Supporting Information

Mimicking Neuroligin-2 Functions in β-cells by Functionalized Nanoparticles as a Novel Approach for Antidiabetic Therapy

Anna Munder,[§] Liron L. Israel,^{§,‡} Shirin Kahremany,[§] Rina Ben-Shabat-Binyamini, ^{§,‡} Charles Zhang,[†] Michal Kolitz-Domb,^{§,‡} Olga Viskind,[§] Anna Levine,^ζ Hanoch Senderowitz,[§] Steven Chessler,[†] Jean-Paul Lellouche,^{§,‡*} and Arie Gruzman^{§*}

[§]Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, Israel.

- ^{*}Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel.
- [†]Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of California, Irvine, California, United States.

^ζ The Scientific Equipment Center, Faculty of Biological Sciences, Bar-Ilan University, Ramat Gan, Israel.

*E-mail: Jean-Paul.M.Lellouche@biu.ac.il,

*E-mail: gruzmaa@biu.ac.il

- 1. Scheme S1. Synthesis of HSA-112
- 2. Figure S1. Analytical data of synthetized peptides

Figure S1a. HSA-28

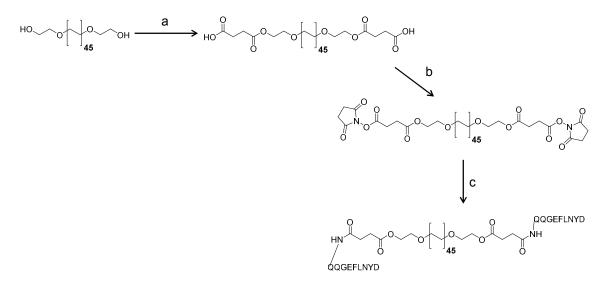
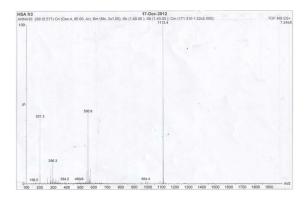

Figure S1b. EEIQYSDFN (scrambled peptide)

Figure S1c. SEGNRWSNSTKGLFQRA (CNSP1)

Figure S1d. HSEGLFQRA (CNSP2)

- 3. Figure S2. Analytical data of HSA-112
- 4. Figure S3. Calibration curve of HSA-28
- **5. Figure S4.** Evaluation of possible HSA-28P stimulatory effect on proliferation rate of PC-3 and PC-12 cell lines

1. Scheme S1. Synthesis of HSA-112



Reagents and conditions: (a) succinic anhydride $C_4H_4O_3$, dry tetrahydrofurane (THF), 3% dry pyridine C_5H_5N , nitrogen pressure, 60° C, 24h; (b) N-hydroxysuccinimide $C_4H_5NO_3$, N,N'-dicyclohexylcarbodiimide (DCC) $C_{13}H_{22}N_2$, dry THF, room temperature, 8h; (c) HSA-28 peptide, solution of 15% NaHCO₃/dioxane 1:1, room temperature, 48h.

2. Figure S1. Analytical data for synthesized peptides

Figure S1a. HSA-28 (MH⁺=1112.4)

Mass spectrum (ESI^+)

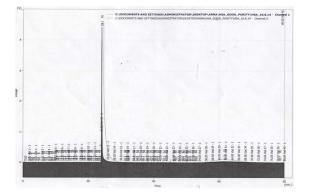
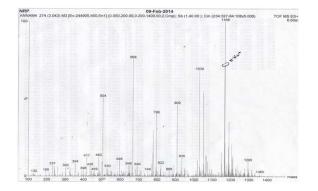
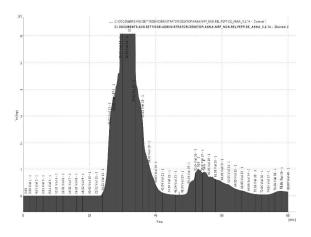




Figure S1b. EEIQYSDFN (scrambled peptide)

Mass spectrum (ESI^+)

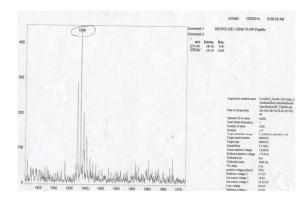

EEIQYSDFN (scrambled peptide) (MNa⁺=1168.0)

Figure S1c. SEGNRWSNSTKGLFQRA (CNSP1)

Mass spectrum (MALDI) SEGNRWSNSTKGLFQRA (CNSP1) (MH⁺ =1938.0)

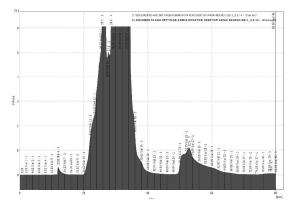
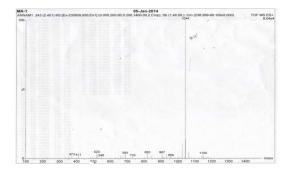
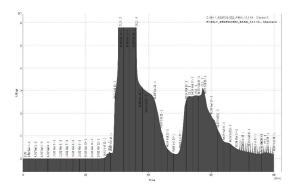
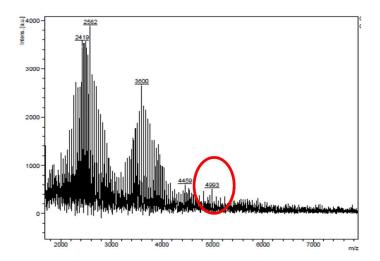




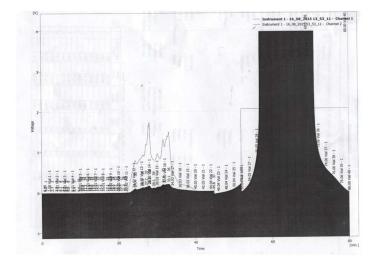
Figure S1d. HSEGLFQRA (CNSP2)

Mass spectrum (ESI⁺)

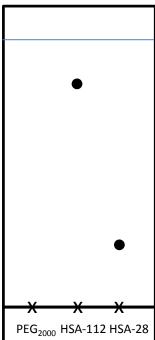
HSEGLFQRA (CNSP2) (MH^+ =1044.0)



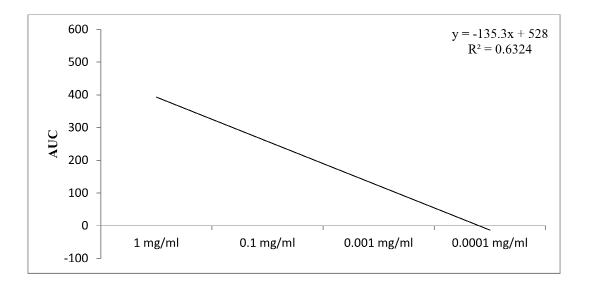
3. Figure S2. Analytical data of HSA-112


Mass spectrum (MALDI)

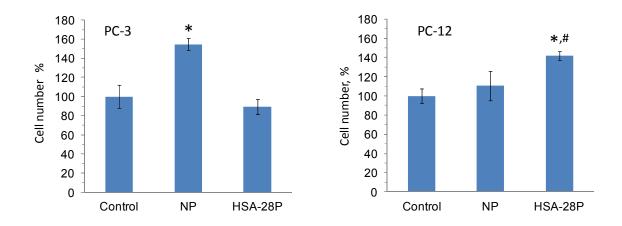
HSA-112 (double substituted by HSA-28 PEG₂₀₀₀)(MH⁺≈4993.0)


HPLC analysis

A peak in retention time around 23-38 min is monosubstituted by HSA-28 PEG_{2000} A peak in retention time around 55-70 min is disubstituted by HSA-28 PEG_{2000}


TLC

UV detection



Eluent: Diethylether/Ethanol (80/20)

4. Figure S3. Calibration curve of HSA-28

5. Figure S4

Fig. S4. Evaluation of possible HSA-28P stimulatory effect on proliferation rate of PC-3 and PC-12 cell lines. PC-3 cells or PC-12 cells were incubated for 24h with the medium

supplemented with HSA-28P (2.76 μ M), or NP (0.76 μ g/ml). After the incubation time cells were detached by trypsin, colored by trypan blue and counted as described in Methods, n=6. MEAN±SE.