Genome-Wide Determination of Gene Essentiality by Transposon Insertion Sequencing in Yeast Pichia pastoris

Jinxiang Zhu¹, Ruiqing Gong¹, Qiaoyun Zhu¹, Qiulin He¹, Ning Xu¹, Yichun Xu¹, Menghao Cai¹, Xiangshan Zhou¹, Yuanxing Zhang^{1,2} and Mian Zhou^{1,*}

¹ State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China

² Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China

*Corresponding author: E-mail for Mian Zhou: <u>mianzhou@ecust.edu.cn</u>

Table S1. Primers and PCR templates for plasmid construction

Primer name	Primer sequences (5'-3')	PCR template	Amplification products	Logogram
THI11p2-amp-F	AATAACAGTTATTATTCGCAAGTTCCGGTACAAGCGTGC	CS115 genome DNA	DnTUI11n frogmont	
THI11p-R	CATGATGATTTATTGAAGTTTCC	US115 genome DINA	r p i mi i p tragment	
PpMET3p-amp-F	AATAACAGTTATTATTCGTTCAGGCAACAGGACCCTCC	CC115 comme DNA	D-MET2, for success	Promoter fragment
PpMET3p-R	TTCTTTCTGAGTTGGTTTC	GS115 genome DNA	PpME13p tragment	i tomoter magnient
PpAOX1p-amp-F	AATAACAGTTATTATTCGCGAGATCTAACATCCAAAGAC	CC115 comme DNA	Dr. AOV1 - for success	
PpAOX1p-R	CGTTTCGAATAATTAGTTGT	GS115 genome DNA	PpAOX 1p tragment	
pG-A1-F	TAAGTTTTAGCCTTAGACATGAC		AOV1TT frogmont	
AOX1TT-A1-R	GGATCCGCACAAACGAAG	pPICZalpna B	AOATTT fragment	
His-starg-F	ATTCTGCGAGAAGGTCCTGGATGCTGTAGGCATAG	-DIC2 51/*	Hist fragment	
His-starg-R	CTTCGTTTGTGCGGATCACACTGGCAGAGCATTACGC	pPIC3.5K	mis4 maginem	
Himarase-met3p-F	CCAACTCAGAAAGAAATGGAAAAAAGGAATTTCGTG	$\mathbf{nMAR} \ \mathbf{2XT7}^{[1]}$	Himarase fragment	
Himarase-aox1tt-R	TCTAAGGCTAAAACTTATTCAACATAGTTCCCTTCAAG		manuse mugment	
SBase-met3p-F		pCMV(CAT)T7-SB100 ^[2]	SBase fragment	
SBase-aox111-K				_
Osmarase-met5p-r		pOsm14Tpase ^[3]	Osmarase fragment	Transposase
TcBase met3n E				fragment
TcBase aox1tt P		pGALS-TcBusterCOHyper ^[4]	TcBase fragment	
Mosase-met3n-F				
Mosase-aox1tt-R	TCTAAGGCTAAAACTTATTCAAAGTATTTGCCGTCG	pCFJ601 - Peft-3 Mos1 transposase ^[5]	Mosase fragment	
HimarL -amp-F				
HimarL -aro4-R	GGACCTTCTCGCAGAATCAAGCAGATTACGGTGACG	pMAR 2XT7	HimarTIRL fragment	
SBL-amp-F	ATAACAGTTATTATTCGAATTGGAGCTCGGATCCCTA			
SBL-arg4-R	GGACCTTCTCGCAGAATCTATGGCTCGTACTCTATAG	pT2-shp53/GFP4 ^[6]	SBTIRL fragment	
OsmarL-amp-F	ATAACAGTTATTATTCGTGAGGTCTGTTTACTCCCTCCG	(7)		
OsmarL-arg4-R	GGACCTTCTCGCAGAATGTAAAACGAGAAATTTTATTCC	pT7-GFP-oen ^[7]	OsmarTIRL fragment	TIRL fragment
TcBL-amp-F	ATAACAGTTATTATTCGCTTTAGGCCAGTGTTCTTCAAC	[4]		
TcBL-arg4-R	GGACCTTCTCGCAGAATATTTCTGAACGATTCTAGGTT	pRS416 URA3 mini TcBuster-ClonNAT ^[4]	TcBTIRL fragment	
MosL-amp-F	ATAACAGTTATTATTCGTTTTGGTCATGCATGAGATC	[5]		
MosL-arg4-R	GGACCTTCTCGCAGAATTAGCTTGGCGTAATCATGG	pJL43.1 - Pglh-2::MosTase::glh-2utr ¹³	MosTIRL fragment	
HimarR-arg4-F	GATCCGCACAAACGAAGACCGAGATAGGGTTGAGTG			
HimarR-pbr322-R	CTGGCCTTTTGCTCACATAACAGGTTGGCTGATAAGTC	pMAR 2X17	Himar IIRR fragment	
SBR-arg4-F	GATCCGCACAAACGAAGAGATCTAGCTTGTGGAAGGC	$T_{2} = \frac{1}{2} \frac{c_{2}}{c_{1}} C_{1} T_{2} T_{2}$		
SBR-pbr322-R	CTGGCCTTTTGCTCACAGACTCTAGCTAGAGGATCCC	p12-snp53/GFP4	SBIIKK fragment	
OsmarR-arg4-F	GATCCGCACAAACGAAGGTGCTGAGGGTAGGTAGGAT	TT CED	O	TIDD for some (
OsmarR-pbr322-R	CTGGCCTTTTGCTCACAAACACTAAACCGTTTACTCC	p1/-GPP-oen	Osmar I IKK fragment	TIKK tragment
TcBR-arg4-F	GATCCGCACAAACGAAGTTTTTATTTTTTTTTTTTATATATA	nDS416 UD 42 mini TaDuctor ClanNAT	ToDTIDD fromout	
TcBR-pbr322-R	CTGGCCTTTTGCTCACAGTATAAAGCAGTGTTCTTCAACC	pro410 URAS mini 10Duster-CloninAI	TO TIKK fragment	

MosR-arg4-F	GATCCGCACAAACGAAGTGCCGGATCTGCGGCTTA	nII 13 1 - Palh-2. MosTase. alh-2utr	MosTIRR fragment	
MosR-pbr322-R	CTGGCCTTTTGCTCACAGGATCCAACAAAAAAGCACT	pJL+5.1 - 1 gm-210081asegm-2uu	Wost ikk hagnen	
pG-A1-F	TAAGTTTTAGCCTTAGACATGAC	pDICZalpha P	AOX1TT-Zeocin-pBR322	
pBR-ampr2-R	CGAATAATAACTGTTATTCATGACCAAAATCCCTTAACG	priczaiplia B	fragment	
pG-A2-F	TGTGAGCAAAAGGCCAGC	pDIC3 5K	nBP322 Amn	
Amp-L1-R	CGAATAATAACTGTTATTTTTCAGTG	рг (С.5.5К	pbR322-Amp	
pAG32-A1-F	CAAGGGTCTCGAGATAAGAAGCCAGGTTAACCTGCATTAATG	- 1 (22)[7]	nAG321 incar fragment	
pAG32-A1-R	CAAATCAAAATCAAACTGATCGAAATAGCTCGTTTTCGACAC	pAG32**	pA052Emear fragment	
DAS1TT-R	CTTATCTCGAGACCCTTGTGACTGACACTT	$-D_{T}T_{A}$ - UTY_{1} U-C = 0 CUT 1 - $DNA2^{[8]}$	HYT1 HcCas0 fragment	
HTX1-R	TCAGTTTGATTTGATTTGTTTAGGTAACT	pPp14_pH1X1-HsCas9-GU11-gRNA2	HATT-HSCas9 fragment	
Zeocin-pars-F	GTTGAGTCGACATCGAGGATCCCCCACACACCATAG	pDICZalpha B	nDZ Zaocin fragment	
pDZ-htx1-R	CACAAGGGTCTCGAGATAGATCTCATGCATGACCAAAATC		pDZ-Zeocin naginent	
PARS-F	CTCGAACATAGTCCGTCCC	CS115 genome DNA	PARS fragment	
PARS-R	TCGATGTCGACTCAACCTAT	OSTIS genome DNA	TARS hagment	
HTX1-F	TCGAGACCCTTGTGTGTGTGTAGTTTTAATATAGTT	$-D_{T}T_{A}$ - UTY_{1} U-C = 0 CUT 1 - $DNA2^{[8]}$	HXT1-gRNA-AOX1TT	
AOX1TT-pars-R	ACGGACTATGTTCGAGGATCCGCACAAACGAACGTCTCAC	pPp14_pm1A1-msCas9-GU11-gRNA2**	fragment	

* Invitrogen

[1] Liberati NT1, et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103(8):2833-8.

[2] Mátés L, et al. (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6):753-61.

[3] Fattash I, et al. (2013) A rice Stowaway MITE for gene transfer in yeast. PLoS One 2013, 21: 8(5)

[4] Li X, et al. (2013) A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. Proc Natl Acad Sci U S A 110(6):E478-87.

[5] Frøkjær-Jensen C, et al. (2012) Improved Mos1 -mediated transgenesis in C. elegans . Nat Methods 9(2):117-8.

[6] Wiesner SM, et al. (2009) De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res 69(2):431-9.

[7] Goldstein, A.L, et al. (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae . Yeast 15, 1541-15.

[8] Weninger A, et al. (2016) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast *Pichia pastoris*. J Biotechnol 235:139-4

Table S2.	TcB and SB insertion sites in P. pastoris
-----------	---

Strains	Chromosome	Chromosome position	Target site duplication	Insertion direct	Insertion gene
ТсВ					
1	Chr. I	276208	CCATAGTA	-	PAS_chr1-3_0149
2	Chr. II	1325749	ATT TA GAG	-	
3	Chr. IV	444217	ATC TG GGA	+	
4	Chr. I	2305281	GTT TA TGT	-	PAS_chr1-4_0495
5	Chr. III	1510286	ACCTATGC	+	PAS_chr3_0787
6	Chr. III	852296	CACTAGAG	-	
7	Chr. II	2004675	CTA TA GAT	+	
8	Chr. II	1393275	GGCTAAAC	-	PAS_chr2-1_0738
9	Chr. I	1297232	AGCTAGAC	-	
10	Chr. II	1260528	TTT TA TGT	+	
11	Chr. III	1470103	CTC TA AAA	-	
12	Chr. I	2781575	CTC TA GAC	+	
13	Chr. I	94889	GTT TA AAA	-	
14	Chr. III	956286	GTC TA AAG	+	PAS_chr3_0501
15	Chr. I	1193817	CTATAAGC	-	
16	Chr. IV	116970	CCGTAAAG	-	
17	Chr. III	654386	GTT TA ACA	-	PAS_chr3_0332
18	Chr. II	1313009	ATC TA GTT	-	PAS_chr2-1_0878
19	Chr. IV	962371	CTTTAATC	+	PAS_chr4_0489
20	Chr. II	1906198	CTCTATGC	+	PAS_chr2-2_0260
SB					
1	Chr. II	2164550	TA	+	PAS_chr2-2_0115
2	Chr. I	2162578	TA	+	
3	Chr. II	1892497	TA	-	PAS_chr2-2_0267
4	Chr. III	1517716	TA	-	PAS_chr3_0792
5	Chr. II	325387	TA	+	PAS_chr2-1_0174
6	Chr. III	1071594	TA	+	PAS_chr3_0561
7	Chr. II	420743	TA	-	
8	Chr. II	589051	TA	-	
9	Chr. IV	80048	TA	+	
10	Chr. II	55425	TA	+	PAS_chr2-1_0029
11	Chr. III	293469	TA	+	
12	Chr. II	370811	TA	-	
13	Chr. IV	290047	TA	+	
14	Chr. I	2212699	TA	-	PAS_chr1-4_0437
15	Chr. I	1600842	TA	+	PAS_chr1-4_0105
16	Chr. III	1523151	TA	-	PAS_chr3_0795
17	Chr. I	2745884	TA	-	
18	Chr. I	1932919	TA	+	PAS_chr1-4_0666
19	Chr. III	239054	TA	+	PAS_chr3_0117
20	Chr. I	219391	TA	+	PAS_chr1-3_0114

T.LL C2				· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1
I anie N 1	Number of mutants, see	anence reads and	inniane insei	rtion sites to	r each unrarv
Iubic Doi	rumber of matures, set	quence reads and	amque moe		n cuch norui

Mutant pool	Mutants	Mapped reads	Unique insertion sites
TcB1	~280,000	12,480,716	66,870
TcB2	~280,000	13,875,986	64,473
TcB3	~280,000	12,911,125	62,541
TcB4	~280,000	13,025,039	63,500
TcB5	~300,000	13,303,247	68,461
TcB6	~300,000	11,433,330	69,722
TcB7	~320,000	11,710,978	71,652
TcB8	~320,000	12,886,935	76,332
TcB9	~320,000	11,733,232	72,425
TcB10	~320,000	13,252,105	78,110
SB1	~100,000	19,536,032	21,061
SB2	~100,000	5,717,466	19,544
SB3	~160,000	3,410,761	35,053
SB4	~160,000	7,076,272	34,462
SB5	~160,000	5,678,536	32,931
SB6	~160,000	5,078,631	35,551
SB7	~160,000	5,605,812	37,307
SB8	~160,000	7,618,087	33,556
SB9	~160,000	7,081,782	31,917
SB10	~160,000	8,582,528	35,714
Total	~4,480,000	201,998,600	202,858

Table S4.	The proportions of the four	nucleotides at target sites
-----------	-----------------------------	-----------------------------

Sito	Nucleotide	Proportion			Site	Nucleotido -	Proportion		Site	Nucleotido	Proportion			
Site	Nucleotide	ТсВ	SB	TcB and SB	Site	Nucleotide	ТсВ	SB	TcB and SB	Sile	Nucleotide	TcB	SB	TcB and SB
1	А	0.21	0.29	0.25	7	А	0.21	0.21	0.22	13	А	0.21	0.22	0.22
1	Т	0.33	0.31	0.32	7	Т	0.43	0.36	0.39	13	Т	0.25	0.64	0.44
1	G	0.21	0.21	0.21	7	G	0.13	0.21	0.18	13	G	0.3	0.05	0.18
1	С	0.25	0.19	0.22	7	С	0.22	0.21	0.22	13	С	0.24	0.09	0.17
2	А	0.31	0.29	0.3	8	А	0.19	0.44	0.31	14	А	0.26	0.27	0.27
2	Т	0.24	0.31	0.28	8	Т	0.3	0.18	0.24	14	Т	0.25	0.29	0.27
2	G	0.26	0.21	0.23	8	G	0.13	0.21	0.17	14	G	0.26	0.2	0.23
2	С	0.19	0.2	0.19	8	С	0.38	0.17	0.28	14	С	0.23	0.24	0.24
3	А	0.48	0.29	0.38	9	А	0.02	0.01	0.01	15	А	0.59	0.26	0.42
3	Т	0.37	0.3	0.33	9	Т	0.94	0.97	0.95	15	Т	0.19	0.31	0.25
3	G	0.1	0.21	0.16	9	G	0.01	0.01	0.01	15	G	0.15	0.19	0.17
3	С	0.05	0.21	0.13	9	С	0.04	0.01	0.03	15	С	0.07	0.24	0.16
4	А	0.19	0.31	0.25	10	А	0.94	0.97	0.95	16	А	0.37	0.3	0.33
4	Т	0.6	0.26	0.42	10	Т	0.02	0.01	0.02	16	Т	0.48	0.29	0.38
4	G	0.07	0.24	0.16	10	G	0.04	0.01	0.02	16	G	0.05	0.2	0.13
4	С	0.15	0.19	0.17	10	С	0.01	0.01	0.01	16	С	0.1	0.21	0.16
5	А	0.25	0.29	0.27	11	А	0.3	0.18	0.24	17	А	0.24	0.3	0.27
5	Т	0.26	0.26	0.26	11	Т	0.18	0.44	0.31	17	Т	0.31	0.29	0.3
5	G	0.23	0.24	0.24	11	G	0.39	0.17	0.28	17	G	0.19	0.2	0.2
5	С	0.26	0.2	0.23	11	С	0.13	0.2	0.17	17	С	0.26	0.21	0.23
6	А	0.25	0.63	0.43	12	А	0.43	0.35	0.39	18	А	0.33	0.31	0.32
6	Т	0.21	0.22	0.22	12	Т	0.21	0.21	0.22	18	Т	0.2	0.29	0.25
6	G	0.24	0.09	0.17	12	G	0.22	0.22	0.22	18	G	0.26	0.19	0.22
6	С	0.3	0.06	0.18	12	С	0.13	0.22	0.18	18	С	0.21	0.21	0.21

Table S5. Mutations in genes disrupted by CRISPR/Cas9 system

Locus tag	P-value	Category	Target site	Mutation
Essential genes validation				
PAS_chr2-1_0631	0.025990991	Essential	AAAGTATCCTGTGTTGACCC	TTG-, GTT-, TTG-
PAS_chr3_1050	0.026048858	Essential	ATGTGACACTCCATCAAACG	CAT-, ATC-, AAA-
PAS_chr2-1_0167	0.026341799	Essential	ATGCTTCGACGACTCAGATG	GACTCA-, CTC-, CAG-
PAS_chr2-1_0456	0.026353444	Essential	CCCGTCTCTTCAGCACTACT	ACT-, CAC-, CAGCAC-
PAS_chr3_0878	0.026614121	Essential	CAACATGAGCAGAAATAACC	TAA-, ATA-, ATA-
PAS_chr1-1_0191	0.026701837	Essential	AAGCCACCAGTTCAATTGTT	TTG-, GTT-, ATT-
PAS_chr3_0997	0.026911281	Essential	TGCTTCATATGTCCTTTACC	AGA-, AGAAAT-, AAA-
PAS_chr2-1_0366	0.027065392	Essential	AGTCCGAAATTGATGACTGG	GAT-, GAC-, GAT-
PAS_chr2-2_0235	0.02719965	Essential	GTTGACCACAGCTAGAATCA	GAA-, AGA-, AGA-
PAS_chr1-4_0209	0.027343841	Essential	GCCGATATTCCATACAAGAT	CAT-, ACA-, CAT-
PAS_chr2-1_0349	0.027536422	Essential	GGATACCACACCTTAAACAA	AAC-, TTA-, TTA-
PAS_chr1-4_0063	0.027565798	Essential	TGAGAGGTACCTTGGAAGGT	AAG-, TGGAAG-, GAA-
PAS_chr4_0863	0.028177922	Essential	TGGGACTGTGTGGTTGCACA	TGT-, TTG-, TTG-
PAS_chr1-3_0108	0.028277332	Essential	AATCAGCAGGAGAGAACGTT	GAG-, AAC-, GAACGT-
PAS_chr1-3_0186	0.028889788	Essential	ATGACCTCAACACATACATG	A+, AC-
PAS_chr3_0515	0.028939966	Essential	GACCAACCCTAAAACGATAC	ACG-, CCT-, ACG-
PAS_chr4_0865	0.029052361	Essential	GGAAATACCTCAAGTGCAGT	AGT-, GCA-, GCA-
PAS_chr2-1_0160	0.029233804	Essential	GTCTTAGGTTTCCCACGTAT	C+, ACGT-
PAS_chr4_0956	0.02934039	Essential	GGTATGGTGCCAACATGAAG	TATGGTGCCAACATG-,AAA-,CATGAA-
Non-essential genes valida	tion			
PAS_chr2-2_0180	0.915960201	Non-essential	TACTTGCTGAACAAATCGGG	G+
PAS_chr3_1036	0.920069135	Non-essential	AGGCAACATTAGTGCCGATC	CG-
PAS_chr1-4_0272	0.957357059	Non-essential	GCTTCGTGCTTCAGTGTGCA	GT-
PAS_chr4_0212	0.958519434	Non-essential	AGAATTATAGGAGTTGGGTC	G-
PAS_chr3_0584	0.96877591	Non-essential	AATTACCGCCTTAGCCGCAT	C-
PAS_chr1-1_0055	0.977529915	Non-essential	GTACTCTATTTATGAGCACC	GC-
PAS_chr1-1_0319	0.979367754	Non-essential	TGTAACGTCCTCTTCTACAG	Τ-
PAS_chr1-3_0142	0.981789539	Non-essential	CGCTAAAGGTGAACCGATTC	\mathbf{A} +
PAS_chr1-4_0228	0.982379027	Non-essential	TCTTGTTAACCGTCCAAAAG	A-
PAS_chr3_0423	0.985371015	Non-essential	TCATGTTGCTACTGCTCGCG	\mathbf{A} +
PAS_chr1-3_0113	0.998142015	Non-essential	GTTGTAGGTGACGGTGCTGT	C-
PAS_chr4_0880	0.998486286	Non-essential	TTTGATCCGTTCGCCGATAC	G-
PAS_chr2-2_0005	0.998842022	Non-essential	ATTCATCACACTTCATCGCA	A+
PAS_chr4_0881	0.999955709	Non-essential	GCTTCTGAAGAACCAAGAAA	A-
PAS_chr2-2_0365	0.999997504	Non-essential	CTCCGAAGATATAGAGGGTC	G-
PAS_chr2-2_0435	0.999997567	Non-essential	AGAGCAGATAGAGAAACTGC	Τ-
PAS_chr4_0259	0.999999663	Non-essential	TCCTACTGCAAAGTACAGCG	AGCG-
PAS_chr3_0693	0.9999999999	Non-essential	TTCGTCACGGCCAATCTCAA	CT-

Table S6. Novel methylotrophic functional genes

Locus tag	P-value of YND	P-value of YNM	Target site	Mutation
PAS_chr3_0072	0.958218261	0.01215503	ORF	deletion
PAS_chr1-4_0498	0.980592211	0.237770405	ORF	deletion
PAS_chr1-3_0278	0.982058797	0.01215503	CACTGGAGCTTATCTCAACA	ATCTC-
PAS_chr2-1_0748	0.990982561	0.028365249	ATGAGCAAACAAACTCCGTC	TC-
PAS_chr3_0968	0.945948673	0.10067283	CAAGGCAACCCTGTCTCTGC	T+
PAS_chr3_0689	0.971505746	0.321835936	ACGAACTCTCACAGACATAA	C-
PAS_chr2-2_0202	0.948634657	0.426929721	AATGAGTAGTTGGATTCCTC	C-
PAS_chr4_0887	0.921405674	0.478682398	ATTACTACAAAAGGGGGGGAA	A+