

Supporting Information

Polycyclic Indoline-Benzodiazepines through Electrophilic Additions of α-Imino Carbenes to Tröger Bases

Alessandro Bosmani⁺, Alejandro Guarnieri-Ibáñez⁺, Sébastien Goudedranche, Céline Besnard, and Jérôme Lacour^{*}

anie_201803756_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents

1.	General remarks	S2
2.	Optimization of the reaction conditions	\$3
3.	General procedure I: synthesis of N-sulfonyl-1,2,3-triazoles	S4
	Analysis data for unreported triazoles	S4
4.	General procedure II: synthesis of compounds 3	S5
	Analysis data for compounds 3	S5
5.	General procedure III: synthesis of compounds 4	S19
	Analysis data for compounds 4	S19
6.	Synthesis of compound 5	S20
7.	NMR spectra of new compounds	S21
8.	Reactivity of 2I and 2m under thermal activation (metal-free) conditions	S55
9.	Synthesis of compounds 2' and 3'	S57
10.	Crystallographic data	S61
	Compound 3aA	S61
	Compound 3IA	S62
	Compound 40	S64
11.	References	S66

1. General remarks

Unless otherwise stated, reagents were purchased from commercial sources and used without further purification. NMR spectra were recorded on 400 or 500 MHz spectrometer at 20 °C. ¹H-NMR: chemical shifts are given in ppm relative to Me₄Si with solvent resonances used as internal standards (CDCl₃ δ = 7.26 ppm or acetone-d₆ δ = 2.05 ppm). Data were reported as follows: chemical shift (δ) in ppm on the δ scale, multiplicity (s = singulet, d = doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets, sep = septet and m = multiplet), coupling constant (Hz) and integration. ¹³C-NMR: chemicals shifts were given in ppm relative to Me₄Si with solvent resonances used as internal standards (CDCl₃ δ = 77.16 ppm or acetone-d₆ δ = 29.84 and 206.26 ppm). IR spectra were recorded using an ATR sampler and are reported in wave numbers (cm⁻¹). Melting points (Mp) were measured in open capillary tubes and were uncorrected. Electrospray mass spectra (ESI) were obtained by the department of Mass Spectrometry of the University of Geneva. Flash column chromatography was performed with silica gel 40 - 63 µm or alumina (neutral Brockmann I, 50 - 200 µm). Tröger bases **2a**-**2k** were synthesized starting from their respective anilines ^[1] and unsymmetrical Tröger bases **2I** and **2m** were preapared according to reported procedures.^[2] Ethyl 2-diazo-3-oxopropanoate was synthesized as described in the literature.^[3]

2. Optimization of the reaction conditions

Table S1.	Optimization	of the	reaction	conditions.
-----------	--------------	--------	----------	-------------

Entry	Solvent	Catalyst	Cat. Loading	T (°C)	Time (h)	Yield ^[a]	= R
1	CH ₂ Cl ₂	Rh ₂ (oct) ₄	1 mol%	80 °C	48 h	8%	
2	CH ₂ Cl ₂	Rh ₂ (esp) ₄	1 mol%	80 °C	48 h	16%	
3	CH ₂ Cl ₂	Rh ₂ (S-TCPTTL) ₄	1 mol%	80 °C	48 h	_ F	$R = n - C_7 H_{15} : Rh_2(Oct)_4$ $R = t_{Bu} : Rh_2(Piy)_4$
4	CH ₂ Cl ₂	Rh ₂ (Piv) ₄	1 mol%	80 °C	48 h	14%	
5	DCE	Rh ₂ (Piv) ₄	1 mol%	80 °C	48 h	24%	
6	DCE	Rh ₂ (esp) ₂	1 mol%	80 °C	48 h	23%	
7	Toluene	Rh ₂ (S-TCPTTL) ₄	1 mol%	80 °C	48 h	-	 _Rh-Rh
8	Toluene	Rh ₂ (esp) ₂	1 mol%	80 °C	48 h	14%	
9	Toluene	Rh ₂ (Piv) ₄	1 mol%	80 °C	48 h	۶ 23%	: = <i>n</i> -C ₁₂ H ₂₅ : Rh ₂ (<i>R</i> -DOSP) ₄
10	CHCl₃	Rh ₂ (oct) ₄	1 mol%	80 °C	48 h	39%	RR
11	CHCl₃	Rh ₂ (S-TCPTTL) ₄	1 mol%	80 °C	48 h	- F	
12	CHCl₃	Rh ₂ (esp) ₂	1 mol%	80 °C	48 h	23%	R N H
13	CHCl₃	Rh ₂ (Piv) ₄	1 mol%	80 °C	48 h	55%	o co
14	CHCI ₃	Rh ₂ (Piv) ₄	2 mol%	80 °C	48 h	70% ^[b]	■
15	CHCl₃	Rh ₂ (Piv) ₄	2 mol%	60 °C	48 h	5%	R = H : Rh ₂ (S-PTTL) ₄
16	CHCl₃	Rh ₂ (Piv) ₄	2 mol%	60 °C	7 days	33%	$R = CI : Rh_2(S-TCPTTL)_4$
17	CHCl₃	Rh ₂ (Piv) ₄	2 mol%	100 °C	48 h	27%	R R
18	CHCl₃	Rh ₂ (OAc) ₄	2 mol%	80 °C	48 h	32% _F	
19	CHCl₃	Rh ₂ (esp) ₂	2 mol%	80 °C	48 h	30%	R
20	CHCl₃	Rh ₂ (oct) ₄	2 mol%	80 °C	48 h	50%	ő
21	CHCl₃	Rh ₂ (S-PTTL) ₄	2 mol%	80 °C	48 h	-	_Rh-Rh
22	CHCl₃	Rh ₂ (<i>R</i> -DOSP) ₄	2 mol%	80 °C	48 h	34%	$ $
23	CHCl₃	Rh ₂ (TFA) ₄	2 mol%	80 °C	48 h	-	$R = CI : Rh_2(TCPTCC)_4$
24	CHCl₃	Rh ₂ (TPA) ₄	2 mol%	80 °C	48 h	-	
25	CHCl₃	Rh ₂ (Cap) ₄	2 mol%	80 °C	48 h	<10%	
26	CHCl₃	Rh ₂ (PTCC) ₄	2 mol%	80 °C	48 h	-	
27	CHCl₃	Rh ₂ (TCPTCC) ₄	2 mol%	80 °C	48 h	-	

[a] Determined by ¹H-NMR spectroscopy using 1,3,5-trimethoxybenzene as reference. [b] Optimized conditions. Isolated yield.

3. General procedure I: synthesis of *N*-sulfonyl-1,2,3-triazoles

<u>Important note</u>: Sulfonyl azides are potentially explosive materials and must be handled with caution. <u>Azide synthesis</u>: Following the reported procedure,^[4] to a stirred solution of sulfonyl chloride (1.0 equiv) in water/acetone mixture (1:2, 0.2 M), NaN₃ (1.3 equiv) was slowly added at 0 °C. The resulting solution was stirred at room temperature for 12 h. The residue was suspended in Et₂O, the layers were separated and the aqueous phase was extracted three times with Et₂O. The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure. The desired azide was obtained sufficiently pure to be used without any further purification.

<u>Caution</u>: Care should be taken to protect the reaction mixture from light at each step of the synthesis of the triazoles.

<u>Triazole synthesis</u>: Following the reported procedure,^[5] 0.05 equiv of copper(I) thiophene-2carboxylate (CuTC) and 1 equiv of the corresponding sulfonyl azide were diluted in toluene (0.2 M). Then 1.3 equiv of the corresponding alkyne was added and the solution was stirred at room temperature overnight and protected from light. The mixture was diluted with saturated NH_4Cl_{aq} and extracted three times with EtOAc. The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude material was purified by column chromatography or by precipitations to afford the desired product. Products of type **1** were then stored at -20 °C.

Analysis data for unreported triazoles

4-(4-Fluoro-3-methylphenyl)-1-tosyl-1*H*-1,2,3-triazole (1E):

Following general procedure I, compound **1E** is obtained as a white solid (987 mg, 99% yield) starting from tosyl azide (0.46 mL, 3 mmol) and 4-ethynyl-1-fluoro-2-methylbenzene.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2)

R_f = 0.54 (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 114-116 °C; **IR** (neat): \tilde{v} 2128, 1593, 1495, 1385, 1339, 1124, 1170, 1120, 1087, 992, 972, 897, 804, 760, 702, 675 cm⁻¹; ¹**H NMR (400 MHz, CDCl₃)**: δ 8.25 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.72-

7.65 (m, 1H), 7.61-7.57 (m, 1H), 7.39 (d, J = 8.2 Hz, 2H), 7.05 (t, J = 8.9 Hz, 1H), 2.45 (s, 3H), 2.31 (d, J = 1.9 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 161.9 (d, J = 247.6 Hz, CF), 147.5 (C), 146.8 (C), 133.2 (C), 130.6 (2xCH), 129.5 (d, J = 5.5 Hz, CH), 128.9 (2xCH), 125.9 (d, J = 17.9 Hz, C), 125.3 (d, J = 8.4 Hz, CH), 124.9 (d, J = 3.7 Hz, C), 118.7 (CH), 115.8 (d, J = 23.1 Hz, CH), 22.0 (CH₃), 14.7 (d, J = 3.5 Hz, CH₃) ppm; HRMS (ESI): Calculated for C₁₆H₁₅FN₃O₂S [M+H]⁺: 332.0864 m/z; Found: 332.0868 m/z.

1-Tosyl-4-(3,4-dichlorophenyl)-1*H*-1,2,3-triazole (1H):

Following general procedure I, compound **1H** is obtained as a yellowish solid (667 mg, 61% yield) starting from tosyl azide (0.46 mL, 3 mmol) and 3,4-dichlorophenylacetylene.

Purification: precipitations with Et₂O

R_f = 0.51 (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 138-140 °C; **IR** (neat) \tilde{v} 1741, 1593, 1455, 1387, 1339, 1196, 1181, 1105, 995, 963, 807, 799, 666 cm⁻¹; ¹**H NMR (400 MHz, CDCl₃):** δ 8.32 (s, 1H), 8.03 (d, *J* = 8.3 Hz, 2H), 7.93 (d, *J* = 2.0 Hz, 1H), 7.66 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.41 (d, *J* = 8.2

Hz, 2H), 2.46 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.8 (C), 145.3 (C), 133.5 (C), 133.3 (C), 132.9 (C), 131.2 (CH), 130.7 (2xCH), 129.1 (C), 129.0 (2xCH), 128.0 (CH), 125.3 (CH), 119.5 (CH), 22.0 (CH₃) ppm; HRMS (ESI): Calculated for C₁₅H₁₂Cl₂N₃O₂S [M+H]⁺: 368.0022 m/z; Found: 368.0025 m/z.

4. General procedure II: synthesis of compounds 3

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, $Rh_2(Piv)_4$ (2.44 mg, 0.004 mmol, 2 mol%), Tröger's base **2** (0.2 mmol, 1 equiv) and *N*-sulfonyltriazole **1** (0.3 mmol, 1.5 equiv) were dissolved in 0.8 mL of anhydrous CHCl₃ (0.25 M). The vial was capped and stirred at 80 °C for 48 h. The solution was concentrated under reduced pressure and the residue was purified by column chromatography.

Analysis data for compounds 3

Compound 3aA:

Following general procedure II, compound **3aA** is obtained as a white solid (73 mg, 70% yield) starting from Tröger Base **2a** (50 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 9:1) $\mathbf{R}_f = 0.67$ (pentane/EtOAc, 8:2); **M.p.** = 208-210 °C; **IR** (neat): \tilde{v} 2915, 1615,

 $N_{\rm NTs}$ Nr (neat): v 2913, 1013, 1597, 1496, 1400, 1329, 1289, 1247, 1153, 1136, 1087, 1048, 988, 944, 886, 827, 804, 759, 700, 678 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.83 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.33-7.20 (m, 5H), 6.89 (s, 1H), 6.86-6.80 (m, 2H), 6.54 (d, J = 8.0 Hz, 1H), 6.41-6.31 (m, 2H), 5.48 (dd, J = 9.7, 1.4 Hz, 1H), 5.44 (s, 1H), 4.67 (d, J = 17.5 Hz, 1H), 4.57 (d, J = 17.5 Hz, 1H), 3.76 (d, J = 15.5 Hz, 1H), 3.70 (d, J = 9.6 Hz, 1H), 3.59 (d, J = 15.4 Hz, 1H), 2.50 (s, 3H), 2.23 (s, 3H), 2.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.0 (C), 146.4 (C), 143.9 (2xC), 138.7 (C), 131.9 (C), 130.9 (CH), 130.8 (CH), 130.1 (2xCH), 129.4 (C) 128.9 (2xCH), 128.5 (2xCH), 127.8 (C), 127.5 (CH), 127.5 (CH), 126.7 (CH), 125.5 (2xCH), 123.9 (CH), 122.5 (C), 108.2 (CH), 73.7 (C), 66.6 (CH), 62.0 (CH₂), 50.2 (CH₂), 48.7 (CH₂), 21.7 (CH₃), 20.73 (CH₃), 20.65 (CH₃); HRMS (ESI): Calculated for C₃₂H₃₂N₃O₂S [M+H]⁺: 522.2210 m/z; Found: 522.2214 m/z.

Compound 3bA:

Following general procedure II, compound **3bA** is obtained as a yellow solid (34 mg, 30% yield) starting from Tröger base **2b** (56 mg, 0.2 mol) and triazole **1A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 95:5) $\mathbf{R}_f = 0.50$ (Silica gel, pentane/EtOAc, 9:1); **M.p.** = 131-133 °C; **IR** (neat): \tilde{v} 2928, 1618, 1511, 1402, 1340, 1266, 1139, 953, 913, 829, 734, 658 cm⁻¹; ¹**H NMR (500 MHz, CDCl₃)**: δ 7.87 (d, J = 8.3 Hz, 2H), 7.37-7.31 (m, 6H),

7.30-7.26 (m, 1H), 6.60 (s, 1H), 6.41 (s, 1H), 6.22 (s, 1H), 6.01 (s, 1H), 5.63 (s, 1H), 5.34-5.30 (m, 1H), 4.86 (d, J = 17.7 Hz, 1H), 4.28 (d, J = 17.8 Hz, 1H), 3.77 (d, J = 11.0 Hz, 1H), 3.73 (d, J = 15.5 Hz, 1H), 3.49 (d, J = 15.4 Hz, 1H), 2.47 (s, 3H) 2.33 (s, 3H), 2.16 (s, 3H), 2.16 (s, 3H), 2.02 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 151.7 (C), 149.1 (C), 143.9 (C), 143.6 (C), 140.5 (C), 138.0 (C), 137.2 (C), 137.0 (C), 136.6 (C), 123.0 (2x CH), 128.9 (2x CH), 127.8 (2x CH), 127.6 (CH), 126.0 (CH), 125.6 (2x CH), 124.6 (C), 123.4 (CH), 121.0 (CH), 117.0 (C), 105.2 (CH), 73.1 (C), 66.1 (CH), 61.5 (CH₂), 49.4 (CH₂), 43.1 (CH₂), 21.9 (CH₃), 21.8 (CH₃), 20.9 (CH₃), 20.4 (CH₃), 18.3 (CH₃) ppm; HRMS (ESI): Calculated for C₃₄H₃₆N₃O₂S [M+H]⁺: 550.2523 m/z; Found: 550.2528 m/z

Compound 3cA:

Following general procedure II, compound **3cA** is obtained as an orange solid (76 mg, 64% yield) starting from Tröger base **2c** (64 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 95:5) $\mathbf{R}_f = 0.46$ (Silica gel, pentane/EtOAc, 9:1); **M.p.** = 175-177 °C; **IR** (neat): \tilde{v} 3054, 1623, 1595, 1472, 1340, 1321, 1156, 1113, 1092, 951, 807,

732, 698, 660 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.95 (d, *J* = 8.5 Hz, 1H), 7.90 (d, *J* = 8.3 Hz, 2H), 7.72-7.67 (m, 2H), 7.60-7.52 (m, 2H), 7.49-7.31 (m, 10H), 7.29-7.20 (m, 1H), 7.16-7.09 (m, 1H), 6.74 (d, *J* = 8.7 Hz, 1H), 6.60 (d, *J* = 8.8 Hz, 1H), 6.23 (s, 1H), 5.62 (d, *J* = 18.0 Hz, 1H), 5.40 (dd, *J* = 10.7, 1.2 Hz, 1H), 4.84 (d, *J* = 17.9 Hz, 1H), 4.02 (d, *J* = 15.6 Hz, 1H), 3.91 (dd, *J* = 13.2, 1.2 Hz, 2H), 2.49 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 150.2 (C), 147.0 (C), 144.2 (C), 143.5 (C), 137.5 (C), 133.6 (C), 131.9 (CH), 131.5 (C), 130.1 (2x CH), 130.0 (C), 129.1 (2x CH), 128.8 (CH), 128.7 (CH), 128.7 (C), 128.0 (CH), 127.9 (2x CH), 127.9 (CH), 127.0 (CH), 125.6 (2x CH), 123.8 (CH), 123.4 (CH), 122.1 (2x CH), 121.7 (CH), 119.2 (C), 111.1 (C), 110.6 (CH), 74.1 (C), 66.8 (CH), 61.6 (CH₂), 49.6 (CH₂), 43.6 (CH₂), 21.8 (CH₃) ppm; HRMS (ESI): Calculated for C₃₈H₃₂N₃O₂S [M+H]⁺: 594.2210 m/z; Found: 594.2218 m/z.

Compound 3dA:

Following general procedure II, compound **3dA** is obtained as an orange solid (97 mg, 75% yield) starting from Tröger base **2d** (75 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (silica gel, toluene/EtOAc, 98:2) $\mathbf{R}_f = 0.39$ (Silica gel, pentane/EtOAc, 9:1); **M.p.** = 138-140 °C; **IR** (neat): \tilde{v} 3030, 2928, 1611, 1483, 1339, 1139, 1111, 953, 761, 698 cm⁻¹; ¹H

NMR (500 MHz, CDCl₃): δ 7.95-7.87 (m, 2H), 7.62-7.57 (m, 2H), 7.54-7.41 (m, 9H), 7.40-7.33 (m, 5H), 7.32-7.27 (m, 3H), 7.26-7.24 (m, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.70 (d, J = 1.6 Hz, 1H), 6.57 (d, J = 8.4 Hz, 1H), 5.71 (dd, J = 9.4, 1.2 Hz, 1H), 5.68 (s, 1H), 4.91 (d, J = 17.4 Hz, 1H), 4.82 (d, J = 17.5 Hz, 1H), 4.03 (d, J = 15.6 Hz, 1H), 3.93 (d, J = 9.4 Hz, 1H), 3.81 (d, J = 15.5 Hz, 1H), 2.51 (s, 3H).ppm; ¹³C NMR (126 MHz, CDCl₃): δ 150.6 (C), 148.3 (C), 144.1 (C), 143.4 (C), 140.8 (C), 140.5 (C), 138.7 (C), 135.1 (C), 131.8 (C), 130.2 (2x CH), 129.2 (CH), 129.1 (2x CH), 129.0 (CH), 128.9 (2x CH), 128.9 (C), 128.7 (2x CH), 127.8 (CH), 127.3 (2x CH), 127.1 (CH), 126.8 (2x CH), 126.5 (CH), 126.7 (CH), 126.2 (2x CH), 125.6 (2x CH), 124.5 (CH), 124.0 (CH), 123.4 (C), 108.9 (CH), 74.6 (C), 66.5 (CH), 62.1 (CH₂), 50.2 (CH₂), 49.0 (CH₂), 21.8 (CH₃) ppm; HRMS (ESI): Calculated for C₄₂H₃₆N₃O₂S [M+H]⁺: 646.2523 m/z; Found: 646.2523 m/z.

Compound 3eA:

Following general procedure II, compound **3eA** is obtained as a yellow solid (83 mg, 72% yield) starting from Tröger base **2e** (61 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 95:5)

R_f = 0.64 (Silica gel, pentane/EtOAc, 9:1); **IR** (neat): \tilde{v} 2958, 2869, 1615, 1495, 1340, 1321, 1159, 1109, 1059, 955, 933, 909, 811, 730,

701 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, *J* = 8.2 Hz, 2H), 7.44-7.30 (m, 6H), 7.29-7.20 (m, 1H), 6.95 (s, 1H), 6.94-6.89 (m, 1H), 6.86-6.78 (m, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.37 (d, *J* = 8.2 Hz, 1H), 6.26 (s, 1H), 5.50 (d, *J* = 9.6 Hz, 1H), 5.48 (s, 1H), 4.71 (d, *J* = 17.5 Hz, 1H), 4.64 (d, *J* = 17.5 Hz, 1H), 3.88 (d, *J* = 15.5 Hz, 1H), 3.68 (d, *J* = 9.5 Hz, 1H), 3.60 (d, *J* = 15.4 Hz, 1H), 2.81 (sep, *J* = 6.9 Hz, 1H), 2.56 (sep, *J* = 6.9 Hz, 1H), 2.47 (s, 3H), 1.21 (d, *J* = 2.8 Hz, 3H), 1.20 (d, *J* = 2.8 Hz, 3H), 0.99 (d, *J* = 6.9 Hz, 3H), 0.96 (d, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 149.2 (C), 146.8 (C), 143.9 (C), 143.9 (C), 143.2 (C), 139.0 (C), 138.9 (C), 130.1 (2x CH), 129.4 (C), 128.9 (2x CH), 128.5 (CH), 128.2 (CH), 127.5 (CH), 127.3 (2x CH), 125.7 (2x CH), 125.6 (CH), 124.4 (CH), 123.7 (CH), 122.3 (C), 107.9 (CH), 73.8 (C), 66.6 (CH), 61.8 (CH₂), 50.7 (CH₂), 48.7 (CH₂), 33.4 (CH), 33.2 (CH), 24.3 (CH₃), 24.2 (2x CH₃), 23.9 (CH₃), 21.7 (CH₃) ppm; HRMS (ESI): Calculated for C₃₆H₄₀N₃O₂S [M+H]⁺: 578.2836 m/z; Found: 578.2834 m/z.

Compound 3fA:

Following general procedure II, compound **3fA** is obtained as a yellow solid (75 mg, 68% yield) starting from Tröger Base **2f** (56 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 8:2)

R_f = 0.31 (pentane/EtOAc, 8:2); **M.p.** = 184-186 °C; **IR** (neat): \tilde{v} 1598, 1493, 1336, 1302, 1273, 1235, 1218, 1160, 1137, 1097, 1030, 946, 928, 873, 812, 789, 763, 701 cm⁻¹; ¹**H NMR (400 MHz, CDCl₃**): 7.85 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.32-7.31 (m, 5H), 6.68-6.58 (m, 4H), 6.40 (d, *J* = 8.7 Hz, 1H), 6.20 (s, 1H), 5.48-5.46 (m, 2H), 4.69 (d, *J* = 17.5 Hz, 1H), 4.56 (d, *J* = 17.6 Hz, 1H), 3.80 (d, *J* = 15.5 Hz, 1H), 3.74 (s, 3H), 3.66 (d, *J* = 10.0 Hz, 1H), 3.58 (d, *J* = 15.5 Hz, 1H), 3.51 (s, 3H), 2.47 (s, 3H); ¹³**C NMR (126 MHz, CDCl₃)**: δ 155.3 (C), 152.1 (C), 145.1 (C), 144.0 (C), 143.7 (C), 138.5 (C), 130.9 (C), 130.3 (C), 130.2 (2XCH), 128.9 (2XCH), 127.6 (CH), 127.5 (CH), 126.2 (C), 125.6 (2xCH), 125.3 (CH), 123.0 (C), 117.3 (CH), 113.0 (CH), 112.6 (CH), 111.0 (CH), 109.1 (CH), 77.1 (C) 66.7 (CH), 62.1 (CH₂), 55.9 (CH₃), 55.7 (CH₃), 50.6 (CH₂), 49.0 (CH₂), 21.7 (CH₃); **HRMS (ESI)**: Calculated for C₃₂H₃₂N₃O₄S [M+H]⁺: 554.2108 m/z; Found: 554.2112 m/z.

Compound 3gA:

Following general procedure II, compound **3gA** is obtained as a white solid (72 mg, 49% yield) starting from Tröger Base **2g** (94 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 9:1) $\mathbf{R}_f = 0.75$ (pentane/EtOAc, 8:2); $\mathbf{M}.\mathbf{p}. = 205-207$ °C; \mathbf{IR} (neat): \tilde{v} 1592, 1476,

1402, 1330, 1284, 1230, 1158, 1092, 1055, 949, 809, 760, 700, 674 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.79-7.77 (m, 2H), 7.42-7.37 (m, 3H), 7.36-7.27 (m, 7H), 6.89 (s, 1H), 6.47 (s, 1H), 6.37 (d, J = 8.3 Hz, 1H), 6.23 (d, J = 8.4 Hz, 1H), 5.55 (dd, J = 9.4, 1.3 Hz, 1H), 5.45 (s, 1H), 4.67 (d, J = 17.6 Hz, 1H), 4.51 (d, J = 17.6 Hz, 1H), 3.85 (d, J = 15.6 Hz, 1H), 3.73 (d, J = 9.4 Hz, 1H), 3.61 (d, J = 15.5 Hz, 1H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.5 (C), 148.5 (C), 144.5 (C), 142.7 (C), 138.8 (CH), 138.7 (CH), 138.2 (C), 136.9 (CH), 134.8 (CH), 130.4 (2XCH), 130.4 (C), 129.1 (2XCH) 128.0 (CH), 127.2 (2XCH) , 125.4 (CH), 125.41 (CH), 125.3 (2XCH), 110.9 (CH), 85.0 (C), 79.4 (C), 74.5 (C), 65.8 (CH), 62.0 (CH₂), 49.8 (CH₂), 48.1 (CH₂), 21.9 (CH₃); HRMS (ESI): Calculated for C₃₀H₂₆I₂N₃O₂S [M+H]⁺: 745.9830 m/z; Found: 745.9834 m/z.

Compound 3hA:

Following general procedure II, compound **3hA** is obtained as a yellow solid (63 mg, 48% yield) starting from Tröger Base **2h** (76 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 9:1) **R**_f = 0.67 (pentane/EtOAc, 8:2); **M.p.** = 208-210 °C; **IR** (neat): \tilde{v} 1595, 1478, 1407, 1329, 1287, 1155, 1089, 946, 815, 800, 760, 700, 680 cm⁻¹;

¹H NMR (500 MHz, CDCl₃): 7.80 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.36-7.31 (m, 2H), 7.30-7.27 (m, 3H), 7.21 (d, J = 2.4 Hz, 1H), 7.15 (dd, J = 8.5, 2.3 Hz, 1H), 7.10 (dd, J = 8.5, 2.1 Hz, 1H), 6.48 (d, J = 8.4 Hz, 1H), 6.43-6.40 (m, 1H), 6.32 (d, J = 8.5 Hz, 1H), 5.54 (dd, J = 9.5, 1.4 Hz, 1H), 5.47 (s, 1H), 4.69 (d, J = 17.6 Hz, 1H), 4.53 (d, J = 17.6 Hz, 1H), 3.82 (d, J = 15.5 Hz, 1H), 3.74 (d, J = 9.5 Hz, 1H), 3.61 (d, J = 15.6 Hz, 1H), 2.51 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 149.9 (C), 147.7 (C), 144.5 (C), 142.7 (C), 138.1 (C), 133.0 (CH), 132.8 (CH), 130.9 (CH), 130.4 (2XCH) 130.0 (C), 129.1 (2XCH), 129.0 (CH), 128.0 (CH), 127.3 (2XCH), 125.3 (2XCH), 125.0 (CH), 124.8 (C), 114.6 (C), 110.4 (C), 110.1 (CH), 74.6 (C), 65.9 (CH), 62.0 (CH₂), 49.7 (CH₂), 48.3 (CH₂), 21.8 (CH₃); HRMS (ESI): Calculated for C₃₀H₂₅Br₂N₃O₂S [M+H]⁺: 650.0107 m/z; Found: 650.0126 m/z.

Compound 3iA:

Following general procedure II, compound **3iA** is obtained as a white solid (54 mg, 51% yield) starting from Tröger base **2i** (52 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 95:5) $\mathbf{R}_f = 0.42$ (Silica gel, pentane/EtOAc, 9:1); **M.p.** = 213-215 °C; **IR** (neat): \tilde{v} 2934, 1490, 1340, 1263, 1161, 1136, 962, 871, 813, 763, 702, 657 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.87-7.73 (m, 2H), 7.39 (d, *J* = 8.0 Hz,

2H), 7.35-7.23 (m, 5H), 6.82 (dd, J = 8.7, 2.9 Hz, 1H), 6.76 (dd, J = 8.6, 2.7 Hz, 1H), 6.75 (dd, J = 8.6, 2.7 Hz, 1H), 6.58 (dd, J = 8.7, 5.0 Hz, 1H), 6.37 (dd, J = 8.7, 4.0 Hz, 1H), 6.33 (dd, J = 8.1, 2.5 Hz, 1H), 5.50 - 5.48 (m, 2H), 4.71 (d, J = 17.6 Hz, 1H), 4.55 (d, J = 17.7 Hz, 1H), 3.81 (d, J = 15.6 Hz, 1H), 3.69 (d, J = 10.0 Hz, 1H), 3.61 (d, J = 15.6 Hz, 1H), 2.50 (s, 3H).ppm; ¹³C NMR (126 MHz, CDCl₃): δ 158.3 (C, d, J = 187.4 Hz), 156.4 (C, d, J = 181.3 Hz), 147.1 (C), 144.8 (C, J = 2.5 Hz), 144.3 (C), 143.2 (C), 138.2 (C), 130.3 (2x CH), 130.2 (C), 129.0 (2x CH), 127.8 (CH), 127.3 (2x CH), 125.4 (2x CH), 124.9 (CH, J = 8.1 Hz), 123.8 (C, J = 7.7 Hz), 117.0 (CH, J = 23.7 Hz), 116.7 (CH, J = 22.1 Hz), 114.6 (CH, J = 22.2 Hz), 113.1 (CH, J = 24.0 Hz), 108.8 (CH, J = 8.0 Hz), 74.5 (C), 66.2 (CH, J = 1.4 Hz), 62.1 (CH₂), 50.0 (CH₂), 48.8 (CH₂), 21.8 (CH₃) ppm; HRMS (ESI): Calculated for C₃₀H₂₆F₂N₃O₂S [M+H]⁺: 530.1708 m/z; Found: 530.1706 m/z.

Compound 3jA:

Following general procedure II, compound **3jA** is obtained as a yellow solid (70 mg, 55% yield) starting from Tröger Base **2j** (73 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 8:2)

R_{*f*} = 0.36 (pentane/EtOAc, 8:2); **M.p.** = 113-115 °C; **IR** (neat): \tilde{v} 1703, 1606 1498, 1366, 1340, 1285, 1256, 1161, 1099, 1020, 953, 761, 656 cm⁻¹; ¹**H NMR (500 MHz, CDCl**₃): 7.86-7.80 (m, 3H), 7.73 (dd, *J* = 8.5, 1.8, Hz, 1H), 7.70 (dd, *J* = 8.4, 2.0, Hz, 1H), 7.39 (d, *J* = 7.7 Hz, 2H), 7.37-7.28 (m, 6H), 6.53 (d, *J* = 8.3 Hz, 1H), 6.40 (d, *J* = 8.5 Hz, 1H), 5.58 (s, 1H), 5.57 (dd, *J* = 9.8, 1.2 Hz, 1H), 4.78 (d, *J* = 17.5 Hz, 1H), 4.71 (d, *J* = 17.5 Hz, 1H), 4.37-4.30 (m, 2H), 4.26-4.19 (m, 2H), 3.92 (d, *J* = 15.5 Hz, 1H), 3.80 (d, *J* = 9.4 Hz, 1H), 3.75 (d, *J* = 15.6 Hz, 1H), 2.50 (s, 3H), 1.38 (t, *J* = 7.1, 3H), 1.29 (t, *J* = 7.1, 3H); ¹³C **NMR (126 MHz, CDCl**₃): δ 166.3 (C), 166.2 (C), 154.8 (C), 152.8 (C), 144.5 (C), 142.3 (C), 137.9 (C), 132.9 (CH), 132.3 (CH), 130.3 (2xCH), 129.6 (CH), 129.2 (2xCH) 128.1 (2xCH), 127.4 (2xCH), 126.7 (C), 125.4 (2xCH), 123.7 (C), 123.0 (C), 122.0 (CH), 121.4 (C), 108.0 (CH), 75.4 (C), 65.9 (CH), 61.9 (CH₂), 61.0 (CH₂), 60.5 (CH₂), 49.2 (CH₂), 48.5 (CH₂), 21.8 (CH₃), 14.6 (CH₃), 14.5 (CH₃); **HRMS (ESI):** Calculated for C₃₃H₃₄N₃O₂S [M+H]⁺: 638.2319 m/z; Found: 638.2336 m/z.

Compound 3kA:

Following general procedure II, compound **3kA** is obtained as a yellow solid (57 mg, 45% yield) starting from Tröger base **2k** (72 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 95:5)

N NTs $R_f = 0.47$ (Silica gel, pentane/EtOAc, 9:1); M.p. = 193-195 °C; IR (neat): \tilde{v} 2846, 1598, 1452, 1339, 1261, 1233, 951, 938, 909, 813, 702 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.79 (d, J = 8.3 Hz, 2H), 7.44-7.30 (m, 9H), 7.24 (dd, J = 8.5, 1.8 Hz, 1H), 6.66 (d, J = 8.3 Hz, 1H), 6.45 (s, 1H), 6.43 (d, J = 8.5 Hz, 1H), 5.65 (dd, J = 9.3, 1.3 Hz, 1H), 5.55 (s, 1H), 4.81 (d, J = 17.6 Hz, 1H), 4.70 (d, J = 17.6 Hz, 1H), 3.96 (d, J = 15.6 Hz, 1H), 3.77 (d, J = 9.3 Hz, 1H), 3.73 (d, J = 15.6 Hz, 1H), 2.49 (s, 3H).ppm; ¹³C NMR (126 MHz, CDCl₃): δ 153.4 (C), 151.6 (C), 144.8 (C), 142.2 (C), 138.1 (C), 130.4 (2x CH), 129.3 (2x CH), 128.2 (CH), 128.0 (CH, q, J = 3.4 Hz), 127.5 (C), 127.5 (CH, q, J = 3.4 Hz), 127.1 (2x CH), 126.0 (CF₃, q, J = 233.5 Hz), 125.4 (CH, q, J = 3.6 Hz), 125.3 (2x CH), 124.1 (C, q, J = 32.9 Hz), 123.5 (CH, q, J = 3.6 Hz), 123.1 (C), 123.1 (CH), 121.90 (CF₃, q, J = 221.7 Hz), 121.1 (C, q, J = 33.0 Hz), 108.1 (CH), 75.2 (C), 65.7 (CH), 62.0 (CH₂), 49.5 (CH₂), 48.5 (CH₂), 21.7 (CH₃) ppm; HRMS (ESI): Calculated for C₃₂H₂₆F₆N₃O₂S [M+H]⁺: 630.1645 m/z; Found: 630.1640 m/z.

Compound 3aB:

Following general procedure II, compound **3aB** is obtained as a yellow solid (37 mg, 34% yield) starting from Tröger base **2a** (50 mg, 0.20 mmol) and triazole **1B**.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2)

R_f = 0.43 (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 207-209 °C; **IR (neat)**: \tilde{v} 1609, 1498, 1401, 1338, 1249, 1157, 954, 811, 659 cm⁻¹; ¹**H NMR (500 MHz, acetonde-d₆)**: δ 7.94-7.85 (m, 2H), 7.59-7.48 (m, 2H), 7.29-7.19 (m,

2H), 7.04-6.97 (m, 1H), 6.94-6.86 (m, 2H), 6.82 (dd, J = 8.1, 2.1 Hz, 1H), 6.79 (dd, J = 8.2, 1.9 Hz, 1H), 6.57 (d, J = 8.0 Hz, 1H), 6.46 (d, J = 8.1 Hz, 1H), 6.30 (s, 1H), 5.49 (dd, J = 9.6, 1.4 Hz, 1H), 5.39 (s, 1H), 4.75 (d, J = 17.6 Hz, 1H), 4.70 (d, J = 17.6 Hz, 1H), 3.79 (s, 3H), 3.76-3.60 (m, 3H), 2.52 (s, 3H), 2.19 (s, 3H), 1.99 (s, 3H) ppm; ¹³C NMR (126 MHz, acetone-d₆): 159.9 (C), 150.2 (C), 147.5 (C), 144.9 (C), 139.8 (C), 137.1 (C), 131.9 (C), 131.8 (CH), 131.3 (CH), 131.0 (2xCH), 129.8 (C), 128.8 (CH), 128.1 (2xCH), 128.0 (C), 127.4 (2xCH), 127.0 (CH), 124.2 (CH), 123.5 (C), 114.8 (2xCH), 109.5 (CH), 74.2 (C), 67.6 (CH), 62.7 (CH₂), 55.5 (CH₃), 50.5 (CH₂), 49.1 (CH₂), 21.5 (CH₃), 20.57 (CH₃), 20.55 (CH₃) ppm; HR-MS (ESI): Calculated for $C_{33}H_{34}N_3O_3S$ [M+H]⁺: 552.2315 m/z; Found: 552.2333 m/z.

Compound 3aC:

 $Ar = m - MeOC_6H_4$

Following general procedure II, compound **3aC** is obtained as a yellow solid (60 mg, 54% yield) starting from Tröger base **2a** (50 mg, 0.2 mmol) and triazole **1C**.

Purification: column chromatography (silica gel, pentane/EtOAc, 9:1) **R**_f = 0.32 (Silica gel, pentane/EtOAc, 9:1); **IR** (neat): \tilde{v} 2988, 1650, 1418, 1400, 1378, 1294, 1258, 1207, 1132, 1058, 940, 871, 813, 702 cm⁻¹; ¹**H NMR (500 MHz, CDCl₃):** δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.23 (t, *J* = 8 Hz, 1H), 6.97 (d, *J* = 2.0 Hz, 1H), 6.91-6.76 (m, 5H), 6.54 (d, *J*

= 8.0 Hz, 1H), 6.36 (d, J = 8.1 Hz, 1H), 6.29 (s, 1H), 5.51-5.43 (m, 2H), 4.68 (d, J = 17.5 Hz, 1H), 4.58 (d, J = 17.5 Hz, 1H), 3.83 (s, 3H), 3.79 (d, J = 15.5 Hz, 1H), 3.70 (d, J = 9.8 Hz, 1H), 3.60 (d, J = 15.5 Hz, 1H), 2.50 (s, 3H), 2.24 (s, 3H), 2.02 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 160.1 (C), 149.0 (C), 146.4 (C), 145.7 (C), 143.9 (C), 138.6 (C), 131.8 (C), 130.9 (CH), 130.7 (CH), 130.1 (2x CH), 129.9 (CH), 128.8 (C), 128.4 (CH), 127.7 (C), 127.4 (2x CH), 126.6 (CH), 123.8 (CH), 122.6 (C), 117.8 (CH), 112.5 (CH), 111.7 (CH), 108.3 (CH), 73.8 (C), 66.5 (CH), 62.0 (CH₂), 55.4 (CH₃), 50.2 (CH₂), 48.7 (CH₂), 21.7 (CH₃), 20.7 (CH₃), 20.6 (CH₃) ppm; HRMS (ESI): Calculated for C₃₃H₃₄N₃O₃S [M+H]⁺: 552.2315 m/z; Found: 552.2315 m/z.

Compound 3aD:

Following general procedure II, compound **3aD** is obtained as a white solid (59 mg, 55% yield) starting from Tröger Base **2a** (50 mg, 0.2 mmol) and triazole **1D**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 9:1)

R_f = 0.45 (pentane/EtOAc, 8:2); **M.p.** = 206-208 °C; **IR** (neat): \tilde{v} 1737, 1619, 1594 1343, 1319, 1159, 1115, 964, 948, 930, 877, 810, 795, 703, 664, 654 cm⁻¹; ¹**H NMR (400 MHz, CDCI₃)**: 7.84 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz), 7.38 (d, J = 8.0 Hz), 7.38 (d, J = 8.0 Hz), 7.38 (d, J = 8.0 Hz), 7.38

2H), 7.15-7.09 (m, 4H), 6.90 (s, 1H), 6.86-6.81 (m, 2H), 6.57 (d, J = 7.9 Hz, 1H), 6.38 (s, 1H), 6.36 (d, J = 8.1 Hz, 1H), 5.48 (dd, J = 9.7, 1.4 Hz, 1H), 5.42 (s, 1H), 4.65 (d, J = 17.5 Hz, 1H), 4.57 (d, J = 17.6 Hz, 1H), 3.74 (d, J = 15.5 Hz, 1H), 3.70 (d, J = 9.7 Hz, 1H), 3.57 (d, J = 15.5 Hz, 1H), 2.50 (s, 3H), 2.33 (s, 3H) 2.24 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.0 (C), 146.3 (C), 143.9 (C), 140.8 (C), 138.6 (C), 137.2 (C), 132.0 (C), 130.9 (CH), 130.7 (CH) 130.1 (2xCH), 129.5 (2xCH), 129.0 (C), 128.5 (CH), 127.7 (C), 127.5 (2xCH), 126.8 (CH), 125.4 (2XCH), 124.0 (CH), 122.5 (C), 108.1 (CH), 73.3 (C), 66.7 (CH), 62.0 (CH₂), 50.2 (CH₂), 48.6 (CH₂), 21.7 (CH₃), 21.2 (CH₃), 20.74 (CH₃), 20.66 (CH₃); HRMS (ESI): Calculated for C₃₃H₃₄N₃O₂S [M+H]⁺: 536.2366 m/z; Found: 536.2367 m/z.

Compound 3aE:

R = 3-F-4-MeC₆H₄

Following general procedure II compound **3aE** is obtained as a yellow solid (71 mg, 64% yield) starting from Tröger base **2a** (50 mg, 0.2 mmol) and triazole **1E**.

Purification: column chromatography (silica gel, pentane/EtOAc, 95:5) $\mathbf{R}_{f} = 0.43$ (Silica gel, pentane/EtOAc, 9:1); **IR** (neat): \tilde{v} 3002, 2850, 1620, 1516, 1397, 1200, 1122, 1079, 972, 963, 809, 732, 698cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.91-7.77 (m, 2H), 7.45-7.34 (m, 2H), 7.14-7.01 (m, 2H), 6.94-6.87 (m, 2H), 6.87-6.79 (m, 2H), 6.54 (d, J = 8.0 Hz, 1H), 6.39 (s, 1H),

6.37 (d, J = 8.1 Hz, 1H), 5.48 (dd, J = 9.7, 1.4 Hz, 1H), 5.41 (s, 1H), 4.64 (d, J = 17.5 Hz, 1H), 4.57 (d, J = 17.5 Hz, 1H), 3.75-3.66 (m, 2H), 3.56 (d, J = 15.5 Hz, 1H), 2.50 (s, 3H), 2.244 (s, 3H), 2.239 (s, 3H), 2.05 (s, 3H).ppm; ¹³C NMR (126 MHz, CDCl₃): δ 160.7 (C, d, J = 244.9 Hz), 148.9 (C), 146.4 (C), 143.9 (C), 139.35 (C, d, J = 244.9 Hz), 138.7 (C), 131.8 (C), 130.9 (CH), 130.8 (CH), 130.1 (2xCH), 128.7 (C), 128.6 (CH, d, J = 5.1 Hz), 128.5 (CH). 127.9 (C), 127.4 (2x CH), 126.7 (CH), 125.1 (C, d, J = 17.3 Hz), 124.5 (CH, d, J = 8 Hz), 123.8 (CH), 122.4 (C), 115.2 (CH, d, J = 22.2 Hz), 108.3 (CH), 73.3 (C), 66.7 (CH), 62.0 (CH₂), 50.1 (CH₂), 48.7 (CH₂), 21.7 (CH₃), 20.7 (CH₃), 20.6 (CH₃), 14.9 (CH₃, d, J = 3.3 Hz) ppm; HRMS (ESI): Calculated for C₃₃H₃₃FN₃O₂S [M+H]⁺: 554.2272 m/z; Found: 554.2276 m/z

Compound 3aF:

Following general procedure II, compound **3aF** is obtained as a white solid (89 mg, 74% yield) starting from Tröger base **2a** (51 mg, 0.20 mmol) and triazole **1F**.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2)

R_f = 0.64 (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 195-197 °C; **IR (neat):** \tilde{v} 1617, 1496, 1355, 1324, 1156, 1112, 1066, 955, 812, 800, 792, 658 cm⁻¹; ¹**H NMR (500 MHz, CDCl₃):** δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 2.0 Hz, 1H), 6.88-

6.81 (m, 2H), 6.55 (d, J = 8.0 Hz, 1H), 6.39 (d, J = 8.1 Hz, 1H), 6.27 (s, 1H), 5.50 (dd, J = 9.7, 1.4 Hz, 1H), 5.42 (s, 1H), 4.65 (d, J = 17.6 Hz, 1H), 4.60 (d, J = 17.6 Hz, 1H), 3.84 (d, J = 15.4 Hz, 1H), 3.69 (d, J = 9.7 Hz, 1H), 3.61 (d, J = 15.4 Hz, 1H), 2.50 (s, 3H), 2.24 (s, 3H), 2.02 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 148.8 (C), 147.9 (C), 146.2 (C), 144.1 (C), 138.5 (C), 132.1 (C), 131.0 (CH), 130.9 (CH), 130.2 (2xCH), 129.8 (q, J = 32.3 Hz, C), 128.6 (CH), 128.5 (C), 128.2 (C), 127.4 (2xCH), 126.6 (CH), 126.1 (2xCH), 125.9 (q, J = 3.7 Hz, 2xCH), 124.2 (q, J = 272.0 Hz, CF₃), 123.9 (CH), 122.2 (C), 108.6 (CH), 73.7 (C), 66.4 (CH), 62.0 (CH₂), 50.1 (CH₂), 48.8 (CH₂), 21.7 (CH₃), 20.74 (CH₃), 20.66 (CH₃) ppm; HR-MS (ESI): Calculated for C₃₃H₃₁F₃N₃O₂S [M+H]⁺: 590.2084 m/z; Found: 590.2092 m/z.

Compound 3aG:

Following general procedure II, compound **3aG** is obtained as a yellow solid (99 mg, 83% yield) starting from Tröger Base **2a** (50 mg, 0.2 mmol) and triazole **1G**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 9:1) $\mathbf{R}_f = 0.42$ (pentane/EtOAc, 8:2); **M.p.** = 208-210 °C; **IR** (neat): \tilde{v} 1618, 1593 1495, 1391, 1321, 1161, 1126, 1110, 1092, 959, 932, 810, 795, 703, 658 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.85 (d, *J* = 8.2 Hz, 2H), 7.44-7.36 (m, 4H),

7.18-7.10 (m, 2H), 6.90 (s, 1H), 6.90-6.83 (m, 2H), 6.61 (d, J = 8.0 Hz, 1H), 6.40-6.32 (m, 2H), 5.50 (dd, J = 9.8, 1.5 Hz, 1H), 5.36 (s, 1H), 4.69-4.51 (m, 2H), 3.76 (d, J = 15.4 Hz, 1H), 3.66 (d, J = 9.8 Hz, 1H), 3.57 (d, J = 15.4 Hz, 1H), 2.50 (s, 3H), 2.24 (s, 3H), 2.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.7 (C), 145.7 (C), 144.1 (C), 142.8 (C), 138.4 (C), 132.4 (C), 132.0 (2XCH), 130.95 (CH), 130.93 (CH), 130.2 (2XCH), 128.71 (C) 128.65 (CH), 128.2 (C), 127.52 (2XCH), 127.46 (2XCH), 126.7 (CH), 124.0 (CH), 122.2 (C), 121.6 (C), 108.4 (CH), 73.1 (C), 66.4 (CH), 62.0 (CH₂), 50.1 (CH₂), 48.6 (CH₂), 21.8 (CH₃), 20.8 (CH₃), 20.7 (CH₃); HRMS (ESI): Calculated for C₃₂H₃₁BrN₃O₂S [M+H]⁺: 600.1315 m/z; Found: 600.1312 m/z.

Compound 3aH:

Following general procedure II, compound **3aH** is obtained as an orange solid (93 mg, 79% yield) starting from Tröger base **2a** (50 mg, 0.20 mmol) and triazole **1H**.

Purification: column chromatography (silica gel, pentane/EtOAc, 9:1) **R**_f = 0.60 (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 196-198 °C; **IR (neat):** \tilde{v} 1615, 1594, 1496, 1468, 1408, 1340, 1290, 1158, 1140, 1093, 964, 809, 662

Ar = $3,4-Cl_2C_6H_3$ cm⁻¹; ¹H NMR (400 MHz, CDCl_3): δ 7.83 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.6 Hz, 1H), 7.30 (d, J = 2.1 Hz, 1H), 7.18 (dd, J = 8.4, 2.2 Hz, 1H), 6.89 (s, 1H), 6.85 (d, J = 8.3 Hz, 2H), 6.53 (d, J = 8.0 Hz, 1H), 6.42-6.34 (m, 2H), 5.49 (d, J = 9.7, 1H), 5.37 (s, 1H), 4.66-4.52 (m, 2H), 3.71 (d, J = 5.2 Hz, 1H), 3.68 (s, 1H), 3.56 (d, J = 15.4 Hz, 1H), 2.50 (s, 3H), 2.23 (s, 3H), 2.04 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl_3): δ 148.7 (C), 146.2 (C), 144.3 (C), 144.2 (C), 138.5 (C), 132.7 (C), 132.0 (C), 131.6 (C), 131.01 (CH), 130.98 (CH), 130.9 (CH), 130.3 (2xCH), 128.6 (CH), 128.4 (C), 128.3 (C), 127.6 (CH), 127.3 (2xCH), 126.7 (CH), 125.4 (CH), 123.8 (CH), 122.2 (C), 108.7 (CH), 73.1 (C), 66.4 (CH), 62.0 (CH₂), 49.8 (CH₂), 48.8 (CH₂), 21.8 (CH₃), 20.73 (CH₃), 20.67 (CH₃) ppm; HR-MS (ESI): Calculated for C₃₂H₃₀Cl₂N₃O₂S [M+H]⁺: 590.1430 m/z; Found: 590.1428 m/z.

Compound 3al:

Following general procedure II, compound **3al** is obtained as a white solid (28 mg, 29% yield) starting from Tröger Base **2a** (50 mg, 0.2 mmol) and triazole **1**I.

Purification: column chromatography (Silica gel, pentane/EtOAc, 9:1) $\mathbf{R}_f = 0.38$ (pentane/EtOAc, 9:1); **M.p.** = 184-186 °C; **IR** (neat): \tilde{v} 1615, 1597 1493, 1397, 1336, 1286, 1162, 1132, 1089, 1062, 963, 809, 718, 657 cm⁻¹; ¹**H NMR (400 MHz, CDCl₃)**: 7.85 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 7.8 Hz, 2H),

6.83-6.77 (m, 3H), 6.60 (s, 1H), 6.52-6.40 (m, 1H), 6.24 (d, J = 8.1 Hz, 1H), 5.33 (dd, J = 9.9, 1.4 Hz, 1H), 5.24 (s, 1H), 4.61 (d, J = 17.4 Hz, 1H), 4.36 (d, J = 17.4 Hz, 1H), 3.63 (d, J = 10.0 Hz, 1H), 3.42 (d, J = 15.5 Hz, 1H), 2.95 (d, J = 15.5 Hz, 1H), 2.47 (s, 3H), 2.20 (s, 3H), 2.07 (s, 3H), 1.45-1.18 (m, 4H), 0.87 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.6 (C), 146.5 (2xC), 143.8 (C), 138.6 (C), 131.0 (CH), 130.7 (CH), 130.1 (2XCH), 128.7 (C), 128.4 (CH), 127.6 (C) 127.3 (2XCH), 126.5 (CH), 123.5 (CH), 108.9 (CH), 62.9 (CH), 62.5 (CH₂), 48.94 (CH₂), 48.87 (CH₂), 40.4 (CH₂), 21.7 (CH₃), 20.70 (CH₃), 20.69 (CH₃), 16.1 (CH₂), 14.7 (CH₃); HRMS (ESI): Calculated for C₂₉H₃₄N₃O₂S [M+H]⁺: 488.2366 m/z; Found: 488.2366 m/z.

Compound 3aJ:

Following general procedure II, compound **3aJ** is obtained as a yellowish solid (50 mg, 41% yield) starting from Tröger base **2a** (51 mg, 0.20 mmol) and triazole **1J**.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2)

R_f = 0.49 (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 123-125 °C; **IR (neat):** ν̃ 1632, 1605, 1497, 1336, 1267, 1208, 1158, 1091, 1031, 954, 907, 852, 808,

Ar = $6 - OMeC_{10}H_6$ 727, 663 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 8.6 Hz, 1H), 7.64 (d, *J* = 8.9 Hz, 1H), 7.56 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.33 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.17-7.13 (m, 1H), 7.12 (d, *J* = 2.4 Hz, 1H), 6.91 (s, 1H), 6.86 (d, *J* = 8.1 Hz, 2H), 6.56 (d, *J* = 8.0 Hz, 1H), 6.46 (s, 1H), 6.41 (d, *J* = 8.1 Hz, 1H), 5.57-5.47 (m, 2H), 4.70 (d, *J* = 17.5 Hz, 1H), 4.61 (d, *J* = 17.5 Hz, 1H), 3.93 (s, 3H), 3.82 (d, *J* = 15.5 Hz, 1H), 3.77 (d, *J* = 9.7 Hz, 1H), 3.65 (d, *J* = 15.3 Hz, 1H), 2.51 (s, 3H), 2.24 (s, 3H), 2.06 (d, *J* = 1.7 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 157.9 (C), 149.2 (C), 146.5 (C), 143.8 (C), 138.9 (C), 138.7 (C), 133.9 (C), 131.7 (C), 130.9 (CH), 130.8 (CH), 130.1 (2xCH), 129.7 (CH), 128.8 (C), 128.7 (C), 128.5 (CH), 127.8 (CH), 127.4 (2xCH), 126.8 (CH), 124.5 (CH), 123.8 (CH), 123.6 (CH), 122.6 (C), 119.1 (CH), 108.3 (CH), 105.6 (CH), 73.5 (C), 66.6 (CH), 62.1 (CH₂), 55.5 (CH₃), 49.7 (CH₂), 48.7 (CH₂), 21.8 (CH₃), 20.73 (CH₃), 20.67 (CH₃) ppm; HR-MS (ESI): Calculated for C₃₇H₃₆N₃O₃S [M+H]⁺: 602.2472 m/z; Found: 602.2477 m/z.

Compound 3aK:

Following general procedure II, compound **3aK** is obtained as a white solid (92 mg, 85% yield) starting from Tröger Base **2a** (50 mg, 0.2 mmol) and triazole **1K**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 9:1) $\mathbf{R}_f = 0.51$ (pentane/EtOAc, 8:2); **M.p.** = 211-213 °C; **IR** (neat): \tilde{v} 1618, 1596 1494, 1396, 1289, 1164, 1157, 1134, 1090, 1058, 980, 957, 809, 776, 705, 661 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.83 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.5

Hz, 2H), 7.29 (dd, J = 5.0, 3.0 Hz, 1H), 7.08 (dd, J = 3.0, 1.3 Hz, 1H) 6.95 (dd, J = 5.0, 1.3 Hz, 1H), 6.89-6.88 (m, 1H), 6.85-6.81 (m, 2H), 6.54 (d, J = 8.0 Hz, 1H), 6.41 (s, 1H), 6.34 (d, J = 8.1 Hz, 1H), 5.46 (dd, J = 9.9, 1.5 Hz, 1H), 5.43 (s, 1H), 4.72 (d, J = 17.5 Hz, 1H), 4.52 (d, J = 17.5 Hz, 1H), 3.75-3.59 (m, 3H), 2.49 (s, 3H), 2.23 (s, 3H), 2.05 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃): δ 148.9 (C), 146.2 (C), 145.6 (C), 143.9 (C), 138.5 (C), 131.9 (C), 131.0 (CH), 130.8 (CH), 130.1 (2xCH), 128.8 (C) 128.5 (CH), 128.0 (C), 127.5 (2xCH), 126.9 (CH), 126.7 (CH), 125.8 (CH), 123.8 (CH), 122.6 (C), 120.6 (CH), 108.6 (CH), 71.8 (C), 65.9 (CH), 62.1 (CH₂), 49.7 (CH₂), 48.8 (CH₂), 21.7 (CH₃), 20.7 (CH₃), 20.7 (CH₃); HRMS (ESI): Calculated for C₃₀H₃₀N₃O₂S₂ [M+H]⁺: 528.1774 m/z; Found: 528.1774 m/z.

Compound 3aL:

Following general procedure II, compound **3aL** is obtained as a white solid (82 mg, 81% yield) starting from Tröger base **2a** (51 mg, 0.20 mmol) and triazole **1L**.

Purification: column chromatography (silica gel, pentane/EtOAc, 7:3)

R_f = 0.56 (Silica gel, pentane/EtOAc, 7:3); **M.p.** = 186-188 °C; **IR (neat)**: \tilde{v} 1743, 1496, 1346, 1267, 1212, 1163, 1090, 1038, 962, 812, 779, 660, 579 cm⁻¹; ¹**H NMR (500 MHz, CDCl₃)**: δ 7.88 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.0

Hz, 2H), 6.87-6.77 (m, 4H), 6.43 (d, J = 7.9 Hz, 1H), 6.32 (d, J = 8.1 Hz, 1H), 6.09 (s, 1H), 5.30 (dd, J = 10.4, 1.4 Hz, 1H), 4.86 (d, J = 17.6 Hz, 1H), 4.43 (d, J = 17.7 Hz, 1H), 3.77-3.69 (m, 5H), 2.88 (d, J = 15.7 Hz, 1H), 2.46 (s, 3H), 2.20 (s, 3H), 2.13 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 171.8 (C), 148.0 (C), 145.9 (C), 143.9 (C), 137.8 (C), 131.7 (C), 131.1 (CH), 130.9 (CH), 130.0 (2xCH), 129.1 (C), 128.5 (CH), 128.2 (C), 127.4 (2xCH), 126.4 (CH), 123.5 (C), 123.3 (CH), 109.8 (CH), 73.3 (C), 62.4 (CH₂), 60.6 (CH), 52.8 (CH₃), 49.9 (CH₂), 46.6 (CH₂), 21.8 (CH₃), 20.74 (CH₃), 20.66 (CH₃) ppm; HR-MS (ESI): Calculated for C₂₈H₃₀N₃O₄S [M+H]⁺: 504.1952 m/z; Found: 504.1960 m/z.

Compound 3aM:

Following general procedure II, compound **3aM** is obtained as an orange solid (53 mg, 56% yield) starting from Tröger base **2a** (50 mg, 0.20 mmol) and triazole **1M** using 100 °C as temperature for the reaction.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2) $\mathbf{R}_f = 0.49$ (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 173-175 °C; **IR (neat)**: \tilde{v} 1619, 1496, 1338, 1315, 1137, 1096, 953, 925, 793, 721, 703 cm⁻¹; ¹H **NMR (500 MHz, CDCI₃)**: δ 7.63-7.57 (m, 2H), 7.42-7.34 (m, 2H), 7.29-

7.25 (m, 1H), 6.96-6.88 (m, 3H), 6.85 (dd, J = 8.0, 2.0 Hz, 1H), 6.57 (d, J = 7.9 Hz, 1H), 6.44 (d, J = 8.0 Hz, 1H), 5.42 (s, 1H), 5.22 (dd, J = 10.2, 1.6 Hz, 1H), 4.73 (d, J = 17.5 Hz, 1H), 4.64 (d, J = 17.5 Hz, 1H), 4.16 (d, J = 15.7 Hz, 1H), 3.71-3.62 (m, 2H), 2.91 (s, 6H), 2.25 (s, 3H), 2.17 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): 149.2 (C), 146.8 (C), 143.8 (C), 132.0 (C), 131.0 (CH), 130.8 (CH), 129.3 (C), 129.0 (2xCH), 128.4 (CH), 127.6 (C), 127.5 (CH), 126.6 (CH), 125.8 (2xCH), 124.3 (CH), 122.8 (C), 108.2 (CH), 74.0 (C), 67.4 (CH), 62.6 (CH₂), 50.3 (CH₂), 48.6 (CH₂), 38.4 (2xCH₃), 20.9 (CH₃), 20.8 (CH₃) ppm; HR-MS (ESI): Calculated for $C_{27}H_{31}N_4O_2S$ [M+H]⁺: 475.2162 m/z; Found: 475.2167 m/z.

Compound 3aN:

Following general procedure II, compound **3aN** is obtained as a yellow solid (54 mg, 61% yield) starting from Tröger base **2a** (50 mg, 0.20 mmol) and triazole **1N**.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2)

 $\begin{array}{l} \textbf{R}_{f} = 0.29 \text{ (Silica gel, pentane/EtOAc, 8:2); } \textbf{M.p.} = 204-206 ^{\circ}C; \textbf{IR (neat); } \tilde{v} \\ 1619, 1497, 1319, 1143, 1099, 949, 928, 910, 801, 702 cm^{-1}; ^{1}\textbf{H NMR (500} \\ \textbf{MHz, CDCl_3): } \delta 7.56-7.51 (m, 2H), 7.42-7.34 (m, 2H), 7.31-7.27 (m, 1H), 6.94 (s, 1H), 6.93-6.84 (m, 3H), \\ 6.59 (s, 1H), 6.44 (d, J = 8.0 Hz, 1H), 5.53 (s, 1H), 5.31 (dd, J = 9.9, 1.5 Hz, 1H), 4.73 (d, J = 17.5 Hz, 1H), \\ 4.65 (d, J = 17.6 Hz, 1H), 4.03 (d, J = 15.6 Hz, 1H), 3.70 (d, J = 8.4 Hz, 1H), 3.68 (d, J = 2.6 Hz, 1H), 3.16 \\ (s, 3H), 2.25 (s, 3H), 2.17 (s, 3H) ppm; ^{13}C NMR (126 MHz, CDCl_3): 149.1 (C), 146.4 (C), 143.6 (C), 132.2 \\ (C), 131.1 (CH), 130.8 (CH), 129.2 (C), 129.1 (2xCH), 128.5 (CH), 127.9 (C), 127.7 (CH), 126.4 (CH), 125.6 \\ (2xCH), 124.3 (CH), 122.6 (C), 108.3 (CH), 73.7 (C), 66.9 (CH), 61.7 (CH_2), 50.4 (CH_2), 48.6 (CH_2), 42.5 \\ (CH_3), 20.82 (CH_3), 20.78 (CH_3) ppm; HR-MS (ESI): Calculated for C_{26}H_{28}N_3O_2S [M+H]^+: 446.1897 m/z; \\ Found: 446.1891 m/z. \end{array}$

Compound 3aO:

Following general procedure II, compound **3aO** is obtained as a yellow solid (52 mg, 47% yield) starting from Tröger base **2a** (50 mg, 0.2 mmol) and triazole **1O**.

Purification: column chromatography (silica gel, pentane/EtOAc, 9:1) **R**_f = 0.60 (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 179-181 °C; **IR** (neat): \tilde{v} 1621, 1604, 1529, 1496, 1343, 1311, 1166, 1127, 1086, 974, 942, 804, 736,

699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.43-8.38 (m, 2H), 8.12-8.07 (m, 2H), 7.35-7.25 (m, 5H), 6.93-6.89 (m, 1H), 6.89-6.83 (m, 2H), 6.56 (d, J = 8.0 Hz, 1H), 6.42 (s, 1H), 6.39 (d, J = 8.1 Hz, 1H), 5.49 (s, 1H), 5.43 (dd, J = 9.8, 1.5 Hz, 1H), 4.66 (d, J = 17.6 Hz, 1H), 4.58 (d, J = 17.6 Hz, 1H), 3.79 (d, J = 9.9 Hz, 1H), 3.71 (d, J = 15.5 Hz, 1H), 3.65 (d, J = 15.5 Hz, 1H), 2.24 (s, 3H), 2.03 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 150.3 (C), 149.1 (C), 147.2 (C), 145.9 (C), 143.5 (C), 132.3 (C), 131.2 (CH), 131.0 (CH), 129.1 (2xCH), 128.9 (C), 128.60 (CH), 128.56 (2xCH), 128.0 (C), 127.9 (CH), 126.4 (CH), 125.4 (2xCH), 124.7 (2xCH), 124.0 (CH), 121.8 (C), 108.5 (CH), 73.4 (C), 67.3 (CH), 62.3 (CH₂), 50.0 (CH₂), 48.5 (CH₂), 20.75 (CH₃), 20.74 (CH₃) ppm; HRMS (ESI): Calculated for C₃₁H₂₉N₄O₄S [M+H]⁺: 553.1904 m/z; Found: 553.1909 m/z.

Compound 3aP:

 R^1 = Phthalimido R^2 = *p*-OMeC₆H₄ Following general procedure II, compound **3aP** is obtained as a yellow solid (38 mg, 31% yield) starting from Tröger base **2a** (50 mg, 0.20 mmol) and triazole **1P**.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2)

R_f = 0.44 (Silica gel, pentane/EtOAc, 6:4); **M.p.** = 189-191 °C; **IR (neat):** \tilde{v} 1776, 1711, 1595, 1497, 1311, 1260, 1148, 1089, 1057, 967, 799, 724 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.85-7.80 (m, 2H), 7.80-7.71 (m, 4H), 6.87-6.83 (m, 2H), 6.83-6.76 (m, 4H), 6.33 (d, *J* = 8.0 Hz, 1H), 6.26 (d, *J* = 8.0 Hz, 1H), 6.13 (s, 1H), 5.44 (d, *J* = 9.7 Hz, 1H), 4.88 (d, *J* = 17.5 Hz, 1H), 4.83 (d,

J = 16.2 Hz, 1H), 4.34 (d, J = 17.5 Hz, 1H), 3.84 (d, J = 9.6 Hz, 1H), 3.81 (s, 3H), 3.59 (d, J = 15.8 Hz, 1H), 2.19 (s, 3H), 2.15 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 168.3 (2xC), 163.2 (C), 148.2 (C), 145.5 (C), 134.5 (2xCH), 132.7 (C), 131.9 (2xC), 131.2 (CH), 130.6 (C), 130.3 (CH), 129.4 (C), 129.3 (2xCH), 128.5 (CH), 126.1 (C), 125.1 (CH), 124.5 (C), 123.4 (2xCH), 121.3 (CH), 114.6 (2xCH), 109.7 (CH), 85.1 (C), 64.0 (CH), 62.5 (CH₂), 55.8 (CH₃), 49.9 (CH₂), 46.1 (CH₂), 20.9 (CH₃), 20.7 (CH₃) ppm; HR-MS (ESI): Calculated for C₃₄H₃₁N₄O₅S [M+H]⁺: 607.2014 m/z; Found: 607.2010 m/z.

Compound 3IA:

Following general procedure II, compound **3IA** is obtained as an orange-yellow solid (63 mg, 55% yield) starting from Tröger Base **2I** (59 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 7:3)

R_f = 0.52 (pentane/EtOAc, 6:4); **M.p.** = 158-160 °C; **IR** (neat): \tilde{v} 1605, 1494, 1448, 1311, 1275, 1156, 1088, 1031, 811, 764, 699, 659 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 8.00 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.80 (d, *J* = 8.3 Hz, 2H), 7.43-7.36 (m, 4H), 7.34-7.28 (m, 3H), 7.15-7.14 (m, 1H), 6.73 (d, *J* = 8.6 Hz, 1H), 6.70 (d, *J* = 2.8 Hz, 1H), 6.66 (dd, *J* = 8.6, 2.9 Hz, 1H), 6.47 (d, *J* = 8.9, 1H), 5.52 (dd, *J* = 10.1, 1.6 Hz, 1H), 5.45 (s, 1H), 4.78 (d, *J* = 17.4 Hz, 1H), 4.69 (d, *J* = 17.4 Hz, 1H), 4.00 (d, *J* = 15.6 Hz, 1H), 3.76 (s, 3H), 3.61-3.53 (m, 2H), 2.52 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 156.0 (C), 155.6 (C), 145.0 (C), 141.5 (C), 139.8 (C), 137.8 (C), 130.4 (2xCH), 129.5 (C) 129.4 (2xCH), 128.3 (CH), 128.0 (CH), 127.2 (2XCH), 126.5 (CH), 125.1 (2XCH), 123.4 (C), 123.3 (CH), 115.5 (CH), 113.1 (CH), 106.3 (CH), 75.6 (C), 64.6 (CH), 61.6 (CH₂), 55.7 (CH), 50.2 (CH₂), 48.1 (CH₂), 21.8 (CH₃); HRMS (ESI): Calculated for C₃₁H₂₉N₄O₅S [M+H]⁺: 569.1853 m/z; Found: 569.1860 m/z.

Compound 3mA:

Following general procedure II, compound **3mA** is obtained as an orange-yellow solid (38 mg, 34% yield) starting from Tröger Base **2m** (56 mg, 0.2 mmol) and triazole **1A**.

Purification: column chromatography (Silica gel, pentane/EtOAc, 9:1) $\mathbf{R}_{f} = 0.36$ (pentane/EtOAc, 8:2); **M.p.** = 198-200 °C; **IR** (neat): \tilde{v} 1598,

1494, 1445, 1348, 1315, 1271, 1229, 1157, 1100, 1075, 1054, 951, 938, 831, 813, 765, 723, 703, 661 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.99 (dd, J = 8.9, 2.3 Hz, 1H), 7.81 (d, J =8.3 Hz, 2H), 7.49-7.34 (m, 4H), 7.35-7.29 (m, 3H), 7.15-7.14 (m, 1H), 6.96-6.87 (m, 2H), 6.65 (dd, J =8.0, 1H), 6.44 (d, J = 8.9, 1H), 5.57 (dd, J = 10.0, 1.5 Hz, 1H), 5.48 (s, 1H), 4.78 (d, J = 17.4 Hz, 1H), 4.67 (d, J = 17.3 Hz, 1H), 4.00 (d, J = 15.6 Hz, 1H), 3.67-3.56 (m, 2H), 2.52 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.2 (C), 145.9 (C), 145.0 (C), 141.6 (C), 139.8 (C), 137.9 (C), 132.8 (C), 130.6 (CH) 130.5 (2xCH), 129.4 (2XCH), 129.2 (CH), 128.3 (CH), 128.0 (CH), 127.5 (C), 127.2 (2XCH), 125.1 (2XCH), 124.8 (CH), 123.5 (CH), 123.2 (C), 106.6 (CH), 75.7 (C), 64.7 (CH), 61.7 (CH₂), 49.9 (CH₂), 48.2 (CH₂), 21.8 (CH₃), 20.8 (CH₃); HRMS (ESI): Calculated for C₃₁H₂₉N₄O₄S [M+H]⁺: 553.1904 m/z; Found: 553.1907 m/z.

5. General procedure III: synthesis of compounds 4

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, $Rh_2(Piv)_4$ (1.22 mg, 0.002 mmol, 2 mol%), compound **3aO** (0.1 mmol, 1 equiv) and *N*-sulfonyltriazole **1** (0.3 mmol, 3 equiv) were dissolved in 0.4 mL of anhydrous CHCl₃ (0.25 M). The vial was capped and stirred at 80 °C for 48 h. The solution was concentrated under reduced pressure and the residue was purified by column chromatography.

Analysis data for compounds 4

Compound 4A:

Following general procedure III, compound **4A** is obtained as an orange solid (24 mg, 29% yield) starting from compound **3aO** (55 mg, 0.10 mmol) and triazole **1A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 9:1) $\mathbf{R}_f = 0.40$ (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 178-180 °C; **IR (neat):** \tilde{v} 1618, 1531, 1499, 1347, 1314, 1240, 1164, 1090, 1009, 939, 809, 764, 665 cm⁻¹; ¹**H NMR (400 MHz, CDCl₃):** δ 8.50-8.43 (m, 2H), 8.35-8.27 (m, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.33-7.26 (m, 7H), 7.25-7.16 (m, 3H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.83 (s, 1H), 6.80 (d, *J* = 2.1 Hz, 1H), 6.50 (d, *J* =

8.1 Hz, 1H), 6.18 (dd, J = 8.4, 2.1 Hz, 1H), 6.11 (d, J = 8.4 Hz, 1H), 5.33 (s, 1H), 5.28 (s, 1H), 5.00 (d, J = 4.0 Hz, 1H), 4.96 (s, 1H), 4.58-4.54 (m, 1H), 4.51 (d, J = 2.8 Hz, 1H), 4.12 (d, J = 15.5 Hz, 1H), 3.96 (d, J = 15.5 Hz, 1H), 2.37 (s, 3H), 2.15 (s, 3H), 1.91 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.6 (C), 147.7 (C), 144.9 (C), 144.0 (C), 143.9 (C), 143.8 (C), 137.9 (C), 135.6 (C), 131.6 (C), 131.4 (CH), 130.5 (CH), 129.8 (2xCH), 129.8 (2xCH), 129.3 (2xCH), 129.1 (CH), 129.0 (2xCH), 128.2 (CH), 128.0 (CH), 127.7 (C), 126.9 (2xCH), 126.6 (2xCH), 126.6 (C), 125.7 (CH), 125.4 (2xCH), 124.8 (2xCH), 122.5 (C), 120.4 (C), 119.1 (CH), 115.8 (CH), 105.7 (CH), 77.3 (C), 68.6 (CH), 59.6 (CH₂), 56.9 (CH₂), 46.7 (CH₂), 21.7 (CH₃), 20.8 (CH₃), 20.2 (CH₃) ppm; HR-MS (ESI): Calculated for C₄₆H₄₂N₅O₆S₂ [M+H]⁺: 824.2556 m/z; Found: 824.2571 m/z.

Compound 4B:

Following general procedure III, compound **4B** is obtained as an orange solid (29 mg, 34% yield) starting from compound **3aO** (55 mg, 0.10 mmol) and triazole **1B**.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2) $\mathbf{R}_f = 0.39$ (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 181-183 °C; **IR** (neat): \tilde{v} 1607, 1531, 1500, 1347, 1314, 1291, 1249, 1165, 1090, 1014, 940, 809, 756, 662 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, J = 8.8 Hz, 2H), 8.30 (d, J = 8.8 Hz, 2H), 7.39-7.26 (m, 6H), 7.26-7.20 (m, 1H), 7.11 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.1 Hz, 2H), 6.93 (d, J = 8.1 Hz,

1H), 6.84-6.76 (m, 3H), 6.68 (s, 1H), 6.49 (d, J = 8.1 Hz, 1H), 6.19 (d, J = 8.5 Hz, 1H), 6.13 (d, J = 8.4 Hz, 1H), 5.33 (s, 2H), 4.99 (s, 1H), 4.95 (d, J = 4.1 Hz, 1H), 4.55 (d, J = 3.9 Hz, 1H), 4.51 (s, 1H), 4.08 (d, J = 15.5 Hz, 1H), 3.96 (d, J = 15.5 Hz, 1H), 3.79 (s, 3H), 2.37 (s, 3H), 2.15 (s, 3H), 1.92 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.8 (C), 150.6 (C), 147.7 (C), 145.0 (C), 144.1 (C), 143.8 (C), 143.8 (C), 137.9 (C), 131.7 (C), 131.4 (CH), 130.4 (CH), 129.8 (2xCH), 129.7 (2xCH), 129.3 (2xCH), 128.9 (CH), 128.2 (2xCH), 128.00 (C), 127.95 (CH), 127.6 (C), 126.6 (2xCH), 126.5 (C), 125.8 (CH), 125.4 (2xCH), 124.8 (2xCH), 122.5 (C), 120.4 (C), 117.3 (CH), 115.9 (CH), 114.4 (2xCH), 105.6 (CH), 77.3 (C), 68.6 (CH), 59.6 (CH₂), 56.9 (CH₂), 55.5 (CH₃), 46.6 (CH₂), 21.7 (CH₃), 20.8 (CH₃), 20.2 (CH₃) ppm; HR-MS (ESI): Calculated for C₄₇H₄₄N₅O₇S₂ [M+H]⁺: 854.2689 m/z; Found: 854.2677 m/z.

Compound 4O:

Following general procedure III, compound **40** is obtained as an orange solid (27 mg, 32% yield) starting from compound **3aO** (55 mg, 0.10 mmol) and triazole **10**.

Purification: column chromatography (silica gel, pentane/EtOAc, 9:1) $\mathbf{R}_{f} = 0.40$ (Silica gel, pentane/EtOAc, 8:2); **M.p.** = 208-210 °C; **IR (neat):** \tilde{v} 1614, 1530, 1500, 1346, 1313, 1167, 1127, 1102, 1015, 942, 912, 853 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.53-8.46 (m, 2H), 8.32-8.25 (m, 2H), 8.10-8.03 (m, 2H), 7.61-7.55 (m, 2H), 7.36-7.27 (m, 5H), 7.25-7.19 (m, 5H), 6.96 (d, J =8.0 Hz, 1H), 6.84 (s, 1H), 6.79 (s, 1H), 6.50 (d, J = 8.1 Hz, 1H), 6.19-6.12 (m,

2H), 5.22 (s, 1H), 5.20 (s, 1H), 4.99-4.88 (m, 2H), 4.59-4.55 (m, 1H), 4.53 (d, J = 6.0 Hz, 1H), 4.04 (d, J = 15.6 Hz, 1H), 3.99 (d, J = 15.6 Hz, 1H), 2.10 (s, 3H), 1.90 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 150.8 (C), 150.0 (C), 147.7 (C), 146.1 (C), 144.5 (C), 144.4 (C), 143.1 (C), 135.2 (C), 134.4 (C), 131.7 (CH), 130.4 (CH), 129.7 (2xCH), 129.4 (2xCH), 129.1 (2xCH), 128.8 (CH), 128.6 (CH), 128.6 (C), 128.1 (CH), 127.7 (2xCH), 127.2 (2xCH), 126.6 (C), 125.8 (CH), 125.4 (2xCH), 125.0 (2xCH), 124.6 (2xCH), 122.9 (C), 120.0 (C), 118.2 (CH), 115.8 (CH), 105.4 (CH), 77.1 (C), 68.7 (CH), 59.8 (CH₂), 56.9 (CH₂), 46.3 (CH₂), 20.8 (CH₃), 19.9 (CH₃) ppm; HR-MS (ESI): Calculated for C₄₅H₃₉N₆O₈S₂ [M+H]⁺: 855.2265 m/z; Found: 855.2290 m/z.

6. Synthesis of compound 5

To a stirred solution of compound **3aO** (110 mg, 0.2 mmol, 1 equiv) in a mixture of CH₃CN/DMSO (49:1, 10 mL) were added K_2CO_3 (111 mg, 0.8 mmol, 4 equiv) and PhSH (0.1 mL, 1.0 mmol, 5 equiv). The reaction mixture was stirred at 50 °C for 2 h. After being cooled to 20 °C, solvent was evaporated and the residue was directly purified by column chromatography (silica gel, pentane/EtOAc 7:3) to afford compound **5** as a

yellowish solid (54 mg, 74% yield).

R_f = 0.28 (Silica gel, pentane/EtOAc, 1:1); **M.p.** = 158-160 °C; **IR (neat)**: \tilde{v} 2919, 1616, 1494, 1357, 1292, 1244, 1152, 1129, 904, 873, 804, 751, 728, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.41 (m, 2H), 7.38-7.29 (m, 2H), 7.25-7.20 (m, 1H), 6.98-6.79 (m, 4H), 6.65 (d, *J* = 8.0 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 1H), 4.91 (d, *J* = 17.3 Hz, 1H), 4.63 (d, *J* = 17.3 Hz, 1H), 4.51 (d, *J* = 11.9 Hz, 1H), 4.40 (s, 1H), 4.02-3.86 (m, 3H), 2.23 (s, 3H), 2.15 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 148.9 (C), 146.6 (C), 144.9 (C), 131.1 (C), 130.8 (CH), 129.9 (CH), 128.7 (2xCH), 128.7 (CH), 128.6 (C), 127.5 (C), 127.2 (CH), 126.6 (CH), 125.7 (2xCH), 124.4 (CH), 108.6 (CH), 70.4 (C), 65.7 (CH), 65.5 (CH₂), 51.5 (CH₂), 49.2 (CH₂), 20.8 (CH₃), 20.7 (CH₃) ppm; HR-MS (ESI): Calculated for C₂₅H₂₆N₃ [M+H]⁺: 368.2123 m/z; Found: 368.2121 m/z.

7. NMR spectra of new compounds

Compound 1E. ¹H NMR (CDCl₃, 400 MHz)

Compound 1E. ¹³C NMR (CDCl₃, 100 MHz)

Compound 1H. ¹H NMR (CDCl₃, 400 MHz)

Compound 1H. ¹³C NMR (CDCl₃, 100 MHz)

Compound 3aA. ¹H NMR (CDCl₃, 400 MHz)

Compound 3aA. ¹³C NMR (CDCl₃, 100 MHz)

Compound 3bA. ¹H NMR (CDCl₃, 500 MHz)

Compound 3bA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3cA. ¹H NMR (CDCl₃, 500 MHz)

Compound 3cA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3dA. ¹H NMR (CDCl₃, 500 MHz)

Compound 3dA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3eA. ¹H NMR (CDCl₃, 500 MHz)

Compound 3eA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3fA. ¹H NMR (CDCl₃, 400 MHz)

Compound 3fA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3gA. ¹H NMR (CDCl₃, 400 MHz)

Compound 3gA. ¹³C NMR (CDCl₃, 100 MHz)

Compound 3hA. ¹H NMR (CDCl₃, 500 MHz)

Compound 3hA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3iA. ¹H NMR (CDCl₃, 500 MHz)

Compound 3iA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3jA. ¹H NMR (CDCl₃, 500 MHz)

Compound 3jA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3kA. ¹H NMR (CDCl₃, 500 MHz)

Compound 3kA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3aB. ¹H NMR (acetone-*d*₆, 500 MHz)

Compound 3aB. ¹³C NMR (acetone-*d*₆, 126 MHz)

Compound 3aC. ¹H NMR (CDCl₃, 500 MHz)

Compound 3aC. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3aD. ¹H NMR (CDCl₃, 400 MHz)

Compound 3aD. ¹³C NMR (CDCl₃, 100 MHz)

Compound 3aE. ¹H NMR (CDCl₃, 500 MHz)

Compound 3aE. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3aF. ¹H NMR (CDCl₃, 500 MHz)

Compound 3aF. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3aG. ¹H NMR (CDCl₃, 400 MHz)

Compound 3aG. ¹³C NMR (CDCl₃, 100 MHz)

Compound 3aH. ¹H NMR (CDCl₃, 400 MHz)

Compound 3aH. ¹³C NMR (CDCl₃, 100 MHz)

Compound 3al. ¹H NMR (CDCl₃, 400 MHz)

Compound 3al. ¹³C NMR (CDCl₃, 100 MHz)

Compound 3aJ. ¹H NMR (CDCl₃, 500 MHz)

Compound 3aJ. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3aK. ¹H NMR (CDCl₃, 400 MHz)

Compound 3aK. ¹³C NMR (CDCl₃, 100 MHz)

Compound 3aL. ¹H NMR (CDCl₃, 500 MHz)

Compound 3aL. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3aM. ¹H NMR (CDCl₃, 500 MHz)

Compound 3aM. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3aN. ¹H NMR (CDCl₃, 500 MHz)

Compound 3aN. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3aO. ¹H NMR (CDCl₃, 500 MHz)

Compound 3aO. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3aP. ¹H NMR (CDCl₃, 500 MHz)

Compound 3aP. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3IA. ¹³C NMR (CDCl₃, 126 MHz)

Compound 3mA. ¹³C NMR (CDCl₃, 100 MHz)

Compound 4A. ¹H NMR (CDCl₃, 400 MHz)

Compound 4A. ¹³C NMR (CDCl₃, 100 MHz)

Compound 4B. ¹H NMR (CDCl₃, 400 MHz)

Compound 4B. ¹³C NMR (CDCl₃, 100 MHz)

Compound 40. ¹H NMR (CDCl₃, 500 MHz)

Compound 40. ¹³C NMR (CDCl₃, 126 MHz)

Compound 5. ¹H NMR (CDCl₃, 400 MHz)

Compound 5. ¹³C NMR (CDCl₃, 100 MHz)

8. Reactivity of 2I and 2m under thermal activation (metal-free) conditions

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, Tröger's base **2I** (0.1 mmol, 1 equiv) and *N*-sulfonyltriazole **1Q** (0.15 mmol, 1.5 equiv) were dissolved in 0.4 mL of anhydrous CHCl₃ (0.25 M). The vial was capped and stirred at 80 °C for 48 h. The solution was concentrated under reduced pressure and the ¹H NMR of the crude mixture is recorded. As the separation/purification of both regioisomers was difficult by chromatography, the ratio is determined from the crude mixture.

Scheme S1. ¹H NMR of the crude reaction mixture of **1Q** with **2I**: 1:1 ratio of the two regioisomers.

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, Tröger's base **2m** (0.1 mmol, 1 equiv) and *N*-sulfonyltriazole **1Q** (0.15 mmol, 1.5 equiv) were dissolved in 0.4 mL of anhydrous CHCl₃ (0.25 M). The vial was capped and stirred at 80 °C for 48 h. The solution was concentrated under reduced pressure and the residue was purified by column chromatography (Pentane/EtOAc 6:4). An inseparable mixture of the two regioisomers is obtained. As the purification was difficult to carry out, the yield is not reported.

Scheme S2. ¹H NMR of the isolated mixture from reaction of **1Q** with **2m**.: 1:1 the two regioisomers.

9. Synthesis of compounds 2' and 3'

Compound 2':

2' : X = CHO, Y = CO₂Et

In a screw cap vial, Tröger base **2a** (125 mg, 0.5 mmol) and CuTc (5 mol%) were dissolved in 1.3 mL of toluene. Then ethyl 2-diazo-3-oxopropanoate (0.75 mmol, 1.5 equiv) was added slowly to the reaction mixture. The resulting solution was stirred at 90°C for 16 h. After being cooled to 20 °C, solvent was evaporated and the residue was directly purified by column chromatography (silica gel, pentane/EtOAc 9:1) to afford compound **2'** as a yellow solid (87 mg, 48% yield).

 \mathbf{R}_{f} = 0.63 (Silica gel, pentane/EtOAc, 8:2); **IR (neat):** \tilde{v} 1743, 1720, 1495, 1435, 1218, 1182, 1099, 1070, 1011, 962, 890, 824 cm⁻¹;

Major diastereoisomer: ¹**H NMR (400 MHz, CDCl₃):** δ 9.37 (d, J = 1.8 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 7.9 Hz, 1H), 6.94 (dd, J = 8.1, 2.1 Hz, 1H), 6.88 (dd, J = 8.1, 2.1 Hz, 1H), 6.71 (s, 1H), 6.58 (s, 1H), 4.77 (d, J = 17.9 Hz, 1H), 4.52 (d, J = 15.2 Hz, 1H), 4.42 (d, J = 18.0 Hz, 1H), 4.31 (d, J = 17.7 Hz, 1H), 4.26-4.15 (m, 3H), 3.84 (dt, J = 15.2, 1.5 Hz, 1H), 2.18 (s, 3H), 2.17 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃):** δ 193.9 (C), 167.6 (C), 146.7 (C), 142.3 (C), 136.6 (C), 136.0 (C), 135.0 (C), 133.9 (C), 130.6 (CH), 129.4 (CH), 128.82 (CH), 128.79 (CH), 128.4 (CH), 128.3 (CH), 82.3 (C), 62.4 (CH₂), 59.6 (CH₂), 57.3 (CH₂), 56.2 (CH₂), 21.0 (CH₃), 20.9 (CH₃), 14.2 (CH₃) ppm;

Minor diastereoisomer: ¹**H NMR (400 MHz, CDCl₃):** δ 9.82 (s, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.90 (td, *J* = 7.8, 2.1 Hz, 2H), 6.68 (s, 1H), 6.62 (s, 1H), 4.70 (d, *J* = 17.5 Hz, 1H), 4.59 (d, *J* = 15.4 Hz, 1H), 4.49 (d, *J* = 17.8 Hz, 1H), 4.42-4.25 (m, 2H), 3.99 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.87 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.65 (dd, *J* = 15.5, 1.4 Hz, 1H), 2.17 (s, 3H), 2.16 (s, 3H), 0.83 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.6 (C), 167.2 (C), 146.9 (C), 143.1 (C), 136.5 (C), 135.9 (C), 135.8 (C), 134.8 (C), 130.6 (CH), 128.9 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 82.5 (C), 62.4 (CH₂), 59.7 (CH₂), 57.5 (CH₂), 56.2 (CH₂), 20.94 (CH₃), 20.87 (CH₃), 13.6(CH₃) ppm; HR-MS (ESI): Calculated for C₂₉H₃₂N₃O₄S [M+H]⁺: 518.2108 m/z; Found: 518.2127 m/z.

Compound 3':

Following a procedure reported in the literature^[6], compound **3'** is obtained as a white solid (10 mg, 32% yield) starting from tosyl amine (10 mg, 0.06 mmol) and Tröger base **2'**(33 mg, 0.18 mmol, 3 equiv). with 10 mol% of antrhanilic acid.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2)

R_f = 0.33 (Silica gel, pentane/EtOAc, 8:2); **IR (neat):** \tilde{v} 1734, 1615, 1496, 1397, 1348, 1263, 1206, 1162, 1091, 1035, 960, 813, 660 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 7.7 Hz, 2H), 6.88-6.74 (m,

4H), 6.42 (d, J = 8.0 Hz, 1H), 6.32 (d, J = 8.1 Hz, 1H), 6.11 (s, 1H), 5.30 (dd, J = 10.4, 1.3 Hz, 1H), 4.88 (d, J = 17.6 Hz, 1H), 4.44 (d, J = 17.7 Hz, 1H), 4.19 (m, 2H), 3.79-3.65 (m, 2H), 2.85 (d, J = 15.7 Hz, 1H), 2.46 (s, 3H), 2.20 (s, 3H), 2.13 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ 171.2 (C), 148.0 (C), 146.0 (C), 143.9 (C), 137.9 (C), 131.7 (C), 131.1 (CH), 130.8 (CH), 130.1 (2xCH), 129.0 (C), 128.5 (CH), 128.3 (C), 127.4 (2xCH), 126.4 (CH), 123.5 (C), 123.3 (CH), 109.7 (CH), 73.3 (C), 62.3 (CH₂), 61.8 (CH₂), 60.4 (CH), 49.9 (CH₂), 46.7 (CH₂), 21.8 (CH₃), 20.8 (CH₃), 20.7 (CH₃), 14.4 (CH₃) ppm; HR-MS (ESI): Calculated for C₂₉H₃₂N₃O₄S [M+H]⁺: 518.2108 m/z; Found: 518.2127 m/z.

Compound 2'. ¹H NMR (CDCl₃, 400 MHz) Major diastereoisomer

Compound 2'. ¹³C NMR (CDCl₃, 100 MHz) Major diastereoisomer

Compound 2'. ¹H NMR (CDCl₃, 400 MHz) Minor diastereoisomer

Compound 2'. ¹³C NMR (CDCl₃, 100 MHz) Minor diastereoisomer

Compound 3'. ¹H NMR (CDCl₃, 500 MHz)

Compound 3'. ¹³C NMR (CDCl₃, 126 MHz)

10. Crystallographic data

All data were collected on a Rigaku Supernova diffractometer using Cu K α radiation. The crystal was mounted on a Mitegen cryoloop and hold at 180K in the cold stream of a cryostream (oxford cryosystems). Structures were solved SIR2004^[7], olex2^[8] or shelxt^[9] and refined in the SHELXL^[10] program within the Olex2 Software.

Compound 3aA

Table S2. Crystal data and structure refinement for compound_3aA.

CCDC number	1832810		
Empirical formula	C32 H31 N3 O2 S		
Formula weight	521.66		
Temperature	180.00(14) K		
Wavelength	1.5418 Å		
Crystal system	Monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 11.06311(19) Å	$\alpha = 90^{\circ}$	
	b = 16.1063(4) Å	$\beta = 93.3032(16)^{\circ}$	
	c = 14.3748(3) Å	$\gamma=90^\circ$	
Volume	2557.14(9) Å ³		
Z	4		
Density (calculated)	1.355 Mg/m ³		
Absorption coefficient	1.407 mm ⁻¹		
F(000)	1104		
Crystal size	0.1788 x 0.133 x 0.028 mm ³		
Theta range for data collection	4.126 to 73.342°.		
Index ranges	-13<=h<=13, -17<=k<=19, -1	7<=l<=16	
Reflections collected	20453		
Independent reflections	5050 [R(int) = 0.0301]		
Completeness to theta = 67.680°	99.8 %		
Absorption correction	Analytical		
Max. and min. transmission	0.962 and 0.835		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	5050 / 0 / 346		
Goodness-of-fit on F ²	1.028		
Final R indices [I>2sigma(I)]	R1 = 0.0379, wR2 = 0.0959		
R indices (all data)	R1 = 0.0497, $wR2 = 0.1028$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.222 and -0.348 e.Å ⁻³		

Figure S1. View of the asymmetric unit (displacement ellipsoids are depicted at 50 percent probability level)

Compound 3IA

CCDC number	1832811		
Empirical formula	C31 H28 N4 O5 S		
Formula weight	568.63		
Temperature	179.9(2) K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 11.23463(12) Å	$\alpha = 90^{\circ}$	
	b = 15.96591(15) Å	$\beta = 98.0040(10)^{\circ}$	
	c = 14.91002(14) Å	$\gamma=90^\circ$	
Volume	2648.37(5) Å ³		
Z	4		
Density (calculated)	1.426 Mg/m ³		
Absorption coefficient	1.508 mm ⁻¹		
F(000)	1192		
Crystal size	0.3559 x 0.2352 x 0.1567 mm ³		
Theta range for data collection	4.078 to 73.478°.		
Index ranges	-13<=h<=10, -19<=k<=19, -18<=l<=18		
Reflections collected	22701		
Independent reflections	5282 [R(int) = 0.0332]		

Table S2. Crystal data and structure refinement for compound_3IA..

Completeness to theta = 67.684°	100.0 %
Absorption correction	Analytical
Max. and min. transmission	0.822 and 0.702
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5282 / 159 / 443
Goodness-of-fit on F ²	1.043
Final R indices [I>2sigma(I)]	R1 = 0.0362, wR2 = 0.0910
R indices (all data)	R1 = 0.0419, wR2 = 0.0959
Extinction coefficient	n/a
Largest diff. peak and hole	0.246 and -0.421 e.Å ⁻³

COMMENTS: One part of the molecule is disordered and was refined using two components. Restraints were applied on the bond lengths and on the anisotropic displacement parameters Constraints were also applied on some displacement parameters: *SADI 017A C15A 017B C15B* SADI O17A C18A O17B C18B SADI O17A C18A O17B C18B SADI C15B C14B C15A C14A C16A C15A C16B C15B SADI C13A C12A C13B C12B C14A C13A C14B C13B C12A C11A C12B C11B C16B C11B C16A C11A SADI N3 C12A N3 C12B SADI N9 C10B N9 C10A SADI C11B C10A C11A C10B RIGU O17A C14A C15A C12A C10B C18A C16A C13A C11A RIGU O17B C13B C14B C10A C11B C15B C16B C12B C18B EADP C10B C10A EADP C12A C12B

Figure S3. Numbering of the disordered parts A (orange) and B (green)

Compound 40

 Table S2. Crystal data and structure refinement for compound_40.

CCDC number	1832809		
Empirical formula	C45 H38 N6 O8 S2		
Formula weight	854.93		
Temperature	180.1(6) K		
Wavelength	1.54184 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 10.3882(9) Å	$\alpha = 83.792(7)^{\circ}$	
	b = 11.7539(10) Å	$\beta = 85.494(7)^{\circ}$	
	c = 16.4258(13) Å	$\gamma = 78.477(7)^{\circ}$	
Volume	1950.3(3) Å ³		
Z	2		
Density (calculated)	1.456 Mg/m^3		
Absorption coefficient	1.793 mm ⁻¹		

F(000)	892
Crystal size	0.542 x 0.093 x 0.012 mm ³
Theta range for data collection	3.855 to 73.759°.
Index ranges	-12<=h<=10, -14<=k<=12, -20<=l<=20
Reflections collected	12601
Independent reflections	7618 [R(int) = 0.0505]
Completeness to theta = 67.684°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.68168
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7618 / 0 / 552
Goodness-of-fit on F ²	1.047
Final R indices [I>2sigma(I)]	R1 = 0.0663, wR2 = 0.1646
R indices (all data)	R1 = 0.1028, wR2 = 0.1880
Extinction coefficient	n/a
Largest diff. peak and hole	1.152 and -0.459 e.Å ⁻³

11. References

- [1] D. Didier, B. Tylleman, N. Lambert, C. M. L. Vande Velde, F. Blockhuys, A. Collas, S. Sergeyev, *Tetrahedron* **2008**, *64*, 6252-6262.
- [2] C. Pardo, M. Ramos, A. Fruchier, J. Elguero, *Magnetic Resonance in Chemistry* **1996**, *34*, 708-710.
- [3] P. Sun, S. Gao, C. Yang, S. Guo, A. Lin, H. Yao, *Organic letters* **2016**, *18*, 6464-6467.
- [4] L. S. Campbell-Verduyn, L. Mirfeizi, R. A. Dierckx, P. H. Elsinga, B. L. Feringa, *Chem. Commun.* 2009, 2139-2141.
- [5] J. Raushel, V. V. Fokin, Org. Lett. **2010**, *12*, 4952-4955.
- [6] S. Morales, F. G. Guijarro, J. L. García Ruano, M. B. Cid, *J. Am. Chem. Soc.* **2014**, *136*, 1082-1089.
- [7] M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, *J. Appl. Cryst.* **2005**, *38*, 381–388.
- [8] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* **2009**, *42*, 339–341.
- [9] M. Sheldrick, Acta Cryst C, Acta Cryst Sect C, Acta Crystallogr C, Acta Crystallogr Sect C, Acta Crystallogr C Cryst Struct Commun, Acta Crystallogr Sect C Cryst Struct Commun 2015, 71, 3–8.
- [10] M. Sheldrick, Acta Cryst. 2015, A71, 3–8