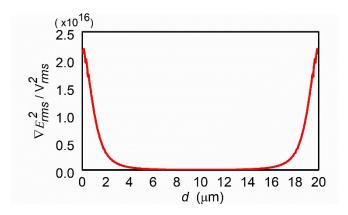
Modeling erythrocyte electrodeformation in response to amplitude modulated electric waveforms

Yuhao Qiang ¹, Jia Liu¹, Fan Yang², Darryl Dieujuste³ and E Du^{1,*}

Supplementary figures

¹Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA.


²School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, CHN.

³Department of Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA.

^{*} Correspondence: edu@fau.edu

Figure S1. Profile of $Re(f_{CM})$ of a healthy human red blood cell determined based on a single-shell ellipsoidal model.

Figure S2. Value of $\nabla^2 E_{\rm rms}/V^2_{\rm rms}$ measured as a function of distance, d between the center of cell and the edges of the electrode (d = 0 μ m and d = 20 μ m) from COMSOL Multiphysics simulation.