
Supplementary materials

Supplementary Figure 1: Spatial distribution of the annual average ratio of mass fraction of elements
in dust deposition in percentage units for Al (a) and Fe (b) from model estimates ⁴.

Supplementary Table 1: coefficients for simple plume models presented in Box 2.

Coefficient	Value
Dust lifetime (t _d)	2 days
Advection speed (u)	5 m/s
Dust spatial scale (D _d)	864km
Fine soluble Fe lifetime (t_f)	5 days
Fine soluble Fe spatial scale (D _f)	2160km
Atmospheric processing lifetime (t _C)	60 days
Atmospheric processing spatial scale (D _c)	25920 km
Pollutant lifetime (t _p)	5 days
Pollutant spatial scale (D _p)	2160km

13 Supplementary Table 2: Compilation of incubation bottle responses to additions

	Specific Location,			
Study	Lat Long	Metals	Biological response	Cruises
	North Atlantic transect			
Mahaffey et al. 2014 ³	-Experiments on D326: B2- 17.7°N, 24.3°W B3- 12.3°N, 35.8°W B4- 16.1°N, 30.6°W -Experiments on D361 Zn1- 0.83°N, 25.23°W Zn2- 15.81°N, 28.73°W	Zn	The addition of Sahara dust stimulated alkaline phosphatase activity. Alkaline phosphatase activity was found to be greater in the subtropical Atlantic Ocean than the the subtropical Pacific Ocean.	Cruises on the RRS Discovery 1. D326: (01/05/2008- 02/05/2008) 2. D361: (02/07/2011- 03/19/2011)
Browning et al. 2017 ⁴	North Atlantic transect	Fe	Fe limits APA in the low dust western Atlantic, but not in the high dust Eastern Atlantic.	Meteor 60 Transient Tracers Revisited expedition
Chien et al. 2016^5	Carribbean Sea near Barbados -Seawater collection (Feb 2012) 13°11.309'N, 59°38.267'W	Fe	High Fe (and N) in Sahara dust relative to P causes P limitation, which favors Prochlorococcus because it has low P cell quotas.	GEOTRACES cruise GA02

	North Atlantic			
	transect			
	-Incubation locations			
	in tropical Atlantic			
	(October–November 2002)			
	Location 1: 10°N,			
	35°W		Nitrogen fixation is co-limited by N	
	Location 2: 4°N		and P, and Saharan dust additions	
	24°W		stimulated nitrogen fixation in the	
Mills et al.	Location 3: 11°N		eastern North Atlantic by providing	Meteor 55
2004 ⁶	18°W	Fe	Fe and P.	research cruise
	Sargasso Sea			
	-Bermuda Atlantic		Aerosol-derived Co, Mn, and Ni	
	Time-series Station:		supported growth of oceanic (but not	
	31°40′N, 64°10′W		coastal) Synechococcus. Aerosol	
	-Coastal experiment		copper additions did not cause [Cu']	
	at Buoy 3A:		to exceed toxicity levels, and the	
Mackey et al. 2012^7	32°24.531′N,	Co Mr Ni	production of Cu-binding ligands	NT A
al. 2012	64°44.769'W Northeast Atlantic	Co, Mn, Ni	may indicate a nutritive role for Cu.	NA
	Normeast Atlantic			
	(May-June 2003)-			
	West African Coast:			
	-26.0°W and			
	parallels 26.0° and			
	21.0°N			
	-Pulse experiment for			
	surface seawater			
	25.99°N, 18.0°W -A dose experiment			
	21.0°N, 23.0°W			
	-North transect			
	(coastal ocean):			
	26.0°N			
	-South transect		Aerosol addition led to a sevenfold	
	(coastal ocean):		increase in phytoplankton biomass	
	21.1°N		and a tenfold increase in production	
	-48-hour back trajectory for an open		over 4 days. Primary production was stimulated more than community	
	ocean site (21 N, 26		respiration. The phytoplankton	
	W) (May 29 2003)		community shifted from	
	-48-hour back		picocyanobacteria-dominated to	
	trajectory for a		diatom-dominated. Bacterial	
Duarte et	coastal site (27 N, 15		abundance and production was less	Boat: R/V
al. 2006 ⁸	W) (May 21 2003)	Fe	responsive.	Hespe'rides

		1		
	North Atlantic			
Chien et al. 2016 ⁵	Incubations: -E1: Lat: 10.8/Lon: 52.3 -E2: Lat: 8.3/Lon: 51.7 -E3: Lat: 11.6 Lon: 55.7	Fe	The diazotroph Trichodesmium shows luxury uptake of aerosol Fe. Uptake of Fe was proportional to the cellular P:Fe ratio and the amount of Fe leached from the aerosols.	NA
	Atlantic Ocean transect			
Maranon et al. 2010 ⁹	Experiment locations 1) 26.0°N, 34.8°W 2) 13.8°N, 28.4°W 3) 17.8°S, 29.0°W 4) 33.8°S, 38.4°W 5) 16.1°S, 29.0°W 6) 0.6°S, 29.0°W 7) 14.4°N, 29.0°W 8) 29.2°N, 28.3°W	unspecified	Dust additions increased bacterial production in ultraoligotrophic environments, and the effect was larger with increased oligotrophy. Primary production only increased in the least oligotrophic waters, and the effect was smaller as oligotrophy increased.	Tropical Atlantic (TRYNITROP) cruises
2010	North Atlantic	unspeenteu		
	-48 hour incubation (nutrient enrichment bioassay experiments) Location 1: 42.0°N, 42.0°W Location 2: 35.0°N, 56.0°W Location 3: 31.0°N, 27.0°W -Bioassay experiments 1) 21°N 62°W 2) 28°N 64°W 3) 29°N 52°W			Meteor 60
Moore et	4) 31°N 27°W 5) 32°N 44°W 6) 36°N 24°W 7)35°N 56°W		The episodic nature of Fe provided by dust deposition affects the dynamics of the spring bloom because Fe	Transient Tracers Revisited expedition (March & April
al. 2006 ¹⁰	8) 42°N 42°W	Fe	availability controls N consumption.	2004)

			Sahara dust additions stimulated N2	
			fixation, and diazotroph (unicellular	
			cyanobacteria groups A, B and C, as	
			well as Gamma A proteobacteria)	
			abundances. Dust additions had an	
	Tropical North		increasingly negative effect on	
	Atlantic Ocean		Synechococcus and Prochlorococcus	
			abundances, but an increasingly	
	Experiment site A: 4°		positive effect on picoeukaryotes	
	N, 24° W		moving eastward. Laboratory culture	
	Experiment site B:		experiments showed that Fe from	
Langlois	11° N, 18° W		Sahara dust promoted colony	
et al.	Experiment site C: 6°		formation in Trichodesmium	Meteor 55
2012 ¹¹	N, 16° W	Fe	erythrium.	research cruise
2012	IN, 10 W	10		research cruise
			Changes in dissolved Fe following 2	
			sequential dust additions depended on	
	Mediterranean Sea		biological ligand production; low	
			ligand concentrations during the	
	-Guieu paper:		initial addition allowed Fe to	
	Transect: Lat: 40.0°-		scavenge onto particles, while higher	
	45.0°N Lon: 5.0°-		biogenic ligand concentrations during	
	10.0°E		the second addition allowed higher	
			levels of dissolved Fe to persist. Al	
	Wuttig paper:		and Mn showed similar dissolution	
Guieu et	-7 mesocosms		behaviors between the first and	
al. 2014 ¹² ;	distributed in the Bay		second additions, suggesting they	
Wuttig et	of Elbo at 42.374° N,		were not affected by uptake or	
al. 2013^{13}	8.554° E	Mn, Al, Fe	absorption into phytoplankton.	NA
al. 2013		wiii, Ai, FC		INA
	Mediterranean Sea			
	CCW 11 (1 (
	-SSW collected at			
	(station 2CYC23) at			
	33°24.85 N;			
	32°18.49°E			
	-location of			
	atmospheric aerosol			
	samples:			
	1) Lat: 32°16.89			
	Long: 33°09.44			
	2) Lat: 32°59.81			
	Long: 33°14.87			
	3) Lat: 32°49.86			
	Lon: 33°15.86			
	4) Lat: 32°45.64		Saharan dust increased	
	Lon: $33^{\circ}23.73$		phytopigments and primary	
	5) Lat: 32°57.93		production. Synechococcus,	
	Lon: 33°24.13		prymnesiophytes, and ciliates	
	6) Lat: 33°07.35		increased in	
	Lon: 33°18.83		abundance, Prochlorococcus declined,	
Herut et al. 2005^{14}	7) Lat: 34°00.05 Lon: 32°39.98	unspecified	and heterotrophic bacterial production increased	Boat: R.V. Aegaeo

	East China Sea			
	Last Clilla Sea			
	-Site 1 for seawater			
	collection/incubation:			
	(30°43′04″N,			
	122°39′58″E)		High Fe (and N) in Asia aerosols	
	-Site 2 for seawater		induces P limitation and favors	
	collection/incubation:		dinoflagellates that benefit from the	
	(30°38′12.2″N,		high Fe and low N:P ratios.	
	122∘56′8.51″ E)		Synechococcus was weakly	
	-Aerosol collection:		correlated with high Cu, low Fe, and	
	(30.86°N, 122.67°E) -Map showing HABs	Al, Cd, Co,	low N:P ratios. Increased anthropogenic aerosol emissions over	
	in Eastern China:	Ai, Cu, Co, Cu, Fe,	the past three decades may contribute	
Mackey et	Lat: 28°-32°N Lon:	Mn, Ni, Pb	to the observed increase in harmful	
al. 2017^{20}	120°-128E	,and Zn	algal blooms in this region.	NA
	South China Sea	,		
	-Range of			
	experiments:			
	Lat: 16°-24° N; Lon:			
	110°-120° E			Aerosol samples
	-Bioassay			were collected
	experiments (type of			locally on the
	location/depth): 1)coastal/17 m		High aerosol loading increased total	rooftop of the Academic
	2)continental		phytoplankton biomass and	Building at the
	shelf/137 m		photosynthetic efficiency, and	Hong Kong
	3)oceanic/ 3844 m		favored microphytoplanton like	University of
	4)continental slope/	Fe and	diatoms over picoplankton. Possible	Science and
Guo et al.	854 m	mixed	Cu toxicity was observed for	Technology
2012 33	5) oceanic/ 3340 m	metals	Synechococcus.	(HKUST)
	Southeast Pacific			
	Europin out stations			
	-Experiment stations Station 1 (HNL):			
	9°04'S, 136°97'W		Dust additions did not stimulate N2	
	Station 2 (GYR):		fixation despite the ultra low	
	26°04'S, 114°02'W		dissolved Fe concentrations at the	
Bonnet et	Station 3 (EGY):		sites. Productivity was only Fe	
al. 2008 ²¹	31°89'S, 91°39'Ŵ	Fe	limited at the edge of the gyre.	BIOSOPE cruise
			Asian dust particles from the Mt.	
			Tateyama snow layers and the surface	
	1 077''		sand of Loess Plateau stimulated	
	seashore of Kii		Gram-positive and alpha	SEOO26 amiles - 6
Maki et al.	Peninsula, at a distance of 150 km		proteobacterial growth. No	SE0926 cruise of T/S Seisui Maru
2011^{22}	33°29′N, 136°59′E	unspecified	enrichment of chlorophyll resulted from dust additions.	(Mie University)
2011	Yellow Sea	unspecificu	Asian dust stimulated chlorophyll at	Cruise on the
			the highest dose (20mg/L) only.	R/V
	-Incubation site A2:		Rainwater stimulated chlorophyll and	Dongfanghong 2
Liu et al.	36°04.116′N,		the abundance of	(18 March to 4
2013^{23}	123°11.082′É	Fe	microphytoplankton, had no effect on	April 2011)

			picoplankton, and inhibited nanoplankton.	
Mélançon et al. 2016 ²⁴	Northeast subarctic Pacific HNLC -Water collection: 50° N, 145° W (10m depth)	Fe	Aerosol Fe stimulated chlorophyll and particulate organic carbon production, but the response was reduced under low pH conditions. Dust additions had a fertilizing effect mainly on diatoms and cyanobacteria.	Cruise on the Canadian Coast Guard Ship John P. Tully
Hamme et al. 2010 ²⁵	subarctic northeast Pacific -Region tested for chlorophyll 48– 56°N, 136–150°W -Location of Kasatochi volcano (52.2°N, 175.5°W) -Station P (sampling) 145°W Gulf of Aqaba	Fe	Fe in volcanic ash from the Aleutian Islands induced a large diatom bloom several days following deposition.	Two cruises (no names included) August 2008
Foster et al. 2009 ⁴²	-Seawater collection Station A: 29°27.815'N, 34°55.830'E Station B: 29°22.608'N, 34°53.894'E	unspecified	Highest N2 fixation rates were observed in the dust addition treatment.	NA
Wang et al. 2017 ²⁶	East China Sea -Sampling station: 30.86°N, 122.67°E -Sampling station: 30.85°N, 123.42°E	Fe, Cu	The ratio of Fe/Cu in aerosols influenced the toxicity of Cu on phytoplankton. Higher Fe/Cu ratios mitigated the toxic effect and were correlated with higher chlorophyll levels in offshore waters. Fe/Ce ratios did not affect chlorophyll concentrations in coastal regions where rivers and upwelling dominated the biogeochemistry.	No cruise name but sampling station was Huaniao Island.
Paytan et al. 2009 ²⁷	Gulf of Aqaba	Cu	Aerosol Cu caused toxicity for Synechococcus and picoeukaryotes, but not for Prochlorococcus	NA

	Gulf of Aqaba -Station A (Israeli			
	waters): 29°28'N, 34°55'E		Dust additions stumulated chlorophyll	
Mackey et	-Station B (Jordanian waters):		a, but did not affect alkaline phosphatase activity among nano and	
al. 2007 ²⁸	29°22'N,34°53'E	unspecified	microplankton	NA
			Trichodesmium accelerates Fe	
			dissolution from dust via cell surface	
			processes that involve efficient	
Rubin et			trapping and movement of the	
al. 2011 ²⁹	Gulf of Aqaba	Fe	particles within the colony.	NA

14

15

16 Supplementary references

- Moore, J. K., Lindsay, K., Doney, S., Long, M. & Misumi, K. Marine Ecosystem Dynamcis and Biogeochemical Cycling in the Community Earth System Model1 (BGC): Comparison of hte 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios. J. Clim. 26, 9291–9312, doi:10.1175/jcli–d–12–00566.1 (2013).
- Zhang, Y. *et al.* Modeling the global emission, transport and deposition of trace elements
 associated with mineral dust. *Biogeosciences* 12, (2015).
- Mahaffey, C., Reynolds, S., Davis, C. E. & Lohan, M. C. Alkaline phosphatase activity in the
 subtropical ocean: insights from nutrient, dust and trace metal addition experiments. *Front. Mar. Sci.* 1, (2014).
- Browning, J. *et al.* Iron limitation of microbial phosphorus acquisition in the tropical North
 Atlantic. *Nat. Commun.* in press, (2017).
- Chien, C.-T. *et al.* Effects of African dust deposition on phytoplankton in the western tropical
 Atlantic Ocean off Barbados. *Global Biogeochem. Cycles* **30**, (2016).
- Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit
 nitrogen fixation in the eastern tropical North Atlantic. *Nature* 429, 292–294 (2004).
- Mackey, K. R. M., Mioni, C. E., Ryan, J. P. & Paytan, A. Phosphorus Cycling in the Red Tide
 Incubator Region of Monterey Bay in Response to Upwelling. *Front. Microbiol.* 3, (2012).
- Buarte, C. M. *et al.* Aerosol inputs enhance new production in the subtropical northeast
 Atlantic. *J. Geophys. Res. Biogeosciences* **111**, G04006 (2006).
- Marañon, E. *et al.* Degree of oligotrophy controls the response of microbial plankton to
 {Saharan} dust. *Limnol. Oceanogr.* 55, 2339–2352 (2010).
- Moore, C. M. *et al.* Iron limits primary productivity during spring bloom development in the
 central {North} {Atlantic}. *Glob. Chang. Biol.* 12, 626–634 (2006).
- Langlois, R., Mills, M., Ridame, C., Croot, P. & LaRoche, J. Diazotrophic bacteria respond to
 Saharan dust additions. *Mar. Ecol. Prog. Ser.* 470, 1–14 (2012).
- 43 12. Guieu, C., Dulac, F., Ridame, C. & Pondaven, P. Introduction to project DUNE, a DUst
 44 experiment in a low Nutrient, low chlorophyll Ecosystem. *Biogeosciences* 11, 425–442
 45 (2014).
- 46 13. Wuttig, K. *et al.* Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe) during a mesocosm experiment ProQuest. *Biogeosciences* 10, 2583–2600 (2013).

- Herut, B. *et al.* Response of East Mediterranean surface water to Saharan dust: On-board
 microcosm experiment and field observations. *Deep Sea Res. Part II Top. Stud. Oceanogr.* 52,
 3024–3040 (2005).
- Lekunberri, I. *et al.* Effects of a dust deposition event on coastal marine microbial abundance
 and activity, bacterial community structure and ecosystem function {\textbar} {Journal} of
 {Plankton} {Research} {\textbar} {Oxford} {Academic}. J. Plankton Res. 32, 381–396 (2010).
- Bonnet, S., Guieu, C., Chiaverini, J., Ras, J. & Stock, A. Effect of atmospheric nutrients on the
 autotrophic communities in a low nutrient, low chlorophyll system. *Limnol. Oceanogr.* 50,
 1810–1819 (2005).
- 17. Romero, E. *et al.* Coastal Mediterranean plankton stimulation dynamics through a dust storm
 event: {An} experimental simulation. *Estuar. Coast. Shelf Sci.* 93, 27–39 (2011).
- 5918.Ridame, C. *et al.* Nutrient control of Nfixation in the oligotrophic Mediterranean Sea and the60impact of Saharan dust events. *Biogeosciences* **8**, 2773–2783 (2011).
- Ridame, C., Guieu, C. & L'Helguen, S. Strong stimulation of N2 fixation in oligotrophic
 Mediterranean Sea: results from dust addition in large in situ mesocosms. *Biogeosciences* 10, 7333–7346 (2013).
- Mackey, K. R. M. *et al.* Atmospheric and Fluvial Nutrients Fuel Algal Blooms in the East China
 Sea. *Front. Mar. Sci.* 4, (2017).
- Bonnet, S. *et al.* Nutrient limitation of primary productivity in the {Southeast} {Pacific}
 ({BIOSOPE} cruise). *Biogeosciences* 5, 215–225 (2008).
- Maki, T. *et al.* Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal
 Communities in the Pacific Ocean. *Asian J. Atmos. Environ.* 5, 157–163 (2011).
- Liu, Y., Zhang, T. R., Shi, J. H., Gao, H. W. & Yao, X. H. Responses of chlorophyll a to added nutrients, {Asian} dust, and rainwater in an oligotrophic zone of the {Yellow} {Sea}:
 {Implications} for promotion and inhibition effects in an incubation experiment. *J. Geophys. Res. Biogeosciences* **118**, 2013JG002329 (2013).
- Mélançon, J. *et al.* Impact of ocean acidification on phytoplankton assemblage, growth, and
 {DMS} production following {Fe}-dust additions in the {NE} {Pacific} high-nutrient, lowchlorophyll waters. *Biogeosciences* 13, 1677–1692 (2016).
- Hamme, R. C. *et al.* Volcanic ash fuels anomalous plankton bloom in subarctic northeast
 {Pacific}. *Geophys. Res. Lett.* **37**, L19604 (2010).
- Wang, F. J. *et al.* Combined effects of iron and copper from atmospheric dry deposition on
 ocean productivity. *Geophys. Res. Lett.* 44, 2016GL072349 (2017).
- Paytan, A. *et al.* Toxicity of atmospheric aerosols on marine phytoplankton. *Proc. Natl. Acad. Sci.* 106, 4601–4605 (2009).
- Mackey, K. R. M. *et al.* Phosphorus availability, phytoplankton community dynamics, and
 taxon-specific phosphorus status in the Gulf of Aqaba, Red Sea. *Limnol. Oceanogr.* 52, 873–
 885 (2007).
- Rubin, M., Berman-Frank, I. & Shaked, Y. Dust- and mineral-iron utilization by the marine
 dinitrogen-fixer Trichomesmium. *Nat. Geosci.* 4, 529–534 (2011).
- 88