Reuse of malaria rapid diagnostic tests for amplicon deep sequencing to estimate *Plasmodium falciparum* transmission intensity in Western Uganda.

Ross M. Boyce^{1*}, Nick Hathaway², Travis Fulton³, Raquel Reyes⁴, Michael Matte⁵, Moses Ntaro⁵, Edgar Mulogo⁵, Andreea Waltmann¹, Jeffrey A, Bailey², Mark J. Siedner⁶, and Jonathan J. Juliano^{1,3,7}

¹Division of Infectious Diseases, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, 27599, USA

²Program in Bioinformatics and Integrative Biology, University of Massachusetts, 368 Plantation St., Worcester, Massachusetts 01605, USA

³Division of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, 135 Dauer Drive, Chapel Hill, 27599, USA

⁴Division of General Medicine & Clinical Epidemiology, University of North Carolina at Chapel Hill, 5039 Old Clinic Building, CB 7110, Chapel Hill, 27599, USA

⁵Department of Community Health, Mbarara University of Science & Technology, P.O. Box 1410, Mbarara, Uganda

⁶Department of Medicine, Harvard Medical School and Massachusetts General Hospital, 125 Nashua Street, Suite 722, Boston 02114, USA

⁷Curriculum in Genetics and Microbiology, University of North Carolina at Chapel Hill, 321 South Columbia Street, Chapel Hill, NC 27516, USA

*Corresponding author:

Ross M. Boyce MD, MSc Division of Infectious Diseases University of North Carolina at Chapel Hill 130 Mason Farm Road Chapel Hill, NC USA 27599 Phone: 919.966.2537

Fax: 919.966.6714 roboyce@med.unc.edu

Table S1: AMA primer and MID sequences

Nested Forward Primer	5'-GCTGAAGTAGCTGGACTCAA				
Conserved Reverse Primer	5'-TTTCCTGCATGTCTTGAACA				
Inner Forward Primers with 5' MID					
MID01	5'- ACGAGTGCGT CCATCAGGGAAATGTCCAGT				
MID02	5'- ACGCTCGACA CCATCAGGGAAATGTCCAGT				
MID03	5'- AGACGCACTC CCATCAGGGAAATGTCCAGT				
MID04	5'- AGCACTGTAG CCATCAGGGAAATGTCCAGT				
MID05	5'- ATCAGACACG CCATCAGGGAAATGTCCAGT				
MID06	5'- ATATCGCGAG CCATCAGGGAAATGTCCAGT				
MID07	5'-CGTGTCTCTACCATCAGGGAAATGTCCAGT				
MID08	5'-CTCGCGTGTCCCATCAGGGAAATGTCCAGT				
MID10	5'-TCTCTATGCGCCATCAGGGAAATGTCCAGT				
MID11	5'- TGATACGTCT CCATCAGGGAAATGTCCAGT				
MID13	5'-CATAGTAGTGCCATCAGGGAAATGTCCAGT				
MID14	5'-CGAGAGATACCCATCAGGGAAATGTCCAGT				
MID15	5'-ATACGACGTACCATCAGGGAAATGTCCAGT				
MID16	5'-TCACGTACTACCATCAGGGAAATGTCCAGT				
MID17	5'-CGTCTAGTACCCATCAGGGAAATGTCCAGT				
MID18	5'-TCTACGTAGCCCATCAGGGAAATGTCCAGT				
MID19	5'- TGTACTACTC CCATCAGGGAAATGTCCAGT				
MID20	5'-ACGACTACAGCCATCAGGGAAATGTCCAGT				
MID21	5'-CGTAGACTAGCCATCAGGGAAATGTCCAGT				
MID22	5'-TACGAGTATGCCATCAGGGAAATGTCCAGT				
MID23	5'- TACTCTCGTG CCATCAGGGAAATGTCCAGT				
MID24	5'-TAGAGACGAGCCATCAGGGAAATGTCCAGT				

Table S2: Mean multiplicity of infection (MOI) by sub-group and ordinal logistic regression modeling of correlates of MOI

Variable	Mean MOI	OR (95% CI)	p-Value	aOR (95% CI)	p-Value
Sex					
Female	3.16 (2.65 – 3.67)	REF	REF	-	-
Male	3.00 (2.51 – 3.49)	0.89 (0.56 - 1.44)	0.64	-	-
Age Category					
<5 years	2.82 (1.89 – 3.74)	REF	REF	REF	REF
5 – 15 years	3.05 (2.56 – 3.54)	1.47 (0.73 – 2.93)	0.28	1.29 (0.51 – 3.26)	0.60
>15 years	3.26 (2.67 – 3.86)	1.64 (0.81 – 3.33)	0.17	1.28 (0.48 – 3.39)	0.63
Parasitemia					
<2,500/µl	3.51 (2.55 – 4.47)	REF	REF	-	-
$2,500 - 9,999/\mu I$	3.52 (2.75 – 4.29)	1.22 (0.53 – 2.84)	0.64	-	-
10,000 - 99,000/µl	2.80 (2.34 – 3.27)	0.96 (0.45 - 2.06)	0.91	-	-
≥100,000/µI	2.47 (1.79 – 3.15)	0.77 (0.32 – 1.85)	0.56	-	-
Severity					
Uncomplicated	3.25 (2.86 – 3.64)	REF	REF	REF	REF
Severe	2.29 (1.46 – 3.12)	0.56 (0.27 – 1.16)	0.12	0.63 (0.25 – 1.60)	0.33
Elevation*					
Quartile 1	3.51 (2.77 – 4.26)	REF	REF	REF	REF
Quartile 2	2.70 (2.08 – 3.33)	0.51 (0.23 – 1.12)	0.09	0.43 (0.20 – 0.94)	0.035
Quartile 3	2.62 (2.06 – 3.19)	0.49 (0.22 – 1.08)	0.08	0.44 (0.20 - 0.98)	0.045
Quartile 4	1.85 (1.33 – 2.37)	0.24 (0.10 – 0.57)	0.001	0.23 (0.09 – 0.59)	0.002

Elevation ranges: Quartile 1 = 1136 - 1225m, Quartile 2 = 1259 - 1339m, Quartile 3 = 1355 - 1424m, Quartile 4 = 1451 - 1830mAbbreviations: OR = odds ratio, aOR = adjusted odds ratio

Figure S1: Photograph showing 1 cm sections of rapid diagnostic test, circled in yellow, utilized in DNA extraction protocol.

Figure S2: Summary of library construction process and final library structure

Figure S3: Allele frequencies in the five control mixtures. The number of reads per control were as follows: *Control 1* – 10,737 and 8658 reads, *Control 2* – 5,319 and 5,324 reads, *Control 3* – 6,031 and 7,705 reads, *Control 4* – 13,076 and 11,781 reads, *Control 5* – 4,331 and 7,184 reads.

Figure S4: Estimated *ama1* allele frequencies by cloning/Sanger sequencing and deep sequencing in a three-strain (dd2, fcr3, and 3D7) control mixture. The three strains were mixed together in varying frequencies. A total of 22 colonies were Sanger sequenced. For deep sequencing, *ama1* amplicons were generated in quintuplicate and a total of 80,971 reads passed quality filtering and were used for haplotype determination. Estimated allele frequencies by cloning and Sanger sequencing were dd2=0.64, fcr3=0.27 and 3d7=0.09. Estimated allele frequencies by deep sequencing were dd2=0.85, fcr3=0.10 and 3d7=0.04. The bootstrap method with 1000 replicate bootstraps was used to estimate 25% and 97.5% confidence intervals for both sequencing results.

Sanger Sequencing

Deep Sequencing

Figure S5: Total read depth of each sample stratified by multiplicity of infection (MOI)

Figure S6: Histogram showing the absolute number of samples in which each haplotype (n=39) was found.

