Comparative Ascaroside Profiling of Caenorhabditis Exometabolomes

Reveals Species-Specific (ω) and (ω – 2)-Hydroxylation

Downstream of Peroxisomal β-Oxidation.

Chuanfu Dong,^{1,2} Douglas K. Reilly,³ Célia Bergame,⁴ Franziska Dolke,¹ Jagan Srinivasan,³ and

Stephan H. von Reuss^{*,1,4}

1: Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell Strasse 8, D-07745 Jena, Germany

2: Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, D-72076 Tübingen, Germany

3: Department of Biology and Biotechnology, Worcester Polytechnic Institute,60 Prescott Street, Worcester, MA 01605, United States

4: Laboratory of Bioanalytical Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland

Content

Figure		page
S1 – S13	Supporting Figures (as indicated in the main text)	S2 - S22
S14 - S95	NMR spectra of isolated and synthesized components	S23 - S104

* Corresponding author: Stephan H. von Reuss

Phone: 0041 (0)32-718-2510

Fax: 0041 (0)32-718-2511

E-mail: stephan.vonreuss@unine.ch

Figure S1a. Extracted ion chromatograms for the K1 fragment ion at m/z 130.1 [C₆H₁₄OSi]^{+•} from GC-EIMS analysis of TMS-derivatized crude nematode exometabolome extracts.

Figure S1b. Extracted ion chromatograms for the K1 fragment ion at m/z 130.1 [C₆H₁₄OSi]^{+•} from GC-EIMS analysis of TMS-derivatized crude nematode exometabolome extracts.

Figure S1c. Extracted ion chromatograms for the K1 fragment ion at m/z 130.1 [C₆H₁₄OSi]^{+•} from GC-EIMS analysis of TMS-derivatized crude nematode exometabolome extracts.

Figure S1d. Extracted ion chromatograms for the K1 fragment ion at m/z 130.1 [C₆H₁₄OSi]^{+•} from GC-EIMS analysis of TMS-derivatized crude nematode exometabolome extracts.

Figure S1e. Extracted ion chromatograms for the K1 fragment ion at m/z 130.1 [C₆H₁₄OSi]^{+•} from GC-EIMS analysis of TMS-derivatized crude nematode exometabolome extracts.

Figure S1g. Extracted ion chromatograms for the K1 fragment ion at 130.1 $[C_6H_{14}OSi]^{+\bullet}$ from GC-EIMS analysis of TMS-derivatized crude nematode exometabolome extracts.

Figure S2: Electron ionization mass spectra of TMS derivatized (A) asc-7OH-C9 (**11**) from *C*. *nigoni* and *C. afra*; and (B) asc- β OH-C9 (**3**, n = 4, bhas#10) from *Panagrellus redivivus*.

Figure S3: GC-EIMS extracted ion traces (EICs) for the ascaroside-derived K1 fragment at m/z 130.1 [C₆H₁₄OSi]^{+•} for the crude *C. nigoni* exometabolome extract and ascaroside containing fractions obtained by chromatography on C18 using a stepwise gradient of aqueous methanol as eluent.

Figure S4: ¹H NMR spectra (400 MHz, CD₃OD) of RP-C₁₈-SPE fractions of the *C. nigoni* exometabolome extract.

Figure S5. Section of the dqf-COSY spectrum of the *C. nigoni* exometabolome fraction SPE40 showing signals corresponding to indole-3-acetic acid (IAA, auxin) and anthranilic acid.

Figure S6: Determination of diastereomeric excess (*de* >99%) of *threo*-18a and *erythro*-18b by ¹H NMR spectroscopy (400 MHz, CDCl₃).

Figure S7a: Assignment of (7R,8R)-threo configuration for the natural asc-7OH- Δ C9 (10) isolated from *C. nigoni* by comparison of ¹H NMR spectra with those of synthetic standards (10a and 10b).

Figure S7b: Assignment of (7R,8R)-threo configuration for the natural asc-7OH- Δ C9 (10) isolated from *C. nigoni* by comparison of ¹H NMR spectra with those of synthetic standards (10a and 10b).

Figure S8: Chemical correlation of *threo*-asc-7OH- Δ C9 (**10**) and asc-9OH- Δ C9 (**12**) from *C*. *nigoni* with synthetic standards of *threo*-asc-7OH- Δ C9 (**10a**), *erythro*-asc-7OH- Δ C9 (**10b**), and asc-9OH- Δ C9 (**12**) using GC-EIMS extracted ion chromatograms for the J1 fragment ions at *m/z* 433.2 [C₁₉H₄₁O₅Si₃]⁺.

Figure S9: Chemical correlation of *threo*-asc-7OH-C9 (**11a**) from *C. nigoni* with synthetic standards obtained by Pd/C-catalyzed hydrogenation of *threo*-asc-7OH- Δ C9 (**10a**) and *erythro*-asc-7OH- Δ C9 (**10b**) using GC-EIMS extracted ion chromatograms for the J2 fragment ions at *m*/*z* 317.2 [C₁₅H₃₃O₃Si₂]⁺.

Figure S10: Confirmation of the structure assignment of natural asc-9OH- Δ C9 (12) from *C. nigoni* by comparison of the ¹H NMR spectra of an isolated mixture of asc-9OH- Δ C9 (12) and *threo*-asc-9OH-C9 (11a) with those of isolated *threo*-asc-9OH-C9 (11a) and synthetic asc-9OH- Δ C9 (12).

Figure S11: Extracted ion chromatograms of GC-EIMS screening for the ascaroside specific K1 fragment ion signal at m/z 130.1 $[C_6H_{14}OSi]^{+\bullet}$ for (A) the *C. nigoni* (JU1422) exometabolome extract and (B) the *C. afra* (JU1286) exometabolome extract.

Figure S12: Total ion chromatograms of HPLC-ESI-(–)-MS/MS precursor ion screens for m/z73.1 [C₃H₅O₂]⁻ for (A) the *C. nigoni* (JU1422) exometabolome extract and (B) the *C. afra* (JU1286) exometabolome extract.

Figure 13a: Male response of *C. nigoni*; Wilcoxon Matched-Pairs Signed Rank Test; control vs. 1 μ M ascaroside #3 derivative; Male Response: **** p < 0.0001, ** p = 0.0052, * p = 0.0266, n \geq 13.

Figure 13b: Female response of *C. nigoni*; Wilcoxon Matched-Pairs Signed Rank Test; control vs. 1 μ M ascaroside #3 derivative; Female Response: n.s. (p > 0.05), n ≥10.

Figure S14: ¹H NMR spectrum of synthetic (*R*)-Methyl 2-(4-methoxybenzyloxy)propanoate (15) in CDCl₃.

Figure S15: ¹³C NMR spectrum of synthetic (*R*)-Methyl 2-(4-methoxybenzyloxy) propanoate (15) in CDCl₃.

Figure S17: ¹³C NMR spectrum of synthetic (*R*)-2-(4-Methoxybenzyloxy)propanal (16) in CDCl₃.

Figure S18: ¹H NMR spectrum of synthetic (2*R*,3*R*)*-threo*-3-Hydroxy-2-(4-methoxybenzyloxy)-7-octene (**17**) in CDCl₃.

Figure S19: ¹³C NMR spectrum of synthetic (2*R*,3*R*)-*threo*-3-Hydroxy-2-(4-methoxybenzyloxy)-7-octene (17) in CDCl₃.

Figure S20: HSQC spectrum of synthetic (2*R*,3*R*)-*threo*-3-Hydroxy-2-(4-methoxybenzyloxy)-7-octene (17) in CDCl₃.

Figure S21: ¹H NMR spectrum of synthetic (2*R*,3*R*)-threo-3-Benzoyloxy-2-(4-methoxybenzyloxy)-7-octene (18a) in CDCl₃.

Figure S22: ¹³C NMR spectrum of synthetic (2*R*,3*R*)-*threo*-3-Benzoyloxy-2-(4-methoxybenzyloxy)-7-octene (18a) in CDCl₃.

Figure S23: ¹H NMR spectrum of synthetic (2*R*,3*S*)-*erythro*-3-Benzoyloxy-2-(4-methoxybenzyloxy)-7-octene (18b) in CDCl₃.

Figure S24: ¹³C NMR spectrum of synthetic (2*R*,3*S*)-*erythro*-3-Benzoyloxy-2-(4-methoxybenzyloxy)-7-octene (18b) in CDCl₃.

⊢1000 -8.08 -7.59-7.47-7.256.936.851.77 1.52 1.30 -5.82 -5.24 4.61 4.48 4.19 3.73 -2.23 -900 -800 -700 -600 -500 -400 -300 -200 -100 -0 1.0 ∄ 1.0 ∄ 2.1 ¥ 2.1⊣ 1.7∄ 2.3∄ 2.1⊴ 1.0 2.0 실 1.0-1 1.0-1 3.1 1.1 ^과과 **2**.0-J 2.0 1 3.7 1 3.0 1 4 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

Figure S25: ¹H NMR spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-(4-methoxybenzyloxy)-2-nonenoate (19a) in CDCl₃.

Figure S26: ¹³C NMR spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-(4-methoxybenzyloxy)-2-nonenoate (19a) in CDCl₃.

Figure S27: HSQC spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-(4-methoxybenzyloxy)-2-nonenoate (19a) in CDCl₃.

Figure S28: ¹H NMR spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-(4-methoxybenzyloxy)-2-nonenoate (**19b**) in CDCl₃.

	166.6	~166.2 —159.2	-148.5	f 133.0	129.7	128.5	-113.8			<u>√</u> 77.2 √76.0	√75.3 √70.8	-60.2	0.00-		-32.0 ~29.3	-24.2	∠16.0 ≻14.4		-8500 - -8000
																			-7500 -
																			-7000
																			-6500
					l.														-6000
																			-5500
																			-5000
																			-4500
													1						-4000
																			-3500
												I				I			-3000
																			-2500
																			-2000
																			-1500
																			-1000
																11,			-500
				****				**************		un an	uer lannar		l.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ratal alum kan	سابناس	9444444444444	-0
																			500 -
30	170	160	150	140	130	120	110	100	90 f1 (ppm)	80	70	60	50	40	30	20)	10	0

Figure S29: ¹³C NMR spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-(4-methoxybenzyloxy)-2-nonenoate (**19b**) in CDCl₃.

Figure S30: HSQC NMR spectrum of synthetic (*7S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-(4-methoxybenzyloxy)-2-nonenoate (**19b**) in CDCl₃.

Figure S31: ¹H NMR spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-hydroxy-2-nonenoate (20a) in CDCl₃.

Figure S32: ¹³C NMR spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-hydroxy-2-nonenoate (20a) in CDCl₃.

Figure S33: HSQC spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-hydroxy-2-nonenoate (20a) in CDCl₃.

Figure S34: dqf-COSY spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-hydroxy-2-nonenoate (20a) in CDCl₃.

Figure S35: ¹H NMR spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-hydroxy-2-nonenoate (20b) in CDCl₃.

Figure S36: ¹³C NMR spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-hydroxy-2-nonenoate (20b) in CDCl₃.

Figure S37: HSQC spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-hydroxy-2-nonenoate (20b) in CDCl₃.

Figure S39: ¹H NMR spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-nonenoate (**22a**) in CDCl₃.

Figure S40: ¹³C NMR spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-nonenoate (**22a**) in CDCl₃.

Figure S41: HSQC spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-nonenoate (**22a**) in CDCl₃.

Figure S42: dqf-COSY spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-Ethyl 7-benzoyloxy-8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-nonenoate (**22a**) in CDCl₃.

Figure S43: ¹H NMR spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-nonenoate (**22b**) in CDCl₃.

Figure S44: ¹³C NMR spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-nonenoate (**22b**) in CDCl₃.

Figure S45: HSQC spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-nonenoate (**22b**) in CDCl₃.

Figure S46: dqf-COSY spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-Ethyl 7-benzoyloxy-8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-nonenoate (**22b**) in CDCl₃.

Figure S47: ¹H NMR spectrum of synthetic (7R,8R,2E)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid ((7R,8R)-*threo*-asc-7OH- Δ C9, (7R,8R)-*threo*-**10a**) in CD₃OD.

Figure S48: ¹³C NMR spectrum of synthetic (7*R*,8*R*,2*E*)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid ((7*R*,8*R*)-*threo*-asc-7OH- Δ C9, (7*R*,8*R*)-*threo*-10a) in CD₃OD.

Figure S49: HSQC spectrum of synthetic (7R,8R,2E)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid ((7R,8R)-*threo*-asc-7OH- Δ C9, (7R,8R)-*threo*-**10a**) in CD₃OD.

Figure S50: dqf-COSY spectrum of synthetic (7R,8R,2E)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid ((7R,8R)-*threo*-asc-7OH- Δ C9, (7R,8R)-*threo*-**10a**) in CD₃OD.

Figure S51: ¹H NMR spectrum of synthetic $2-((6R)-6-((R)-1-[(3,6-dideoxy-\alpha-L-$ *arabino*-hexopyranosyl)oxy]ethyl)tetrahydro-2H-pyran-2-yl)acetic acid (**23a**) in CD₃OD.

74	9	<u>ر</u> م	o იე ← c	ວາດາດ – ເ	- 10 Ch	- 01 - 1	- 4 ω	2	-2000
175.	97.7	79.3 79.3	75.3 75.3 71.4	69.8 68.3 68.3 57.2	40.4 35.9 34.9	33.4	22.8 22.8 18.1	14.6	-1900 -
	T			Í		~	$\langle \gamma \rangle$	1	-1800
									-1700
									-1600
									-1500
				I					-1400
									-1300
									-1200
			.						-1100
									-1000
									-900
			,						-800
									-700
									-600
									-500
									-400
									-300
									-200
والمراجع والمراجع والمراجع والمناط المردول فروتهم والبار والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع		aki daha katu atu ka	المعادين المراب	Luka pada, dilan kilandi adaktida ba	والمعتر والماقيان والسلور الأورا		ارينه والحرابية أراوتهما	المترب المتعاد المتعاد والمحاد والم	-100
na siya weqaya parta siyar qali penerariya pari ing panasa taken ina pali ta dite, akan papiparti sekapitan ta Inda yikaran na nanalari kata kata mali alata bi ta anta, si a matani zamiti jilada and dapatan Kandal sala.	n opring gerer Delta villager	dan talah matalah Karajar		nonalizar ala'n din tak	an a second field for the	r u spisio ge Milio da lo da	or equipted to the state	datar a talah bilika	-0
ער הרגעה הרגעה אוגר היימים בניתי אוגע אויים איים אונים באלגיי היישי אינים איר או אייד באניים באניי באיים בארוחי איין איין אייד אייד אייד אוייד אוייד אוייד אוייד אייד א	di di ta cui	עריי עריי אין ראיין דער אין איז און איז איז אי איז איז איז איז איז איז איז איז איז איז	rwhih Ita a b ih	ועו ע א ורדייי או ערייאיי או איירייי.	ւ հերկերի հերկություն։	հունեսեներ	ւլիստիրությո	ער איז	-100
30 170 160 150 140 130 120 110	100 f1	90 8 . (ppm)	0 70	60 5	0 40	30	20	10	0

Figure S52: ¹³C NMR spectrum of synthetic 2-((6R)-6-((R)-1-[(3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]ethyl)tetrahydro-2H-pyran-2-yl)acetic acid (**23a**) in CD₃OD.

Figure S53: dqf-COSY spectrum of synthetic $2-((6R)-6-((R)-1-[(3,6-dideoxy-\alpha-L-$ *arabino*-hexopyranosyl)oxy]ethyl)tetrahydro-2H-pyran-2-yl)acetic acid (**23a**) in CD₃OD.

Figure S54: HMQC spectrum of synthetic $2-((6R)-6-((R)-1-[(3,6-dideoxy-\alpha-L-$ *arabino*-hexopyranosyl)oxy]ethyl)tetrahydro-2H-pyran-2-yl)acetic acid (**23a**) in CD₃OD.

Figure S55: ¹H NMR spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid ((7*S*,8*R*)-*erythro*-asc-7OH- Δ C9, (7*S*,8*R*)-*erythro*-**10b**) in CD₃OD.

Figure S56: ¹³C NMR spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid ((7*S*,8*R*)-*erythro*-asc-7OH- Δ C9, (7*S*,8*R*)-*erythro*-**10b**) in CD₃OD.

Figure S57: HSQC spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid ((7*S*,8*R*)-*erythro*-asc-7OH- Δ C9, (7*S*,8*R*)-*erythro*-**10b**) in CD₃OD.

Figure S58: dqf-COSY spectrum of synthetic (7*S*,8*R*,2*E*)-*erythro*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid ((7*S*,8*R*)-*erythro*-asc-7OH- Δ C9, (7*S*,8*R*)-*erythro*-**10b**) in CD₃OD.

~3.75 ~3.66 ~3.52 -4.66 -2.53 -2.47 -2.44 -2.44 -2.39 -2.39 71.96 71.93 71.80 -1.58 -1.42 1.22 1.15 3.31 -1800 -1700 -1600 -1500 -1400 -1300 -1200 -1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 -0 **1**.0-I 2.0 2.0 1.0 2.0 2.0 0.84 0.74 0.64 2.9<u>4</u> 2.9<u>4</u> 1.0-] 1.0-1.7-3.3---100 3.0 f1 (ppm) .5 5.0 4.5 4.0 3.5 2.5 2.0 1.5 1.0 0.5

Figure S59: ¹H NMR spectrum of synthetic $2-((6S)-6-((R)-1-[(3,6-dideoxy-\alpha-L-$ *arabino*-hexopyranosyl)oxy]ethyl)tetrahydro-2H-pyran-2-yl)acetic acid (**23b**) in CD₃OD.

-175.7					-97.5	/79.3 75.6	-75.4 -71.3 -69.8 -68.4	-57.2	40.4 735.9 734.9	34.1 33.6 33.0	~22.6		-800 - -750
													-700
													-650
							I						-600
													-550
													-500
						1							-450
													-400
													-350
													-300
													-200
													-150
1													-100
		. 11.	ь. Ш .	1		1. 1							- -50
	n a successing a sub-successing for a sub-		lainn airte an					ik dan Malilangi.					-0
Li v. i. Jaddili di i. j. d. d. ,	aleada a su a dhalladh a su bhall	עיו ן א יואייי א ווזי	بطأليان المنهدين للططية بغار	and a sublicit of the sublicit	الشيابة ومريد لايا الار	l, in all had to a line of the decision of the	A nu triat di anno a su anno a I a su a s	ويل الديانية مبلية ال	ll. An ta the different cardinal	للفها اعتباله فالقرفا	hild of the second second	u ll a h a h d' ll a ll in fille .	50
30 170	160 150	140	130 120	110	100 f1 (90 80 (ppm)	70	60 5	50 40	30	20	10	0

Figure S60: ¹³C NMR spectrum of synthetic 2-((6*S*)-6-((*R*)-1-[(3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]ethyl)tetrahydro-2H-pyran-2-yl)acetic acid (**23b**) in CD₃OD.

Figure S61: dqf-COSY spectrum of synthetic $2-((6S)-6-((R)-1-[(3,6-dideoxy-\alpha-L-$ *arabino*-hexopyranosyl)oxy]ethyl)tetrahydro-2H-pyran-2-yl)acetic acid (**23b**) in CD₃OD.

Figure S62: HMQC spectrum of synthetic $2-((6S)-6-((R)-1-[(3,6-dideoxy-\alpha-L-$ *arabino*-hexopyranosyl)oxy]ethyl)tetrahydro-2H-pyran-2-yl)acetic acid (**23b**) in CD₃OD.

Figure S63: ¹H NMR spectrum of synthetic (7*S*)-7-*tert*-Butyldimethylsilyloxy-6-hydroxy-1-octene (25) in CDCl₃.

Figure S64: ¹³C NMR spectrum of synthetic (7*S*)-7-*tert*-Butyldimethylsilyloxy-6-hydroxy-1-octene (25) in CDCl₃.

Figure S65: ¹H NMR spectrum of synthetic (2*E*,8*S*)-Ethyl 9-*tert*-butyldimethylsilyloxy-8-hydroxy-2-nonenoate (26) in CDCl₃.

Figure S66: ¹³C NMR spectrum of synthetic (2*E*,8*S*)-Ethyl 9-*tert*-butyldimethylsilyloxy-8-hydroxy-2-nonenoate (26) in CDCl₃.

Figure S67: HMQC spectrum of synthetic (2E,8S)-Ethyl 9-tert-butyldimethylsilyloxy-8-hydroxy-2-nonenoate (26) in CDCl₃.

Figure S68: ¹H NMR spectrum of synthetic (2*E*,8*S*)-Ethyl 8-[(2,4-di-*O*-benzoyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-9-*tert*-butyldimethylsilyloxy-2-nonenoate (**27**) in CDCl₃.

Figure S69: ¹³C NMR spectrum of synthetic (2*E*,8*S*)-Ethyl 8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-*tert*-butyldimethylsilyloxy-2-nonenoate (**27**) in CDCl₃.

Figure S70: dqf-COSY spectrum of synthetic (2*E*,8*S*)-Ethyl 8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-*tert*-butyldimethylsilyloxy-2-nonenoate (**27**) in CDCl₃.

Figure S71: HMQC spectrum of synthetic (2*E*,8*S*)-Ethyl 8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-*tert*-butyldimethylsilyloxy-2-nonenoate (**27**) in CDCl₃.

Figure S72: ¹H NMR spectrum of synthetic (2*E*,8*S*)-Ethyl 8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoate (**28**) in CDCl₃.

Figure S73: ¹³C NMR spectrum of synthetic (2*E*,8*S*)-Ethyl 8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoate (**28**) in CDCl₃.

Figure S74: dqf-COSY spectrum of synthetic (2*E*,8*S*)-Ethyl 8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoate (**28**) in CDCl₃.

Figure S75: HMQC spectrum of synthetic (2*E*,8*S*)-Ethyl 8-[(2,4-di-*O*-benzoyl-3,6-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoate (**28**) in CD₃OD.

Figure S76: ¹H NMR spectrum of synthetic (2*E*,8*S*)-8-[(3,6-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoic acid (asc-9OH- Δ C9) (**12**) in CD₃OD.

Figure S77: ¹³C NMR spectrum of synthetic (2*E*,8*S*)-8-[(3,6-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoic acid (asc-9OH- Δ C9) (**12**) in CD₃OD.

Figure S78: dqf-COSY spectrum of synthetic (2*E*,8*S*)-8-[(3,6-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoic acid (asc-9OH- Δ C9) (**12**) in CD₃OD.

Figure S79: HMQC spectrum of synthetic (2*E*,8*S*)-8-[(3,6-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoic acid (asc-9OH- Δ C9) (**12**) in CD₃OD.

Figure S80: ¹H NMR spectrum of synthetic (7*S*)-7-[(3,6-Dideoxy-α-L-*arabino*-hexopyranosyl)oxy]oxocan-2-yl)-acetic acid (**29**) in CD₃OD.

Figure S81: ¹³C NMR spectrum of synthetic (7*S*)-7-[(3,6-Dideoxy-α-L-*arabino*-hexopyranosyl)oxy]oxocan-2-yl)-acetic acid (**29**) in CD₃OD.

Figure S82: dqf-COSY spectrum of synthetic (7*S*)-7-[(3,6-Dideoxy-α-L-*arabino*-hexopyranosyl)oxy]oxocan-2-yl)-acetic acid (**29**) in CD₃OD.

Figure S83: HMQC spectrum of synthetic (7*S*)-7-[(3,6-Dideoxy-α-L-*arabino*-hexopyranosyl)oxy]oxocan-2-yl)-acetic acid (**29**) in CD₃OD.

Figure S85: dqf-COSY spectrum of *C. nigoni* exometabolome fraction SPE40 in CD₃OD.

Figure S86: ¹H NMR spectrum of (7*R*,8*R*,2*E*)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid (*threo*-asc-7OH- Δ C9, **10a**) isolated from the *C. nigoni* exometabolome (~275 µg) in CD₃OD.

Figure S87: dqf-COSY spectrum of (7*R*,8*R*,2*E*)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid (*threo*-asc-7OH- Δ C9, **10a**) isolated from the *C. nigoni* exometabolome (~275 µg) in CD₃OD.

Figure S88: NOESY spectrum of (7R, 8R, 2E)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid (*threo*-asc-7OH- Δ C9, **10a**) isolated from the *C. nigoni* exometabolome (~275 µg) in CD₃OD.

Figure S89: HSQC spectrum of (7R,8R,2E)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxy-2-nonenoic acid (*threo*-asc-7OH- Δ C9, **10a**) isolated from the *C. nigoni* exometabolome (~275 µg) in CD₃OD.

Figure S90: ¹H NMR spectrum of (7*R*,8*R*)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxynonanoic acid (*threo*-asc-7OH-C9, **11**) isolated from the *C. nigoni* exometabolome (~110 µg) in CD₃OD.

Figure S91: dqf-COSY spectrum of (7R,8R)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxynonanoic acid (*threo*-asc-7OH-C9, **11**) isolated from the *C. nigoni* exometabolome (~110 µg) in CD₃OD.

Figure S92: HSQC spectrum of (7R,8R)-*threo*-8-[(3',6'-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-7-hydroxynonanoic acid (*threo*-asc-7OH-C9, **11**) isolated from the *C. nigoni* exometabolome (~110 µg) in CD₃OD.

Figure S93: ¹H NMR spectrum of (2*E*,8*S*)-8-[(3,6-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoic acid (asc-9OH- Δ C9, **12**) isolated from the *C. nigoni* exometabolome (~130 µg) in CD₃OD.

Figure S94: dqf-COSY spectrum of (2*E*,8*S*)-8-[(3,6-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoic acid (asc-9OH- Δ C9, **12**) isolated from the *C. nigoni* exometabolome (~130 µg) in CD₃OD.

Figure S95: HSQC spectrum of (2E,8S)-8-[(3,6-Dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-9-hydroxy-2-nonenoic acid (asc-9OH- Δ C9, **12**) isolated from the *C. nigoni* exometabolome (~130 µg) in CD₃OD.