.0405 <s**2>=0.000</s**2>
150 -> 161	0.31028	
151 -> 164	0.14626	
152 -> 163	0.14332	
154 -> 164	0.11005	
155 -> 162	0.19308	
157 -> 163	-0.23895	
158 -> 163	-0.17776	
160 -> 162	0.42776	

Calculated UV-Vis spectrum of **1b** for the first ten singlet excitations at the $PCM(CHCI_3)$ TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP /LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Excited State 1: Singlet-A 2.9766 eV 416.53 nm f=0.0167 <S**2>=0.000

133 -> 147	-0.15218
135 -> 146	-0.12699
142 -> 146	0.29847
143 -> 148	0.31282
144 -> 145	0.47070

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1697.35035259

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State	2: Singlet-A	3.0328 eV	408.82 nm	f=0.0053	<s**2>=0.000</s**2>
133 -> 148	-0.16107				
135 -> 145	-0.14257				
142 -> 145	0.36486				
143 -> 147	0.32389				
144 -> 146	0.40248				
Excited State	3: Singlet-A	3.0810 eV	402.42 nm	f=0.0000	<s**2>=0.000</s**2>
133 -> 146	-0.16876				
135 -> 147	-0.12776				
136 -> 145	-0.10331				
142 -> 147	0.28157				
143 -> 145	0.43432				
144 -> 148	0.36056				
Excited State	4: Singlet-A	3.1848 eV	389.30 nm	f=0.0131	<\$**2>=0.000
133 -> 145	-0.17950				
135 -> 148	-0.14776				
136 -> 146	-0.10923				
142 -> 148	0.29714				
143 -> 146	0.38102				
144 -> 147	0.37560				
Excited State	5: Singlet-A	4.3729 eV	283.53 nm	f=0.0714	<\$**2>=0.000
134 -> 148	0.13109				
136 -> 147	0.11484				
137 -> 146	-0.18412				
142 -> 145	0.49475				
144 -> 146	-0.34515				
144 -> 149	0.15374				
		4.0740 ->/	000 44	(0 4 400	0***0 0.000
	o. Singlet-A	4.3743 eV	∠୪3.44 nm	1=0.1489	<3```2>=0.000
135 -> 140	0.10387				
130 -> 148	0.11294				
142 -> 146	-0.30348				
142 -> 149	0.10591				
143 -> 148	-0.27628				

143 -> 150	-0.10477	
144 -> 145	0.48903	
Excited State	7: Singlet-A	4.4637 eV 277.76 nm f=0.0000 <s**2>=0.000</s**2>
143 -> 145	0.48961	
144 -> 148	-0.44677	
144 -> 150	-0.14172	
Excited State	8: Singlet-A	4.6144 eV 268.69 nm f=0.1089 <s**2>=0.000</s**2>
134 -> 148	0.14167	
135 -> 145	0.24794	
136 -> 147	0.15902	
137 -> 146	-0.18341	
138 -> 145	0.24196	
139 -> 148	0.17689	
140 -> 146	-0.18940	
141 -> 147	-0.25376	
143 -> 147	-0.17691	
144 -> 146	0.30591	
Excited State	9: Singlet-A	4.6183 eV 268.46 nm f=0.0083 <s**2>=0.000</s**2>
134 -> 145	-0.21871	
135 -> 148	-0.11670	
136 -> 146	-0.13431	
137 -> 147	0.22455	
142 -> 148	-0.22998	
143 -> 146	-0.36516	
144 -> 147	0.37499	
Excited State	10: Singlet-A	4.6320 eV 267.67 nm f=0.0004 <s**2>=0.000</s**2>
137 -> 147	-0.10259	
138 -> 148	0.21003	
139 -> 145	0.34949	
140 -> 147	-0.25308	
141 -> 146	-0.31303	
143 -> 146	-0.14155	
144 -> 147	0.21866	

Calculated UV-Vis spectrum of mesitoyltrimethylstannane for the first ten singlet excitations at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Excited State 1: Singlet-A 2.9951 eV 413.96 nm f=0.0038 <S**2>=0.000

54 -> 56

-0.15006

55 -> 56 0.64122 55 -> 61 -0.17376 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -585.797317134 Copying the excited state density for this state as the 1-particle RhoCl density. Excited State 2: Singlet-A 4.7124 eV 263.10 nm f=0.1648 <S**2>=0.000 53 -> 56 0.17342 53 -> 60 0.13455 54 -> 56 0.61418 54 -> 60 -0.11129 55 -> 56 0.13783 Excited State 3: Singlet-A 4.7892 eV 258.88 nm f=0.1621 <S**2>=0.000 53 -> 56 0.61130 54 -> 56 -0.19031 54 -> 60 -0.15503 55 -> 56 -0.14859 Excited State 4: Singlet-A 5.6502 eV 219.43 nm f=0.0698 <S**2>=0.000 53 -> 56 0.14752 55 -> 56 0.10758 55 -> 57 -0.16175 55 -> 59 -0.14359 55 -> 60 0.49151 55 -> 61 0.37647 Excited State 5: Singlet-A 5.7374 eV 216.10 nm f=0.0456 <S**2>=0.000 54 -> 56 -0.15284 55 -> 56 0.11682 55 -> 57 -0.15724 55 -> 58 -0.16289 55 -> 59 0.25628 55 -> 60 -0.30845 55 -> 61 0.44823 Excited State 6: Singlet-A 5.9872 eV 207.08 nm f=0.1050 <S**2>=0.000 53 -> 56 0.21339 53 -> 59 0.12837 53 -> 60 -0.29527 53 -> 61 -0.15637 54 -> 56 0.11005 54 -> 58 0.11393 54 -> 59 -0.20940 54 -> 60 0.40588

54 -> 61	-0.15607	
55 -> 60	-0.14955	
Excited State	7: Singlet-A	6.1258 eV 202.40 nm f=0.1924 <s**2>=0.000</s**2>
53 -> 58	0.11598	
53 -> 59	-0.21005	
53 -> 60	0.40823	
53 -> 61	-0.15313	
54 -> 59	-0.14525	
54 -> 60	0.32739	
54 -> 61	0.24401	
Excited State	8: Singlet-A	6.1886 eV 200.34 nm f=0.0713 <s**2>=0.000</s**2>
52 -> 56	0.65575	
52 -> 61	-0.14262	
Excited State	9: Singlet-A	6.2582 eV 198.11 nm f=0.0201 <s**2>=0.000</s**2>
52 -> 56	0.10169	
55 -> 57	0.50369	
55 -> 58	-0.16136	
55 -> 59	0.31756	
55 -> 60	0.21176	
55 -> 68	0.11160	
Excited State	10: Singlet-A	6.3440 eV 195.44 nm f=0.0148 <s**2>=0.000</s**2>
51 -> 56	0.64603	
51 -> 61	-0.11985	
55 -> 57	0.14873	

Calculated UV-Vis spectrum of 2,6-dimethylbenzoyltrimethylstannane for the first ten singlet excitations at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Excited State 1: 2.9884 eV 414.88 nm f=0.0036 <S**2>=0.000 Singlet-A 49 -> 52 -0.13153 51 -> 52 0.64927 -0.18551 51 -> 57 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -546.490896916 Copying the excited state density for this state as the 1-particle RhoCl density. Excited State 2: 4.7633 eV 260.29 nm f=0.0608 <S**2>=0.000 Singlet-A 49 -> 52 -0.12531 49 -> 56 0.20281 50 -> 52 0.63076 Excited State 3: Singlet-A 4.9058 eV 252.73 nm f=0.1922 <S**2>=0.000 49 -> 52 0.64284 50 -> 52 0.12090 51 -> 52 0.15942 Excited State 4: Singlet-A 5.5850 eV 222.00 nm f=0.0424 <S**2>=0.000 49 -> 52 -0.10924 51 -> 52 0.16185 51 -> 53 -0.18395 51 -> 56 0.35001 51 -> 57 0.52139 5.7539 eV 215.48 nm f=0.0393 <S**2>=0.000 Excited State 5: Singlet-A 50 -> 52 -0.15106 51 -> 53 0.12301 51 -> 54 0.10718 51 -> 55 -0.32357 51 -> 56 0.48685 51 -> 57 -0.28132 Excited State 6: Singlet-A 6.0868 eV 203.69 nm f=0.0865 <S**2>=0.000 48 -> 52 0.10437 49 -> 55 -0.23532 49 -> 56 0.45345 50 -> 52 -0.23385 50 -> 56 0.12255 50 -> 57 0.30716 51 -> 56 -0.11044 Excited State 7: Singlet-A 6.1749 eV 200.79 nm f=0.0967 <S**2>=0.000 47 -> 52 -0.14103 48 -> 52 0.30893

49 -> 56	-0.14266	
49 -> 57	-0.23227	
50 -> 55	-0.24184	
50 -> 56	0.44504	
Excited State	8: Singlet-A	6.1839 eV 200.50 nm f=0.1793 <s**2>=0.000</s**2>
48 -> 52	0.57429	
48 -> 57	-0.13199	
49 -> 57	0.12179	
50 -> 55	0.14472	
50 -> 56	-0.28463	
Excited State	9: Singlet-A	6.3043 eV 196.67 nm f=0.0194 <s**2>=0.000</s**2>
47 -> 52	-0.30625	
51 -> 53	0.39256	
51 -> 54	-0.17981	
51 -> 55	0.36425	
51 -> 56	0.19118	
51 -> 63	0.10982	
Excited State	10: Singlet-A	6.3263 eV 195.98 nm f=0.0196 <s**2>=0.000</s**2>
47 -> 52	0.58341	
47 -> 57	-0.11813	
48 -> 52	0.15416	
51 -> 53	0.26380	
51 -> 55	0.13952	

Figure S9: HOMO-1, HOMO, LUMO and LUMO+1 together with orbital energies of **1a** at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Figure S10: HOMO-1, HOMO, LUMO and LUMO+1 together with orbital energies of **1b** at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

-0.42 eV **LUMO**

номо

Figure S11: HOMO and LUMO together with orbital energies of mesitoyltrimethylstannane at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

-0.46 eV **LUMO**

Figure S12: HOMO and LUMO together with orbital energies of 2,6-dimethylbenzoyltrimethylstannane at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP /LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

Tabel S4: NBO analysis of mesitoyltrimethylstannane at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

			%	%s	%р	%d	%f	H.O.
C1-C2		C1	49.18	34.02	65.83	0.14	0.01	sp ^{1.94}
		C2	50.82	34.84	65.10	0.06	0.01	sp ^{1.87}
C1-C2		C1	45.70	0.00	99.92	0.04	0.03	sp
		C2	54.30	0.05	99.91	0.02	0.02	sp ^{99.99} d ^{0.28} f ^{0.37}
C1-C6		C1	50.52	34.86	65.01	0.12	0.01	sp ^{1.86}
		C6	49.48	35.95	63.90	0.14	0.01	sp ^{1.78}
C1-C11		C1	50.19	31.08	68.88	0.03	0.01	sp ^{2.22}
		C11	49.81	29.46	70.33	0.19	0.01	sp ^{2.39} d ^{0.01}
C2-C3		C2	50.98	34.95	64.99	0.06	0.01	sp ^{1.86}
		C3	49.02	33.76	66.09	0.15	0.01	sp ^{1.96}
C2-C7		C2	53.02	30.09	69.80	0.09	0.02	sp ^{2.32}
		C7	46.98	37.59	62.34	0.06	0.01	sp ^{1.66}
C3-C4		C3	50.39	34.62	65.25	0.12	0.01	sp ^{1.88}
		C4	49.61	36.03	63.82	0.14	0.01	sp ^{1.77}
C3-C4		C3	46.54	0.00	99.93	0.04	0.03	sp
		C4	53.46	0.00	99.94	0.03	0.03	sp
C3-C9		C3	50.59	31.59	68.38	0.03	0.01	sp ^{2.16}
		C9	49.41	29.37	70.43	0.19	0.01	sp ^{2.40}
C4-C5		C4	49.65	35.81	64.01	0.16	0.01	sp ^{1.79}
		C5	50.35	34.29	65.59	0.11	0.01	sp ^{1.91}
C5-C6		C5	50.29	34.24	65.64	0.11	0.01	sp ^{1.92}
		C6	49.71	35.81	64.02	0.16	0.01	sp ^{1.79}
C5-C6		C5	46.64	0.01	99.94	0.04	0.02	sp
		C6	53.36	0.00	99.94	0.03	0.03	sp
C5-C10		C5	50.43	31.43	68.53	0.04	0.01	sp ^{2.18}
		C10	49.57	29.73	70.06	0.01	0.01	sp ^{2.36} d ^{0.01}
C7-O8		C7	33.36	30.90	68.99	0.09	0.01	sp ^{2.23}
		O8	66.64	42.77	56.62	0.59	0.02	sp ^{1.32} d ^{0.01}
C7-O8		C7	31.34	0.76	99.09	0.14	0.01	sp ^{99.99} d ^{0.18} f ^{0.01}
		O8	68.66	0.56	99.05	0.37	0.02	sp ^{99.99} d ^{0.66} f ^{0.03}
C7-Sn12		C7	74.91	31.31	68.65	0.04	0.01	sp ^{2.19}
		Sn12	25.09	21.93	77.87	0.19	-	sp ^{3.55} d ^{0.01}
Sn12-C13		Sn12	24.56	26.11	73.79	0.10	-	sp ^{2.83}
		C13	75.44	26.02	73.94	0.03	0.00	sp ^{2.84}
Sn12-C14		Sn12	24.45	25.95	73.96	0.08	-	sp ^{2.85}
		C14	75.55	26.14	73.83	0.03	0.00	sp ^{2.82}
Sn12-C15		Sn12	24.33	26.01	73.85	0.14	-	sp ^{2.84} d ^{0.01}
		C15	75.67	25.94	74.03	0.03	0.00	sp ^{2.85}
LP1	-	O8	-	56.50	43.39	0.10	0.00	sp ^{0.77}
LP2	-	08	-	0.06	99.69	0.24	0.01	sp ^{99.99} d ^{4.03} f ^{0.22}

Tabel S5: NBO analysis of 2,6-dimethylbenzoyltrimethylstannane at the PCM(CHCl₃) TD-DFT CAM-B3LYP/LANL2DZdp-ECP(Sn),def2-TZVP(H,C,O)//B3LYP/LANL2DZdp-ECP(Sn),6-31+G(d)(H,C,O) level of theory.

			%	%s	%р	%d	%f	H.O.
C1-C2		C1	49.15	33.96	65.89	0.14	0.01	sp ^{1.94}
		C2	50.85	34.97	64.97	0.06	0.01	sp ^{1.86}
C1-C6		C1	50.69	34.80	65.08	0.11	0.01	sp ^{1.87}
		C6	49.31	35.67	64.17	0.14	0.01	sp ^{1.80}
C1-C6		C1	47.81	0.00	99.93	0.04	0.03	sp
		C6	52.19	0.00	99.94	0.03	0.03	sp
C1-C11		C1	50.24	31.19	68.77	0.03	0.01	sp ^{2.20}
		C11	49.76	29.45	70.35	0.19	0.01	sp ^{2.39} d ^{0.01}
C2-C3		C2	50.98	35.10	64.83	0.06	0.01	sp ^{1.85}
		C3	49.02	33.73	66.12	0.14	0.01	sp ^{1.96}
C2-C3		C2	53.88	0.01	99.96	0.02	0.02	sp
		C3	46.12	0.00	99.92	0.05	0.03	sp
C2-C7		C2	53.02	29.85	70.04	0.10	0.01	sp ^{2.35}
		C7	46.98	37.40	62.53	0.06	0.01	sp ^{1.67}
C3-C4		C3	50.57	34.56	65.32	0.11	0.01	sp ^{1.89}
		C4	49.43	35.75	64.10	0.14	0.01	sp ^{1.79}
C3-C9		C3	50.61	31.67	68.29	0.03	0.01	sp ^{2.16}
		C9	49.39	29.34	70.46	0.19	0.01	sp ^{2.40}
C4-C5		C4	50.13	35.70	64.14	0.14	0.01	sp ^{1.80}
		C5	49.87	35.69	64.18	0.12	0.01	sp ^{1.80}
C4-C5		C4	51.78	0.00	99.94	0.03	0.03	sp
		C5	48.22	0.00	99.95	0.03	0.02	sp
C5-C6		C5	49.82	35.63	64.23	0.12	0.01	sp ^{1.80}
		C6	50.18	35.69	64.16	0.14	0.01	sp ^{1.80}
C7-O8		C7	33.32	30.75	69.16	0.09	0.01	sp ^{2.25}
		O8	66.68	42.65	56.75	0.59	0.01	sp ^{1.33} d ^{0.01}
C7-08		C7	31.52	0.94	98.91	0.14	0.01	sp ^{99.99} d ^{0.14}
		O8	68.48	0.75	98.86	0.37	0.02	sp ^{99.99} d ^{0.50}
C7-Sn12		C7	75.05	31.45	68.50	0.04	0.01	sp ^{2.18}
		Sn12	24.95	21.80	78.03	0.17	-	sp ^{3.58} d ^{0.01}
Sn12-C13		Sn12	24.62	26.13	73.77	0.10	-	sp ^{2.82}
		C13	75.38	25.96	74.00	0.03	0.00	sp ^{2.85}
Sn12-C14		Sn12	24.51	25.97	73.95	0.08	-	sp ^{2.85}
		C14	75.49	26.08	73.89	0.03	0.00	sp ^{2.83}
Sn12-C15		Sn12	24.41	26.10	73.78	0.12	-	sp ^{2.83}
		C15	75.59	25.89	74.08	0.03	0.00	sp ^{2.86}
LP1	-	08	-	56.45	43.45	0.10	0.00	sp ^{0.77}
LP2	-	O8	-	0.05	99.70	0.24	0.01	sp ^{99.99} d ^{5.01} f ^{0.28}

References

- [1] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* **1996**, *15*, 1518.
- [2] a) L. R. Subramanian, G. Siegemund (Eds.) Houben-Weyl Methods of Organic Chemistry Supplement: Organo-Fluorine Compounds Fluorinating Agents and Their Application in Organic Synthesis. Introduction of Fluorine with Alkali Metal Fluorides, Including Ammonium Fluoride and Tetraalkylammonium Fluorides (Including Special Methods of Fluorinations, e.g., Phase Transfer Catalysis, Activation by Crown Ethers, Reagents Bound to Polymers), Thieme, Stuttgart, **1998**; b) U. G. H. Buerger, Angew. Chem. Int. Ed. **1968**, 7, 212.
- [3] J. Radebner, A. Eibel, M. Leypold, C. Gorsche, L. Schuh, R. Fischer, A. Torvisco, D. Neshchadin, R. Geier, N. Moszner et al., *Angew. Chem. Int. Ed.* 2017, 56, 3103.
- [4] K. S. Anseth, C. M. Wang, C. N. Bowman, *Macromolecules* 1994, 27, 650.
- [5] a) G. Ullrich, B. Ganster, U. Salz, N. Moszner, R. Liska, J. Polym. Sci. A Polym. Chem. 2006, 44, 1686; b) M. K. Mishra, Y. Yagci, M. K. H. o. r. v. p. Mishra, Handbook of vinyl polymers. Radical polymerization, process, and technology / editors, Munmaya Mishra and Yusuf Yagci, Taylor & Francis, Boca Raton, FL, 2008.
- [6] a) Bruker, APEX2 and SAINT. version 5.03. Bruker AXS Inc.:, Madison, Wisconsin, USA, 2012; b) R. H. Blessing, Acta Cryst. 1995, 51, 33.
- [7] a) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, A46, 467;
 b) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112;
 c) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3.
- [8] a) A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7; b) A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148.
- [9] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, N. Staroverov, T. V. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, **2013**.
- [10] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 1372. b) C. Lee, W. Yang, R. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
- [11] P. J. Hay, W. R. Wadt, *J. Chem. Phys.* **1985**, *82*, 270. b) P. J. Hay, W. R. Wadt, *J. Chem. Phys.* **1985**, *82*, 284. c) P. J. Hay, W. R. Wadt, *J. Chem. Phys.* **1985**, *82*, 299. (d) C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert, L. S. Sunderlin, *J. Phys. Chem. A* **2001**, *105*, 8111.

- [12] a) P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* 1973, 28, 213. (b) W. J. Hehre,
 R. Ditchfield, J. A. Pople, *J. Chem. Phys.* 1972, 56, 2257. c) R. Ditchfield, W. J. Hehre, J. A. Pople, *J. Chem. Phys.* 1971, 54, 724.
- [13] T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51.
- [14] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- [15] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
- [16] A. R. Allouche, J. Comput. Chem. 2011, 32, 174.