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S1 Proofs

Proof of Theorem 3.1. Note that Equation S1 below is well-known (see, e.g., Green and

Richardson (2001) or McCullagh and Yang (2008)); we derive it here for completeness.

Letting Ei = {j : zj = i}, and writing C(z) for the partition induced by z = (z1, . . . , zn),

by Dirichlet-multinomial conjugacy we have

p(z|k) =

∫
p(z|π)p(π|k)dπ =

Γ(kγ)

Γ(γ)k

∏k
i=1 Γ(|Ei|+ γ)

Γ(n+ kγ)
=

1

(kγ)(n)

∏
c∈C(z)

γ(|c|),

for z ∈ [k]n, provided that pK(k) > 0. Recall that x(m) = x(x + 1) · · · (x + m − 1) and

x(m) = x(x−1) · · · (x−m+1), with x(0) = 1 and x(0) = 1 by convention; note that x(m) = 0

when x is a nonnegative integer less than m. It follows that for any partition C of [n],

p(C|k) =
∑

z∈[k]n : C(z)=C

p(z|k)

= #
{
z ∈ [k]n : C(z) = C

} 1

(γk)(n)

∏
c∈C

γ(|c|)

=
k(t)

(γk)(n)

∏
c∈C

γ(|c|), (S1)
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where t = |C|, since #
{
z ∈ [k]n : C(z) = C

}
=
(
k
t

)
t! = k(t). Finally,

p(C) =
∞∑
k=1

p(C|k)pK(k) =
(∏
c∈C

γ(|c|)
) ∞∑
k=1

k(t)

(γk)(n)
pK(k) = Vn(t)

∏
c∈C

γ(|c|),

with Vn(t) as in Equation 3.2.

Proof of Equation 3.4. Theorem 3.1 shows that the distribution of C is as shown. Next,

note that instead of sampling only θ1, . . . , θk
iid∼ H given K = k, we could simply sample

θ1, θ2, . . .
iid∼ H independently of K, and the distribution of X1:n would be the same. Now,

Z1:n determines which subset of the i.i.d. variables θ1, θ2, . . . will actually be used, and the

indices of this subset are independent of θ1, θ2, . . . ; hence, denoting these random indices

I1 < · · · < IT , we have that θI1 , . . . , θIT |Z1:n are i.i.d. from H. For c ∈ C, let φc = θIi where

i is such that c = {j : zj = Ii}. This completes the proof.

Proof of the properties in Section 3.1. Abbreviate x = x1:n, z = z1:n, and θ = θ1:k, and

assume p(z, k) > 0. Letting Ei = {j : zj = i}, we have p(x|θ, z, k) =
∏k

i=1

∏
j∈Ei

fθi(xj)

and

p(x|z, k) =

∫
Θk

p(x|θ, z, k)p(dθ|k) =
k∏
i=1

∫
Θ

[ ∏
j∈Ei

fθi(xj)
]
H(dθi)

=
k∏
i=1

m(xEi
) =

∏
c∈C(z)

m(xc).

Since this last expression depends only on z, k through C = C(z), we have p(x|C) =∏
c∈Cm(xc), establishing Equation 3.5. Next, recall that p(C|k) =

k(t)
(γk)(n)

∏
c∈C γ

(|c|) (where

t = |C|) from Equation S1, and thus

p(t|k) =
∑
C:|C|=t

p(C|k) =
k(t)

(γk)(n)

∑
C:|C|=t

∏
c∈C

γ(|c|),

(where the sum is over partitions C of [n] such that |C| = t) establishing Equation 3.6.

Equation 3.7 follows, since

p(k|t) ∝ p(t|k)p(k) ∝
k(t)

(γk)(n)
pK(k),

(provided p(t) > 0) and the normalizing constant is precisely Vn(t). To see that C ⊥ K | T

(Equation 3.8), note that if t = |C| then

p(C|t, k) =
p(C, t|k)

p(t|k)
=
p(C|k)

p(t|k)
,
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(provided p(t, k) > 0) and due to the form of p(C|k) and p(t|k) just above, this quantity

does not depend on k; hence, p(C|t, k) = p(C|t). To see that X ⊥ K | T (Equation 3.9),

note that X ⊥ K | C; using this in addition to C ⊥ K | T , we have

p(x|t, k) =
∑
C:|C|=t

p(x|C, t, k)p(C|t, k) =
∑
C:|C|=t

p(x|C, t)p(C|t) = p(x|t).

Proof of Theorem 4.1. Let C∞ be the random partition of Z>0 as in Section 3.3, and for

n ∈ {1, 2, . . . }, let Cn be the partition of [n] induced by C∞. Then

p(Cn|Cn−1, . . . , C1) = p(Cn|Cn−1) ∝ qn(Cn) I(Cn \ n = Cn−1),

where C\n denotes C with element n removed, and I(·) is the indicator function (I(E) = 1 if

E is true, and I(E) = 0 otherwise). Recalling that qn(Cn) = Vn(|Cn|)
∏

c∈Cn γ
(|c|) (Equation

3.1), we have, letting t = |Cn−1|,

p(Cn|Cn−1) ∝

 Vn(t+ 1)γ if n is a singleton in Cn, i.e., {n} ∈ Cn
Vn(t)(γ + |c|) if c ∈ Cn−1 and c ∪ {n} ∈ Cn,

for Cn such that Cn \ n = Cn−1 (and p(Cn|Cn−1) = 0 otherwise). With probability 1,

qn−1(Cn−1) > 0, thus Vn−1(t) > 0 and hence also Vn(t) > 0, so we can divide through by

Vn(t) to get the result.

Proof of Theorem 4.2. Let G ∼ M(pK , γ,H) and let β1, . . . , βn
iid∼ G, given G. Then the

joint distribution of (β1, . . . , βn) (with G marginalized out) is the same as (θZ1 , . . . , θZn) in

the original model (Equation 2.1). Let Cn denote the partition induced by Z1, . . . , Zn as

usual, and for c ∈ Cn, define φc = θI where I is such that c = {j : Zj = I}; then, as in the

proof of Equation 3.4, (φc : c ∈ Cn) are i.i.d. from H, given Cn.

Therefore, we have the following equivalent construction for (β1, . . . , βn):

Cn ∼ qn, with qn as in Section 3.3

φc
iid∼ H for c ∈ Cn, given Cn

βj = φc for j ∈ c, c ∈ Cn, given Cn, φ.
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Due to the self-consistency property of q1, q2, . . . (Proposition 3.3), we can sample Cn, (φc :

c ∈ Cn), β1:n sequentially for n = 1, 2, . . . by sampling from the restaurant process for

Cn|Cn−1, sampling φ{n} from H if n is placed in a cluster by itself (or setting φc∪{n} = φc if

n is added to c ∈ Cn−1), and setting βn accordingly.

In particular, if the base measure H is continuous, then the φ’s are distinct with proba-

bility 1, so conditioning on β1:n−1 is the same as conditioning on Cn−1, (φc : c ∈ Cn−1), β1:n−1,

and hence we can sample βn|β1:n−1 in the same way as was just described. In view of the

form of the restaurant process (Theorem 4.1), the result follows.

We use the following elementary result in the proof of Theorem 5.1; it is a special case

of the dominated convergence theorem.

Proposition S1.1. For j = 1, 2, . . . , let a1j ≥ a2j ≥ · · · ≥ 0 such that aij → 0 as i→∞.

If
∑∞

j=1 a1j <∞ then
∑∞

j=1 aij → 0 as i→∞.

Proof of Theorem 5.1. For any x > 0, writing x(n)/n! = Γ(x + n)/(n! Γ(x)) and using

Stirling’s approximation, we have
x(n)

n!
∼ nx−1

Γ(x)

as n→∞. Therefore, the k = t term of Vn(t) (Equation 3.2) is

t(t)
(γt)(n)

pK(t) ∼ t!

n!

Γ(γt)

nγt−1
pK(t).

The first t− 1 terms of Vn(t) are 0, so to prove the result, we need to show that the rest of

the series, divided by the k = t term, goes to 0. (Recall that we have assumed pK(t) > 0.)

To this end, let

bnk = (γt)(n) k(t)

(γk)(n)
pK(k).

We must show that
∑∞

k=t+1 bnk → 0 as n → ∞. We apply Proposition S1.1 with aij =

bt+i,t+j. For any k > t, b1k ≥ b2k ≥ · · · ≥ 0. Further, for any k > t,

(γt)(n)

(γk)(n)
∼ nγt−1

Γ(γt)

Γ(γk)

nγk−1
−→ 0

as n → ∞, hence, bnk → 0 as n → ∞ (for any k > t). Finally, observe that
∑∞

k=t+1 bnk ≤

(γt)(n)Vn(t) <∞ for any n ≥ t. Therefore, by Proposition S1.1,
∑∞

k=t+1 bnk → 0 as n→∞.

This proves the result.
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Figure S1: Amount of time required to precompute the MFM coefficients Vn(1), . . . , Vn(tpre)

for various values of tpre, for increasing n.

Proof of Theorem 5.2. For any t ∈ {1, . . . , k},

pn(K = t | T = t) =
1

Vn(t)

t(t)
(γt)(n)

pK(t) −→ 1 (S2)

as n→∞ (where pn denotes the MFM distribution with n samples), by Equation 3.7 and

Theorem 5.1. For any n ≥ k,

p(K = k | x1:n) =
k∑
t=1

p(K = k | T = t, x1:n) p(T = t | x1:n),

and note that by Equations 3.9 and S2, p(K = k | T = t, x1:n) = pn(K = k | T = t) −→

I(k = t) for t ≤ k. The result follows.

S2 Precomputation time for the MFM coefficients

In all of the empirical demonstrations in this paper, the largest value of t visited by the

sampler was less than 30. Thus, in each case it was sufficient to precompute Vn(t) for

t = 1, . . . , 30, and reuse these values throughout MCMC sampling.

To see how long this precomputation would take if the sample size n and/or the number

of clusters were much larger, Figure S1 shows the amount of time required to compute Vn(t)

for t = 1, . . . , tpre, for each tpre ∈ {30, 200, 1000, 5000, 25000}, for increasing values of n,

when K ∼ Geometric(0.1) and γ = 1. For tpre = 30 it only takes around 0.001 seconds

for any n. For much larger values of tpre it takes longer, but the time required relative to

MCMC sampling would still be negligible. The reason why the computation time decreases
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as n grows past tpre is that, as discussed in Section 3.2, the infinite series for Vn(t) (Equation

3.2) converges more rapidly when n is much bigger than t.

S3 Formulas for some posterior quantities

Posterior on the number of components k

The posterior on t = |C| is easily estimated from posterior samples of C. To compute the

MFM posterior on k, note that

p(k|x1:n) =
∞∑
t=1

p(k|t, x1:n)p(t|x1:n) =
n∑
t=1

p(k|t)p(t|x1:n),

by Equation 3.9 and the fact that t cannot exceed n. Using this and the formula for p(k|t)

given by Equation 3.7, it is simple to transform our estimate of the posterior on t into an

estimate of the posterior on k. For the DPM, the posterior on the number of components

k is always trivially a point mass at infinity.

Density estimates

Using the restaurant process (Theorem 4.1), it is straightforward to show that if C is a

partition of [n] and φ = (φc : c ∈ C) then

p(xn+1 | C, φ, x1:n) ∝ Vn+1(t+ 1)

Vn+1(t)
γ m(xn+1) +

∑
c∈C

(|c|+ γ)fφc(xn+1) (S1)

where t = |C|, and, using the recursion for Vn(t) (Equation 3.10), this is normalized when

multiplied by Vn+1(t)/Vn(t). Further,

p(xn+1 | C, x1:n) ∝ Vn+1(t+ 1)

Vn+1(t)
γ m(xn+1) +

∑
c∈C

(|c|+ γ)
m(xc∪{n+1})

m(xc)
, (S2)

with the same normalization constant. Therefore, when m(xc) can be easily computed,

Equation S2 can be used to estimate the posterior predictive density p(xn+1|x1:n) based on

samples from C | x1:n. When m(xc) cannot be easily computed, Equation S1 can be used to

estimate p(xn+1|x1:n) based on samples from C, φ | x1:n, along with samples θ1, . . . , θN
iid∼ H

to approximate m(xn+1) ≈ 1
N

∑N
i=1 fθi(xn+1).
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The posterior predictive density is, perhaps, the most natural estimate of the density.

However, following Green and Richardson (2001), a simpler way to obtain a natural estimate

is by assuming that element n+ 1 is added to an existing cluster; this will be very similar

to the posterior predictive density when n is sufficiently large. To this end, we define

p∗(xn+1 | C, φ, x1:n) = p(xn+1 | C, φ, x1:n, |Cn+1| = |C|), where Cn+1 is the partition of [n+ 1],

and observe that

p∗(xn+1 | C, φ, x1:n) =
∑
c∈C

|c|+ γ

n+ γt
fφc(xn+1)

where t = |C| (Green and Richardson, 2001). Using this, we can estimate the density by

1

N

N∑
i=1

p∗(xn+1 | C(i), φ(i), x1:n), (S3)

where (C(1), φ(1)), . . . , (C(N), φ(N)) are samples from C, φ | x1:n. The corresponding expres-

sions for the DPM are all very similar, using its restaurant process instead. The density

estimates shown in this paper are obtained using this approach.

These formulas are conditional on additional parameters such as γ for the MFM, and

α for the DPM. If priors are placed on such parameters and they are sampled along with

C and φ given x1:n, then the posterior predictive density can be estimated using the same

formulas as above, but also using the posterior samples of these additional parameters.

S4 Small components

In Section 7.3, we noted that the DPM tends to introduce one or two tiny extra components,

and it is natural to wonder whether the DPM would fare better if the data were actually

drawn from a mixture with an additional one or two small components. To see, we modify

the data distribution from Section 7.3 to be a four-component mixture in which w1 is

reduced from 0.45 to 0.44, and the fourth component has weight w4 = 0.01, mean µ4 =
(

8
11

)
,

and covariance C4 =
(

0.1 0
0 0.1

)
. We use exactly the same model and inference parameters as

in Section 7.3.

Figure S2 shows that the MFM still more accurately infers the number of clusters

than the DPM. We expect that in order to have a situation where the DPM performs
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Figure S2: Posterior on the number of clusters t for the MFM and DPM on data from the

modified bivariate example with a small fourth component.

more favorably in terms of clustering and inferring the number of clusters, the number of

components would have to be sufficiently large relative to the sample size, or infinite.
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