Supplementary Information for

Silver-Catalyzed Remote Csp³-H Functionalization of

Aliphatic Alcohols

Zhu et, al.

Supplementary Methods

General Information :

All manipulations were conducted with a standard Schlenk technique under argon atmosphere (1 atm). ¹H-NMR spectra were recorded with a Bruker AVIII-400 spectrometer. Chemical shifts (in ppm) were referenced to CDCl₃ (δ = 7.26 ppm) or TMS (δ = 0.00 ppm) as an internal standard. ¹³C-NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ (δ = 77.00 ppm). Mass spectra were recorded by PE SCLEX QSTAR spectrometer. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. AgNO₃ was purchased from J&K.

Synthesis and Characterizations of Substrates

Alkanols **1a-d**, **1f**, **1l**, **1r-v** were purchased from commercial sources. **1e**, **1g-k**, **1m-q**, **1w-x**, **S1**were prepared according to literature methods.

Typical procedure A:

HO
OH + BrR¹
$$\xrightarrow{\text{NaH}(1.2 \text{ equiv})}$$
 HO
DMF (20 mL)
15 mmol 10 mmol 0 °C - r.t. , 12 h

Sodium hydride (15 mmol, 1.5 equiv) was added at room temperature to a solution of alcohol (15 mmol, 1.5 equiv) in DMF (20 mL). The medium was stirred at room temperature during 1 h and alkyl bromide (10 mmol, 1.0 equiv) was added slowly. After 12 h at room temperature, water was added to quench the reaction and the organic layer was extracted with ethyl acetate, dried with Na_2SO_4 and concentrated under reduced pressure. The monoalkylated derivative was isolated as a colorless oil after purification by column chromatography with PE/EA (3:1).

Typical procedure B:

A mixture of 20 ml of butane-1,4-diol, alkyl bromide (10 mmol, 1.0 equiv), triethylamine (4.5 ml, 3.2 equiv) and 1,8-diazabicyclo[5.4.0]undec-7-ene (0.16 g, 0.1 equiv) was stirred at 110 ° for 12 h. The reaction mixture was poured into water (50 ml). Organic layer was extracted with chloroform (3×50 ml). The organic layer was washed with water (3×100 ml) and dried with Na₂SO₄ and concentrated under reduced pressure. The monoalkylated derivative was isolated as a colorless oil after purification by column chromatography with PE/EA (3:1).

Typical procedure C:

A solution of the carboxylic acid (10 mmol, 1.0 equiv) in 20 mL dry THF was added LiAlH₄ (1.2 g, 30 mmol, 3.0 equiv) potionwise at 0 °C. The reaction mixture was stirred overnight at room temperature. H₂O (1.2 mL) 15% NaOH (aq.) (1.2 mL,) and H₂O (3.6 mL) were added and stirred for another 30 min. The mixture was diluted with water (20 mL) and extracted with EA (3×20 mL). The combined extracts were washed with a saturated solution of NaCl (15 mL), dried over MgSO₄, and evaporated in vacuo and purified by column chromatography with PE/EA (5:1).

N₃OH

7-azidoheptan-1-ol (1e)^[1]

To a mixture 7-bromoheptan-1-ol (1.94 g, 10 mmol) in DMF (20 mL), NaN₃ (1.3 g, 20 mmol) was added potion-wise. The mixture was stirred at room temperature for 12 h. The reaction mixture was poured into water (30 ml). The organic layer was extracted with EA (3×30 ml). The organic layer was washed with water (3×100 ml) and dried with Na₂SO₄ and concentrated under reduced pressure to afford 1.46 g (93%) pure **1e** a colorless oil.

¹H NMR: (400 MHz, CDCl₃): δ 3.65 (t, J = 6.0 Hz, 2H), 3.40 (q, J = 6.8 Hz, 2H), 3.26 (t, J = 6.8 Hz, 1H), 1.87 (q, J = 6.8 Hz, 2H), 1.50-1.30 (m, 6H), 1.73-1.52 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃): δ 62.9, 51.5, 32.6, 28.9, 28.8, 26.7, 25.6.

4-ethoxybutan-1-ol (1g)^[2]

Following Typical Procedure A, the reaction of butane-1,4-diol (1.5 g, 15 mmol), Bromoethane (1.1 g, 10 mmol) and NaH (60% oil) (0.6 g, 15 mmol) was reacted to afford 0.73 g (62%) **1g** as a colorless oil.

Colorless oil; ¹H NMR: (400 MHz, CDCl₃): δ 3.65-3.64 (m, 2H), 3.52-3.45 (m, 4H), 2.62 (brs, 1H), 1.72-1.64 (m, 4H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃): δ 70.6, 66.3, 62.8, 30.5, 27.1, 15.0.

4-propoxybutan-1-ol (1h)^[3]

Following Typical Procedure A, the reaction of butane-1,4-diol (1.5 g, 15 mmol), 1-Bromopropane (1.2 g, 10 mmol) and NaH (60% oil) (0.6 g, 15 mmol) was reacted to afford 0.92 g (70%) **1h** as a colorless oil.

¹H NMR: (400 MHz, CDCl₃): δ 3.63-3.62 (m, 2H), 3.44 (t, *J* = 5.6 Hz, 2H), 3.38 (t, *J* = 6.4 Hz, 2H), 2.79 (brs, 1H), 1.70-1.54 (m, 6H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃): δ 72.7, 70.8, 62.7, 30.4, 26.9, 22.8, 10.5.

4-(isopentyloxy)butan-1-ol (1i)^[4]

Following Typical Procedure A, the reaction of butane-1,4-diol (1.5 g, 15 mmol), 1-Bromo-3-methylbutane (1.51 g, 10 mmol) and NaH (60% oil) (0.6 g, 15 mmol) was re acted to afford 1.10 g (69%) **1i** as a colorless oil.

¹H NMR: (400 MHz, CDCl₃): δ 3.64 (t, J = 5.6 Hz, 2H), 3.47-3.44 (m, 4H), 2.29 (brs, 1H), 1.70-1.65 (m, 5H), 1.46 (q, J = 6.8 Hz, 2H), 0.90 (d, J = 6.4 Hz, 6H); ¹³C NMR: (100 MHz, CDCl₃): δ 70.1, 69.5, 62.8, 38.4, 30.5, 27.1, 25.1, 22.6.

4-(3-phenylpropoxy)butan-1-ol (1j)^[5]

Following Typical Procedure A, the reaction of butane-1,4-diol (1.5 g, 15 mmol), 1-Bromo-3-phenylpropane (1.99 g, 10 mmol) and NaH (60% oil) (0.6 g, 15 mmol) wa s reacted to afford 1.54 g (74%) **1j** as a colorless oil.

¹**H NMR: (400 MHz, CDCl₃):** δ 7.29-7.26 (m, 2H), 7.19-7.16 (m, 3H), 3.67-3.64 (m, 2H), 3.47-3.43 (m, 4H), 2.69 (t, *J* = 7.2 Hz, 2H), 2.27 (brs, 1H), 1.94-1.87 (m, 2H),

1.71-1.66 (m, 4H); ¹³C NMR: (100 MHz, CDCl₃): δ 141.9, 128.5, 128.3, 125.8, 70.9, 70.1, 62.8, 32.3, 31.8, 30.4, 26.9.

4-((4-methylbenzyl)oxy)butan-1-ol (1k)

Following Typical Procedure A, the reaction of butane-1,4-diol (1.5 g, 15 mmol), 4-Methylbenzyl bromide (1.85 g, 10 mmol) and NaH (60% oil) (0.6 g, 15 mmol) was reacted to afford 1.26 g (65%) **1k** as a colorless oil.

¹H NMR: (400 MHz, CDCl₃): δ 7.23-7.14 (m, 4H), 4.47 (s, 2H), 3.62 (t, *J* = 6.4 Hz, 2H), 3.49 (t, *J* = 5.6 Hz, 2H), 2.34 (s, 3H), 2.31 (s, 1H), 1.72-1.64 (m, 4H); ¹³C NMR: (100 MHz, CDCl₃): δ 137.3, 135.1, 129.1, 127.8, 72.9, 70.1, 62.6, 30.1, 26.7, 21.1; HRMS m/z (ESI) calcd. for C₁₂H₁₈NaO₂ (M + Na)⁺ 217.1199, found 217.1198.

4-(cyclopentyloxy)butan-1-ol (1m)

Following Typical Procedure B, the reaction of butane-1,4-diol (20 mL), Bromocycl opentane (1.49 g, 10 mmol), triethylamine (4.5 ml, 32 mmol) and DBU (0.16 g, 1 mm ol) was was reacted to afford 0.67 g (42%) **1m** as a colorless oil.

¹H NMR: (400 MHz, CDCl₃): δ 3.92-3.89 (m, 1H), 3.62 (t, *J* = 5.6 Hz, 2H), 3.42 (t, *J* = 5.6 Hz, 2H), 2.57 (brs, 1H), 1.73-1.63 (m, 10H), 1.52-1.49 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃): δ 81.6, 68.8, 62.8, 32.2, 30.7, 27.4, 23.5.

4-(cyclohexyloxy)butan-1-ol (1n)^[6]

Following Typical Procedure B, the reaction of butane-1,4-diol (20 mL), Bromocycl ohexane (1.63 g, 10 mmol), triethylamine (4.5 ml, 32 mmol) and DBU (0.16 g, 1 mm ol) was was reacted to afford 0.92 g (53%) **1n** as a colorless oil.

¹H NMR: (400 MHz, CDCl₃): δ 3.63 (t, J = 5.6 Hz, 2H), 3.48 (t, J = 5.6 Hz, 2H), 3.28-3.23 (m, 1H), 2.79 (brs, 1H), 1.91-1.88 (m, 2H), 1.76-1.65 (m, 6H), 1.53-1.49 (m, 1H), 1.30-1.21 (m, 5H); ¹³C NMR: (100 MHz, CDCl₃): δ 77.7, 67.8, 62.8, 32.0, 30.7, 27.5, 25.7, 24.0.

4-(cyclohexylmethoxy)butan-1-ol (10)

Following Typical Procedure A, the reaction of butane-1,4-diol (1.5 g, 15 mmol), Cy clohexylmethyl bromide (1.77 g, 10 mmol) and NaH (60% oil) (0.6 g, 15 mmol) was r eacted to afford 1.44 g (77%) **10** as a colorless oil.

¹**H NMR:** (400 MHz, CDCl₃): δ 3.64 (t, *J* = 5.6 Hz, 2H), 3.44 (t, *J* = 5.6 Hz, 2H), 3.2 3 (d, *J* = 6.4 Hz, 2H), 2.37 (brs, 1H), 1.76-1.52 (m, 10H), 1.26-1.09 (m, 3H), 0.97-0.8 7 (m, 2H); ¹³**C NMR:** (100 MHz, CDCl₃): δ 77.1, 71.1, 62.8, 38.0, 30.5, 30.1, 27.0, 2 6.6, 25.8; **HRMS m/z (ESI)** calcd. for C₁₁H₂₂NaO₂ (M + Na)⁺ 209.1512, found 209.1 513.

4-(cyclobutylmethoxy)butan-1-ol (1p)

Following Typical Procedure A, the reaction of butane-1,4-diol (1.5 g, 15 mmol), (B romomethyl)cyclobutane (1.49 g, 10 mmol) and NaH (60% oil) (0.6 g, 15 mmol) was reacted to afford 1.13 g (72%) **1p** as a colorless oil.

¹**H NMR:** (400 MHz, CDCl₃): δ 3.62 (t, *J* = 5.6 Hz, 2H), 3.45 (t, *J* = 5.6 Hz, 2H), 3.4 1 (d, *J* = 6.8 Hz, 2H), 2.64 (brs, 1H), 2.60-2.50 (m, 1H), 2.08-2.00 (m, 2H), 1.91-1.81 (m, 2H), 1.75-1.61 (m, 6H); ¹³**C NMR:** (100 MHz, CDCl₃): δ 75.7, 71.0, 62.7, 35.0, 30.4, 27.0, 25.1, 18.6; **HRMS m/z (ESI)** calcd. for C₉H₁₈NaO₂ (M + Na)⁺ 181.1199, f ound 181.1200.

4-methyloctan-1-ol (1q)^[7]

Following Typical Procedure C, 4-Methyloctanoic acid (1.58 g, 10 mmol), LiAlH₄ (1.2 g, 30 mmol) in THF (20 mL) was reacted to afford 1.32 g (92%) **1q** as a colorless oil.

¹H NMR: (400 MHz, CDCl₃): δ 3.61 (t, J = 6.4 Hz, 2H), 1.65-1.47 (m, 3H), 1.42-1.23 (m, 7H), 1.15-1.09 (m, 2H), 0.89-9.85 (m, 6H); ¹³C NMR: (100 MHz, CDCl₃): δ 63.4, 36.6, 32.9, 32.6, 30.3, 29.2, 23.0, 19.6, 14.1.

2,2-dimethyloctan-1-ol (1w)^[8]

Following Typical Procedure C, 2,2-dimethyloctanoic acid (1.72 g, 10 mmol), LiAlH₄ (1.2 g, 30 mmol) in THF (20 mL) was reacted to afford 1.38 g (87%) **1w** as a colorless oil. ¹**H NMR: (400 MHz, CDCl₃):** δ 3.30 (s, 2H), 1.39-1.22 (m, 11H), 0.90-0.86 (m, 9H),; ¹³**C NMR: (100 MHz, CDCl₃):** δ 72.1, 38.7, 35.0, 31.9, 30.2, 23.81, 23.80, 22.7, 14.1.

2-(3-methoxypropyl)hexanoic acid (S1)

Diethyl methyl malonate (2.16 g, 10 mmol) and sodium hydride (60%, 0.5 g, 1.25 equiv) in glyme (30 mL) was added in a 100 mL flask and stirred for 30 min at 0 °C. 1-Bromo-3-methoxypropane (1.53 g, 1.0 equiv) in glyme (10 mL) was added dropwise and the mixture was stirred overnight at room temperature. The mixture was diluted with water (30 mL), and extracted with EtOAc (3 x 30 mL). The combined organic layer was evaporated under vacuo. The crude product was saponification with NaOH (1.6 g, 4.0 equiv) in MeOH (60 mL) at 60 °C for 6 h. After cooled to room temperature, the mixture was acidified to pH 2 (with aqueous 1 M HCl), and extracted with EtOAc (3 x 15 mL), the combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was purified by chromatography to give 2-butyl-2-(3-methoxypropyl)malonic acid (1.95 g, 84%). On heating 1.95 g of this under nitrogen for 1 h in a bath at 160 °C, 2-(3methoxypropyl)hexanoic acid (1.54 g, 97%) was obtained. S1, Colorless oil. ¹H NMR: (400 MHz, CDCl₃): δ 3.40-3.35 (m, 2H), 3.32 (s, 3H), 2.37-2.33 (m, 1H), 1.68-1.45 (m, 6H), 1.32-1.24 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃): δ 182.3, 72.4, 58.4, 45.2, 31.9, 29.4, 28.7, 27.3, 22.5, 13.8; HRMS m/z (ESI) calcd. for $C_{10}H_{20}NaO_3 (M + Na)^+ 211.1305$, found 211.1307.

Synthesis and Characterizations of Sulphonyl Reagents

Reagents A-E were Prepared According to Literature Methods.

N-(benzyloxy)-1-(phenylsulfonyl)methanimidoyl cyanide (A)^[9]

A solution of NaOEt in EtOH (prepared fresh from 790 mg, 34.33 mmol, 1.2 equiv. of Na and 18 ml of EtOH) was added to the suspension of (Phenylsulfonyl)acetonitrile (98 % Aldrich, 5.29 g, 28.61 mmol, 1 equiv.) in EtOH (7 ml) at RT. To the resulting clear solution isoamyl nitrite (96 % Sigma-Aldrich, 4.8 ml, 34.33 mmol, 1.2 equiv.) was added. The mixture was stirred at RT for 2 hours upon which a yellow solid precipitated. The mixture was cooled in an ice-bath, the solid was filtered and washed with cold EtOH and then with Et₂O. Drying under high vacuum afforded the sodium salt of N-hydroxy-1-(phenylsulfonyl)methanimidoyl cyanide as yellow powder (5.893 g, 89 %) that was used directly in the next step.

То the suspension of the sodium salt N-hydroxy-1 of (phenylsulfonyl)methanimidoyl cyanide (1 g, 4.307 mmol, 1 equiv.) in EtOH (10 ml) was added benzyl bromide (0.63 ml, 5.168 mmol, 1.2 equiv.) and the mixture was heated to reflux. A clear solution resulted within 2 minutes. After 1 hour the mixture was cooled to RT and concentrated under reduced pressure. EtOAc (80 ml) was added to the residue and was subsequently washed with sat. NH₄Cl (30 ml) and water (30 ml). The organic phase was dried over Na₂SO₄ and the solvent removed under reduced pressure. The crude product was purified by flash chromatography (hexane:EtOAc=3:2) to afford N-(benzyloxy)-1-(phenylsulfonyl)methanimidoyl cyanide (1g) (1.121 g, 87 %) as a white solid.

¹H NMR: (400 MHz, CDCl₃): δ 7.98 (d, J = 8.0 Hz, 2H), 7.76 (t, J = 7.2 Hz, 1H), 7.62 (t, J = 8.0 Hz, 2H), 7.39-7.35 (m, 3H), 7.33-7.30 (m, 2H), 5.44 (s, 2H); ¹³C NMR: (100 MHz, CDCl₃): δ 136.4, 135.4, 134.7, 133.6, 129.8, 129.3, 129.1, 128.7, 105.6, 81.5.

N-(benzyloxy)-1-tosylmethanimidoyl cyanide (B)^[10]

A solution of NaOEt in EtOH (prepared fresh from 790 mg, 34.33 mmol, 1.2 equiv. of Na and 18 ml of EtOH) was added to the suspension of 2-tosylacetonitrile (5.85 g, 30 mmol, 1 equiv.) in EtOH (7 ml) at RT. To the resulting clear solution isoamyl nitrite (4.8 ml, 34.33 mmol, 1.2 equiv.) was added. The mixture was stirred at RT for 2 hours upon which a yellow solid precipitated. The mixture was cooled in an

ice-bath, the solid was filtered and washed with cold EtOH and then with Et_2O . Drying under high vacuum afforded the sodium salt of N-hydroxy-1tosylmethanimidoyl cyanide as yellow powder (5.45 g, 74 %) that was used directly in the next step.

To the suspension of the sodium salt of N-hydroxy-1-tosylmethanimidoyl cyanide (5.45 g, 1 equiv.) in EtOH (30 ml) was added benzyl bromide (1.92 ml, 1.2 equiv.) and the mixture was heated to reflux. A clear solution resulted within 2 minutes. After 1 hour the mixture was cooled to RT and concentrated under reduced pressure. EtOAc (80 ml) was added to the residue and was subsequently washed with sat. NH₄Cl (30 ml) and water (30 ml). The organic phase was dried over Na₂SO₄ and the solvent removed under reduced pressure. The crude product was purified by flash chromatography (hexane:EtOAc=3:2) to afford N-(benzyloxy)-1-tosylmethanimidoyl cyanide (4.76 g, 68 %) as a white solid.

¹**H NMR: (400 MHz, CDCl₃):** δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.41-7.31 (m, 7H), 5.43 (s, 2H), 2.49 (s, 3H); ¹³**C NMR: (100 MHz, CDCl₃):** δ 147.1, 135.0, 133.8, 133.5, 130.5, 129.35, 129.27, 129.1, 128.8, 105.8, 81.4, 21.8.

N-(benzyloxy)-1-((4-fluorophenyl)sulfonyl)methanimidoyl cyanide (C)

To 2-(4-Fluorophenylthio)acetonitrile (3.34g, 20 mmol, 1.0 equiv) in DCM (50 mL) was added 3-Chloroperoxybenzoic acid (5.16 g, 30 mmol, 1.5 equiv) at 0 °C. The reaction mixture was stirred for 1h at 0 °C and another 12 h at 40 °C. After cooling to room temperature, the mixture was diluted with DCM (50 mL) and NaHCO₃ (aq.) (50 mL). The organic layer was washed with Na₂SO₃ (aq.) (50 mL). Extracted with DCM (50 mL x 3). The organic phase was dried over Na₂SO₄ and the solvent removed under reduced pressure. The crude product was purified by flash chromatography (hexane:EtOAc=5:1) to afford 2-((4-fluorophenyl)sulfonyl)acetonitrile (2.43 g, 61%)

A solution of NaOEt in EtOH (prepared fresh from 260 mg, 12 mmol, 1.2 equiv. of Na and 6 ml of EtOH) was added to the suspension of 2-((4fluorophenyl)sulfonyl)acetonitrile (2.00 g, 10 mmol, 1 equiv.) in EtOH (2.5 ml) at RT. To the resulting clear solution isoamyl nitrite (1.6 ml, 12 mmol, 1.2 equiv.) was added. The mixture was stirred at RT for 2 hours upon which a yellow solid precipitated. The mixture was cooled in an ice-bath, the solid was filtered and washed with cold EtOH and then with Et₂O. Drying under high vacuum afforded the sodium salt of 1-((4fluorophenyl)sulfonyl)-N-hydroxymethanimidoyl cyanide as yellow powder (1.12 g, 45 %) that was used directly in the next step.

To the suspension of the sodium salt of 1-((4-fluorophenyl)sulfonyl)-Nhydroxymethanimidoyl cyanide (1.12 g, 4.5 mmol, 1 equiv.) in EtOH (10 ml) was added benzyl bromide (0.66 ml, 5.4 mmol, 1.2 equiv.) and the mixture was heated to reflux. A clear solution resulted within 2 minutes. After 1 hour the mixture was cooled to RT and concentrated under reduced pressure. EtOAc (30 ml) was added to the residue and was subsequently washed with sat. NH₄Cl (20 ml) and water (20 ml). The organic phase was dried over Na₂SO₄ and the solvent removed under reduced pressure. The crude product was purified by flash chromatography (hexane:EtOAc=3:2) to afford N-(benzyloxy)-1-((4-fluorophenyl)sulfonyl)methanimidoyl cyanide (0.66 g, 46 %) as a white solid.

¹H NMR: (400 MHz, CDCl₃): δ 8.00-7.96 (m, 2H), 7.39-7.26 (m, 7H), 5.43 (s, 2H); ¹³C NMR: (100 MHz, CDCl₃): δ = 166.9 (d, *J* = 258.2 Hz), 134.7, 133.7, 132.4 (d, *J* = 3.3 Hz), 132.3 (d, *J* = 107.0 Hz), 129.4, 129.2, 128.8, 117.3 (d, *J* = 231.0 Hz), 105.6, 81.6; ¹⁹F NMR: (376 MHz, CDCl₃): δ -99.5; HRMS m/z (ESI) calcd. for C₁₅H₁₁N₂O₃FNaS (M + Na)⁺ 341.0367, found 341.0371.

N-(benzyloxy)-1-(octylsulfonyl)methanimidoyl cyanide (D)

To 2-(octylthio)acetonitrile (3.7g, 20 mmol, 1.0 equiv) in DCM (50 mL) was added 3-Chloroperoxybenzoic acid (5.16 g, 30 mmol, 1.5 equiv) at 0 °C. The reaction mixture was stirred for 1h at 0 °C and another 12 h at 40 °C. After cooling to room temperature, the mixture was diluted with DCM (50 mL) and NaHCO₃ (aq.) (50 mL). The organic layer was washed with Na₂SO₃ (aq.) (50 mL). Extracted with DCM (50 mL x 3). The organic phase was dried over Na₂SO₄ and the solvent removed under reduced pressure. The crude product was purified by flash chromatography (hexane:EtOAc=5:1) to afford 2-(octylsulfonyl)acetonitrile (2.33 g, 54%)

A solution of NaOEt in EtOH (prepared fresh from 260 mg, 12 mmol, 1.2 equiv. of Na and 6 ml of EtOH) was added to the suspension of 2-(octylsulfonyl)acetonitrile (2.17 g, 10 mmol, 1 equiv.) in EtOH (2.5 ml) at RT. To the resulting clear solution isoamyl nitrite (1.6 ml, 12 mmol, 1.2 equiv.) was added. The mixture was stirred at RT for 2 hours upon which a yellow solid precipitated. The mixture was cooled in an ice-bath, the solid was filtered and washed with cold EtOH and then with Et₂O.

Drying under high vacuum afforded the sodium salt of N-hydroxy-1-(octylsulfonyl)methanimidoyl cyanide.

To suspension of the sodium salt of N-hydroxy-1the (octylsulfonyl)methanimidoyl cyanide in EtOH (15 ml) was added benzyl bromide (1.55 ml, 12 mmol, 1.2 equiv.) and the mixture was heated to reflux. A clear solution resulted within 2 minutes. After 1 hour the mixture was cooled to RT and concentrated under reduced pressure. EtOAc (30 ml) was added to the residue and was subsequently washed with sat. NH₄Cl (20 ml) and water (20 ml). The organic phase was dried over Na₂SO₄ and the solvent removed under reduced pressure. The crude product was purified by flash chromatography (hexane:EtOAc=4:1) to afford N-(benzyloxy)-1-(octylsulfonyl)methanimidoyl cyanide (1.46 g, 59 % over two steps) as a colorless oil.

¹**H** NMR: (400 MHz, CDCl₃): δ 7.42-7.39 (m, 5H), 5.50 (s, 2H), 3.26-3.22 (m, 2H), 1.79-1.71 (m, 2H), 1.39-1.27 (m, 10H), 0.89 (t, *J* = 7.2 Hz, 3H); ¹³**C** NMR: (100 MHz, CDCl₃): δ = 133.8, 133.5, 129.5, 129.2, 128.9, 105.4, 81.6, 54.5, 31.6, 28.80, 28.79, 28.1, 22.5, 22.0, 14.0; **HRMS m/z (ESI)** calcd. for C₁₇H₂₄N₂O₃NaS (M + Na)⁺ 359.1400, found 359.1400.

(Phenylsulfonyl)methanal O-benzyl oxime (1b)^[11]

To a solution of O-benzylformaldoxime (1.35 g, 10 mmol) in DMF (25 mL) was added N-chlorosuccinimide (1.50 g, 11 mmol). The reaction mixture was heated for 3 h at 40oC, diluted with diethyl ether (100 ml), and washed with aqueous 10% HCI (2x50 mL) and brine (50 mL). The organic layer was dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude product was purified by passing through a short column of silica gel (ethyl acetate : hexane = 1 : 50) to afford O-Benzylformohydroximoyl chloride (1.50 g, 88%):

To a solution of O-benzyl formhydroximoyl chloride (1.19 g, 7 mmol) in THF (20 mL) was added thiophenol sodium salt (1.39 g, 10.5 mmol). The reaction mixture was stirred for 3 h at room temperature, diluted with diethyl ether (60 mL) and washed with aqueous NaHCO₃ (2 x 30 mL) and brine (30 mL). The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was chromatographed on a silica gel chromatography (ethyl acetate : hexane = 1 : 20) to give the product S-Phenyl N-(benzyloxy)-thioformimidate (1.53 g, 90%) colorless liquid.

To a solution of S-Phenyl N-(benzyloxy)-thioformimidate (486 mg, 2 mmol) in

CH₂Cl₂ (10mL) was added NaHCO₃ (336 mg, 4 mmol) and MCPBA (1.52 g, 4.4 mmol) at 0 °C. After being stirred for 1 h, the reaction mixture was heated for 1 h at 400C, diluted with CH₂Cl $_2$ (10 mL) and washed with aqueous NaHCO₃ (2x10 mL), aqueous Na₂ SO $_3$ (10 mL) and brine (10 mL). The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was chromatographed on a silica gel chromatography (ethyl acetate : hexane = 1 : 7) to give the product **E** as a white solid (484 mg, 88%)

¹H NMR: (400 MHz, CDCl₃): δ 7.92 (d, J = 7.6 Hz, 2H), 7.64 (t, J = 7.2 Hz, 1H), 7.47-7.44 (m, 3H), 7.28-7.26 (m, 3H), 7.04-7.02 (m, 2H), 5.12 (s, 2H); ¹³C NMR: (100 MHz, CDCl₃): δ 143.8, 139.1, 135.2, 134.3, 129.1, 128.8, 128.5, 128.4, 128.1, 78.7.

Supplementary Table 1: The solvent effect of δ -selective functionalization of primary alkanols

	$ \begin{array}{c} \text{NOBn} \\ \text{H} \\ \text{H} \\ \text{Ia} \\ \text{O.2 mmol} \end{array} $	AgNO ₃ (20 mol%) K ₂ S ₂ O ₈ (1.5 equiv) Solvent/H ₂ O (1 mL/1 mL) 50 °C, 24 h, Ar BnON CN
Entry	solvent	Results(%) [°]
1	CH ₃ CN	33
2	DMF	0
3	DMSO	<5
4	Dioxane	complex
5	PhCl	0
6	PhMe	0
7	PhCF ₃	0
8	DCE	0
9	(CF ₃) ₂ CH ₂ OH	0
10		0
11		0

Reaction conditions: **1a** (0.2 mmol), AgNO₃ (0.04 mmol), $K_2S_2O_8$ (0.3 mmol), **A** (0.4 mmol), solvent/H₂O (1 mL/1 mL), stirred at 50 °C under Ar (1 atm) for 24 h. ^a isolated yields.

Supplementary Table 2: The test of several radical acceptors besides the oxime ether reagents

Synthesis of δ -functionalized aliphatic alcohols 2:

AgNO₃ (6.8 mg, 0.04 mmol), $K_2S_2O_8$ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) were added to a 20 mL Schlenk tube under Ar. Aliphatic alcohols **1** (0.2 mmol) was added via syringe, followed by addition of Acetone (1.0 mL), H₂O (1.0 mL). The formed mixture was stirred at 50 °C under Ar for 24 h. After cooling to room temperature, the mixture was diluted with water (10 mL) and extracted with EA (3 × 10 mL). The combined extracts were washed with a saturated solution of NaCl (15 mL), dried over MgSO₄, and evaporated

in vacuo. The residue was purified by chromatography on silica gel (PE/EA = 5:1) to afford product **2**.

Analytical Data for Products

N-(benzyloxy)-2-(3-hydroxypropyl)hexanimidoyl cyanide (2a) The reaction of octan-1-ol **1a** (26.0 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 31.7 mg (55%) of product **2a** with 9.5:1 of two isomers, 5.7 mg (22%) of **1a** was recovered. **2a**: colorless oil; ¹H **NMR: (400 MHz, CDCl3)** δ 7.39-7.30 (m, 5H), 5.25 (s, 2H_{major}), 5.23 (s, 2H_{minor}), 3.58 (t, *J* = 6.4 Hz, 2H), 2.53-2.45 (m, 1H), 1.68-1.43 (m, 6H), 1.36 (brs, 1H), 1.31-1.16 (m, 4H), 0.86 (t, *J* = 7.2 Hz, 3H); ¹³C **NMR: (100 MHz, CDCl3**) δ 136.9, 136.3, 128.6, 128.5, 128.3, 109.3, 77.6, 62.2, 42.0, 32.2, 29.9, 29.0, 28.6, 22.3, 13.8; **HRMS m/z (ESI)** calcd. for C₁₇H₂₅N₂O₂ (M + H)⁺ 289.1916, found 289.1922.

N-(benzyloxy)-2-ethyl-5-hydroxypentanimidoyl cyanide (2b) The reaction of hexan-1-ol **1b** (20.4 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 31.3 mg (60%) of **2b** with 7:1 of two isomers, 1.0 mg (5%) of **1b** was recovered. **2b**: colorless oil; ¹**H NMR: (400 MHz, CDCl₃)** δ 7.35-7.31 (m, 5H), 5.25 (s, 2H_{major}), 5.23 (s, 2H_{minor}), 3.58 (t, *J* = 6.4 Hz, 2H), 2.43-2.40 (m, 1H), 1.70-1.54 (m, 4H), 1.52-1.41 (m, 3H), 0.86 (t, *J* = 7.6 Hz, 3H); ¹³C NMR: (**100 MHz, CDCl₃**) δ 136.6, 136.3, 128.6, 128.5, 128.29, 128.26, 109.3, 77.6, 62.2, 43.7, 29.8, 28.3, 25.6, 11.3; **HRMS m/z (ESI)** calcd. for C₁₅H₂₀O₂N₂Na (M + Na)⁺ 283.1417, found 283.1419.

N-(benzyloxy)-2-(2-chloroethyl)-5-hydroxypentanimidoyl cyanide (2c) The reaction of 6-chlorohexan-1-ol (95% pure.) **1c** (27.2 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), $K_2S_2O_8$ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (A) (120

mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 28.5 mg (51%) of **2c** as a single isomer, 5.4 mg (21%) of **1c** was recovered. **2c**: colorless oil; ¹H NMR: (**400 MHz, CDCl**₃) δ 7.40-7.32 (m, 5H), 5.26 (s, 2H), 3.60 (t, J = 6.4 Hz, 2H), 3.54-3.48 (m, 1H), 3.39-3.32 (m, 1H), 2.86-2.80 (m, 1H), 2.10-1.92 (m, 2H), 1.70-1.64 (m, 2H), 1.52-1.45 (m, 2H), 1.38 (brs, 1H); ¹³C NMR: (**100 MHz, CDCl**₃) δ 136.0, 135.1, 128.54, 128.46, 128.45, 109.1, 78.0, 61.9, 41.5, 39.3, 34.8, 29.5, 28.3; **HRMS m/z (ESI)** calcd. for C₁₅H₂₀O₂N₂Cl (M + H)⁺ 295.1208, found 295.1212.

N-(benzyloxy)-5-bromo-2-(3-hydroxypropyl)pentanimidoyl cyanide (2d) The reaction of 7-bromoheptan-1-ol **1d** (38.8 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Actone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 32.7 mg (46%) of **2d** as a single isomer, 11.6 mg (30%) of **1d** was recovered. **2d**: colorless oil; ¹**H NMR: (400 MHz, CDCl**₃) δ 7.39-7.33 (m, 5H), 5.25 (s, 2H), 3.59 (t, J = 6.0 Hz, 2H), 3.32 (t, J = 6.0 Hz, 2H), 2.57-2.50 (m, 1H), 1.78-1.69 (m, 3H), 1.68-1.62 (m, 3H), 1.51-1.45 (m, 2H), 1.36 (brs, 1H); ¹³C NMR: (**100 MHz, CDCl**₃) δ 136.1, 136.07, 128.5, 128.39, 128.36, 109.1, 77.8, 62.0, 41.3, 32.6, 30.7, 29.69, 29.66, 28.6; ¹**HRMS** *m/z* (**ESI**) calcd. for C₁₆H₂₂O₂N₂Br (M + H)⁺ 353.0859, found 353.0858.

5-azido-N-(benzyloxy)-2-(3-hydroxypropyl)pentanimidoyl cyanide (2e) The reaction of 7-azidoheptan-1-ol **1e** (31.4 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 31.8 mg (50%) of **2e** as a single isomer, 5.3 mg (17%) of **1e** was recovered. **2e**: colorless oil; **¹H NMR: (400 MHz, CDCl₃)** δ 7.37-7.33 (m, 5H), 5.25 (s, 2H), 3.58 (t, *J* = 6.4 Hz, 2H), 3.23 (t, *J* = 6.4 Hz, 2H), 2.56-2.49 (m, 1H), 1.67-1.60 (m, 4H), 1.53-1.44 (m, 5H); ¹³C NMR: (**100 MHz, CDCl₃**) δ 136.1, 136.0, 128.5, 128.4, 128.3, 109.1, 77.7, 62.0, 50.8, 41.6, 29.7, 29.4, 28.6, 26.1; ¹HRMS *m/z* (ESI) calcd. for C₁₆H₂₁O₂N₅Na (M + Na)⁺ 338.1588, found 338.1585.

N-(benzyloxy)-5-hydroxy-2-methoxypentanimidoyl cyanide (2f) The reaction of 4methoxybutan-1-ol **1f** (20.6 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 31.1 mg (60%) of **2f** with 7.5:1 of two isomers. **2f**: colorless oil; ¹**H NMR: (400 MHz, CDCl₃)** δ 7.54-7.36 (m, 5H), 5.29 (s, 2H_{major}), 5.27 (s, 2H_{minor}), 4.52 (t, J = 6.4 Hz, 1H_{minor}), 3.90 (t, J = 6.4 Hz, 1H_{minor}), 3.63 (t, J = 6.0 Hz, 2H), 3.33 (s, 3H_{minor}), 3.27 (s, 3H_{major}), 1.94-1.84 (m, 1H), 1.80-1.72 (m, 1H), 1.70-1.57 (m, 3H); ¹³C **NMR: (100 MHz, CDCl₃)** δ 135.7, 134.0, 128.6, 128.5, 128.4, 108.5, 79.2, 78.3, 62.1, 57.0, 29.5, 28.1; **HRMS** m/z (**ESI**) calcd. for C₁₈H₂₆O₂N₂Na (M + Na)⁺ 285.1210, found 285.1207.

N-(benzyloxy)-2-ethoxy-5-hydroxypentanimidoyl cyanide (2g) The reaction of 4ethoxybutan-1-ol **1g** (23.6 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 33.5 mg (61%) of **2g** with 10:1 of two isomers. **2g**: colorless oil; ¹**H NMR: (400 MHz, CDCl**₃) δ 7.46-7.36 (m, 5H), 5.28 (s, 2H_{major}), 5.25 (s, 2H_{minor}), 4.61-4.58 (m, 1H_{minor}), 4.02-3.98 (m, 1H_{major}), 3.64 (t, J = 6.4 Hz, 2H), 3.52-3.45 (m, 1H), 3.42-3.33 (m, 1H), 1.95-1.86 (m, 1H), 1.80-1.70 (m, 1H), 1.68-1.55 (m, 3H), 1.23-1.16 (m, 3H); ¹³C NMR: (100 MHz, **CDCl**₃) δ 135.8, 134.6, 128.6, 128.5, 128.4, 108.7, 78.2, 77.4, 65.0, 62.2, 29.8, 28.3, 14.9; **HRMS** *m/z* (**ESI**) calcd. for C₁₅H₂₀O₃N₂Na (M + Na)⁺ 299.1366, found 299.1364.

N-(benzyloxy)-5-hydroxy-2-propoxypentanimidoyl cyanide (2h) The reaction of 2-4-propoxybutan-1-ol **1h** (26.4 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 36.5 mg (63%) of **2h** with 11:1 of two isomers. **2h**: colorless; ¹**H** NMR: (**400 MHz, CDCl**₃) δ 7.43-7.36 (m, 5H), 5.28 (s, 2H_{major}), 5.26 (s, 2H_{minor}), 4.60-4.57 (m, 1H_{minor}), 4.00-3.97 (m, 1H_{major}), 3.65 (brs, 2H), 3.38-3.33 (m, 1H), 3.29-3.25 (m, 1H), 1.93-1.89 (m, 1H), 1.78-1.71 (m, 1H), 1.69-1.52 (m, 5H), 0.89 (t, *J* = 7.6 Hz, 3H); ¹³C NMR: (**100** **MHz, CDCl**₃) δ 135.8, 134.7, 128.6, 128.5, 128.4, 108.7, 78.2, 77.6, 71.3, 62.2, 29.8, 28.3, 22.7, 10.5; **HRMS** *m*/*z* (**ESI**) calcd. for C₁₅H₂₀O₃N₂Na (M + Na)⁺ 313.1523, found 313.1525.

N-(benzyloxy)-5-hydroxy-2-(isopentyloxy)pentanimidoyl cyanide (2i) The reaction of 4-(isopentyloxy)butan-1-ol **1i** (32.0 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 38.2 mg (60%) of **2i** with 9:1 of two isomers, 2.7 mg (8%) of **1i** was recovered. **2i**: colorless oil; ¹**H NMR: (400 MHz, CDCl₃) δ** 7.36-7.32 (m, 5H), 5.28 (s, 2H_{major}), 5.26 (d, J = 2.0 Hz, 2H_{minor}), 4.59-4.56 (m, 1H_{minor}), 3.99-3.95 (m, 1H_{major}), 3.64 (t, J = 6.4 Hz, 2H), 3.45-3.39 (m, 1H), 3.33-3.28 (m, 1H), 1.93-1.86 (m, 1H), 1.79-1.74 (m, 1H), 1.72-1.56 (m, 4H), 1.50-1.41 (m, 2H), 0.89-0.85 (m, 6H); ¹³C NMR: (100 MHz, CDCl₃) δ 135.8, 134.6, 128.7, 128.6, 128.5, 128.4, 108.7, 78.2, 77.7, 68.0, 62.2, 38.2, 29.8, 28.3, 24.8, 22.6, 22.5, 22.4; HRMS *m/z* (ESI) calcd. for C₁₈H₂₆O₃N₂Na (M + Na)⁺ 341.1836, found 341.1833.

N-(benzyloxy)-5-hydroxy-2-(3-phenylpropoxy)pentanimidoyl cyanide (2j) The reaction of 4-(3-phenylpropoxy)butan-1-ol **1j** (41.6 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 38.9 mg (53%) of **2j** with >20:1 of two isomers, 5.8 mg (14%) of **1j** was recovered. **2j**: colorless oil; ¹**H** NMR: (**400** MHz, CDCl₃) δ 7.38-7.33 (m, 5H), 7.30-7.28 (m, 2H), 7.20-7.16 (m, 3H), 5.26 (s, 2H), 3.99-3.96 (m, 1H), 3.65 (t, *J* = 6.4 Hz, 2H), 3.44-3.39 (m, 1H), 3.33-3.27 (m, 1H), 2.70-2.62 (m, 2H), 1.96-1.84 (m, 3H), 1.81-1.71 (m, 1H), 1.70-1.57 (m, 2H), 1.51 (brs, 1H); ¹³C NMR: (**100** MHz, CDCl₃) δ 141.5, 135.8, 134.4, 128.6, 128.5, 128.44, 128.35, 125.9, 108.7, 78.2, 77.7, 68.6, 62.2, 32.1, 31.0, 29.7, 28.2; HRMS *m/z* (ESI) calcd. for C₂₂H₂₆O₃N₂Na (M + Na)⁺ 389.1836, found 389.1833.

N-(benzyloxy)-5-hydroxy-2-((4-methylbenzyl)oxy)pentanimidoyl cyanide (2k) The reaction of 4-((4-methylbenzyl)oxy)butan-1-ol **1k** (38.8 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 45% **2k** and 20% **1k** was recovered (NMR yields with 0.2 mmol 1,1,2,2-Tetrachloroethane as an internal standard). Further purification afford **2k** with 13:1 of two isomers. **2k**: colorless oil; ¹**H NMR: (400 MHz, CDCl**₃) δ 7.42-7.34 (m, 5H), 7.18-7.09 (m, 4H), 5.33-5.23 (m, 2H), 4.69-4.66 (m, 1H_{minor}), 4.57 (d, *J* = 11.2 Hz, 1H_{minor}), 4.53 (d, *J* = 11.6 Hz, 1H_{major}), 4.27 (d, *J* = 11.6 Hz, 1H_{minor}), 4.22 (d, *J* = 11.6 Hz, 1H_{major}), 4.08-4.05 (m, 1H_{major}), 3.59 (t, *J* = 6.0 Hz, 2H), 2.34 (s, 3H), 1.98-1.89 (m, 1H), 1.80-1.72 (m, 1H), 1.68-1.61 (m, 1H), 1.58-1.50 (m, 1H), 1.40 (brs, 1H); ¹³**C NMR: (100 MHz, CDCl**₃) δ 137.9, 135.9, 134.3, 133.6, 129.1, 128.62, 128.57, 128.49, 128.36, 108.7, 78.2, 70.9, 62.1, 29.6, 28.1, 21.2; **HRMS** *m/z* (**ESI**) calcd. for C₂₁H₂₄O₃N₂Na (M + Na)⁺ 375.1679, found 375.1675.

2-benzyl-N-(benzyloxy)-5-hydroxypentanimidoyl cyanide (2l) The reaction of 5phenylpentan-1-ol **11** (32.8 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 31.0 mg (48%) of **2l** with 3:1 of two isomers, 6.6 mg (20%) of **1l** was recovered. **2l**: colorless oil; ¹**H** NMR: (**400** MHz, CDCl₃) δ 7.36-7.31 (m, 4H), 7.27-7.10 (m, 6H), 5.27 (s, 2H_{minor}), 5.16 (s, 2H_{major}), 3.59-3.56 (m, 2H), 2.87-2.84 (m, 2H), 2.07-1.25 (m, 6H); ¹³C NMR: (**100** MHz, CDCl₃) δ 137.9, 135.9, 134.3, 133.6, 129.1, 128.62, 128.57, 128.49, 128.36, 108.7, 78.2, 70.9, 62.1, 29.6, 28.1, 21.2. HRMS *m/z* (ESI) calcd. for C₂₀H₂₃N₂O₂ (M + H)⁺ 323.1760, found 323.1754.

N-(benzyloxy)-2-(cyclopentyloxy)-5-hydroxypentanimidoyl cyanide (2m) The reaction of 4-(cyclopentyloxy)butan-1-ol **1m** (31.7 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 35.4 mg (56%) of **2m** with 16:1 of two isomers, 5.1 mg (16%) of **1m** was recovered. **2m**: colorless oil; ¹**H NMR: (400 MHz, CDCl₃)** δ 7.39-7.32 (m, 5H), 5.28-5.25 (m, 2H), 4.64-4.61 (m, 1H_{minor}), 4.05-4.02 (m, 1H_{major}), 3.85-3.81 (m, 1H), 3.64 (t, J = 6.0 Hz, 2H), 1.90-1.80 (m, 1H), 1.76-1.54 (m, 10H), 1.51-1.47 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) δ 135.9, 135.2, 128.54, 128.49, 128.40, 108.8, 80.3, 70.1, 75.8, 62.2, 33.0, 31.7, 30.0, 28.4, 23.3, 23.2; HRMS *m/z* (ESI) calcd. for C₁₈H₂₄O₃N₂Na (M + Na)⁺ 339.1679, found 339.1677.

N-(benzyloxy)-2-(cyclohexyloxy)-5-hydroxypentanimidoyl cyanide (2n)⁶ The reaction of 4-(cyclohexyloxy)butan-1-ol **1n** (34.5 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 42.1 mg (64%) of **2n** with 8:1 of two isomers, 4.8 mg (14%) of **1n** was recovered. **2n**: colorless oil; ¹**H** NMR: (**400** MHz, CDCl₃) δ 7.39-7.32 (m, 5H), 5.27-5.25 (m, 2H), 4.74-4.38 (m, 1H_{minor}), 4.15-4.12 (m, 1H_{major}), 3.64 (t, *J* = 6.0 Hz, 2H), 3.21-3.16 (m, 1H), 1.90-1.81 (m, 2H), 1.77-1.49 (m, 8H), 1.35-1.14 (m, 5H); ¹³C NMR: (**100** MHz, CDCl₃) δ 136.0, 135.4, 128.54, 128.45, 128.3, 108.8, 78.0, 76.3, 74.7, 62.2, 42.2, 40.0, 36.1, 33.0, 31.2, 30.1, 28.3, 25.5, 24.0, 23.8. HRMS *m/z* (ESI) calcd. for C₁₉H₂₆O₃N₂Na (M + Na)⁺ 353.1836, found 353.1833.

N-(benzyloxy)-2-(cyclohexylmethoxy)-5-hydroxypentanimidoyl cyanide (20) The reaction of 4-(cyclohexylmethoxy)butan-1-ol **10** (37.3 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 35.1 mg (51%) of **20** with 18:1 of two isomers, 6.0 mg (16%) of **10** was recovered. **20**: colorless oil; ¹**H** NMR: (**400** MHz, CDCl₃) δ 7.39-7.33 (m, 5H), 5.28 (s, 2H_{major}), 5.25 (d, J = 2.4 Hz, 2H_{minor}), 4.57-4.54 (m, 1H_{minor}), 3.96-3.93 (m,

1H_{major}), 3.64 (t, J = 5.6 Hz, 2H), 3.46-3.07 (m, 2H), 1.96-1.88 (m, 1H), 1.79-1.53 (m, 10H), 1.26-1.12 (m, 3H), 0.93-0.85 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) δ 135.8, 134.6, 128.6, 128.5, 128.4, 108.7, 78.1, 77.7, 75.3, 62.2, 37.8, 29.9, 29.8, 29.7, 28.2, 26.4, 25.72, 25.68. HRMS *m*/*z* (ESI) calcd. for C₂₀H₂₈O₃N₂Na (M + Na)⁺ 367.1992, found 367.1990.

2p

N-(benzyloxy)-2-(cyclobutylmethoxy)-5-hydroxypentanimidoyl cyanide (2p) The reaction of 4-(cyclobutylmethoxy)butan-1-ol **1p** (31.7 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 40.5 mg (64%) of **2p** with 12:1 of two isomers, 4.7 mg (15%) of **1p** was recovered. **2p**: colorless oil; ¹**H NMR: (400 MHz, CDCl₃)** δ 7.40-7.33 (m, 5H), 5.29 (s, 2H_{*major*), 5.26 (d, J = 2.0 Hz, 2H_{*minor*), 4.59-4.56 (m, 1H_{*minor*), 3.99-3.95 (m, 1H_{*major*), 3.64 (t, J = 6.4 Hz, 2H), 3.38-3.32 (m, 1H), 3.29-3.25 (m, 1H), 2.56-2.48 (m, 1H), 2.06-1.98 (m, 2H), 1.96-1.82 (m, 3H), 1.79-1.65 (m, 4H), 1.64-1.61 (m, 2H); ¹³C **NMR: (100 MHz, CDCl₃)** δ 135.8, 134.6, 128.6, 128.5, 128.4, 108.7, 78.2, 77.6, 73.9, 62.1, 34.7, 29.7, 28.3, 24.9, 24.8, 18.5. **HRMS** *m/z* (**ESI**) calcd. for C₁₈H₂₄O₃N₂Na (M + Na)⁺ 339.1679, found 339.1678.}}}}

N-(benzyloxy)-2-(3-hydroxypropyl)-2-methylhexanimidoyl cyanide (2q) The reaction of 4-methyloctan-1-ol **1q** (28.8 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 18.8 mg (31%) of **2q** as a single isomer, 8.7 mg (30%) of **1q** was recovered. **2q**: colorless oil; ¹**H NMR: (400 MHz, CDCl**₃) δ 7.35-7.33 (m, 5H), 5.25 (s, 2H), 3.57 (t, *J* = 6.4 Hz, 2H), 1.68-1.44 (m, 5H), 1.35-1.24 (m, 5H), 1.14-1.07 (m, 4H), 0.87 (t, *J* = 7.2 Hz, 3H); ¹³C NMR: (**100 MHz, CDCl**₃) δ 139.7, 136.4, 128.5, 128.4, 128.3, 109.5, 77.6, 62.9, 42.3, 38.8, 34.7, 27.1, 25.9, 23.0, 21.5, 13.9; **HRMS** *m/z* (**ESI**) calcd. for C₁₈H₂₆O₂N₂Na (M + Na)⁺ 325.1887, found 325.1885.

N-(benzyloxy)-2-(2-hydroxyethoxy)pentanimidoyl cyanide (2r) The reaction of 2butoxyethanol **1r** (23.6 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 32.0 mg (58%) of **2r** with 12:1 of two isomers. **2r**: colorless oil; ¹**H NMR: (400 MHz, CDCl₃)** δ 7.49-7.36 (m, 5H), 5.28 (s, 2H_{*major*), 5.26 (s, 2H_{*minor*), 4.64 (t, J = 6.4 Hz, 1H_{*minor*), 4.02 (t, J = 6.8 Hz, 1H_{*major*), 3.68 (brs, 2H), 3.52-3.42 (m, 2H), 2.04 (brs, 1H), 1.89-1.80 (m, 1H), 1.71-1.62 (m, 1H), 1.45-1.30 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C **NMR: (100 MHz, CDCl₃)** δ 135.7, 134.2, 128.6, 128.54, 128.51, 128.4, 108.7, 78.2, 77.9, 70.5, 61.6, 34.8, 18.1, 13.5; **HRMS** *m*/*z* (**ESI**) calcd. for C₁₅H₂₀O₃N₂Na (M + Na)⁺ 299.1366, found 299.1364.}}}}

N-(benzyloxy)-2-(2-hydroxyethoxy)butanimidoyl cyanide (2s) The reaction of 2ethoxyethanol 1s (18.0 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (A) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 26.9 mg (54%) of 2s with 9:1 of two isomers. 2s: colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.37-7.34 (m, 5H), 5.28 (s, 2H_{major}), 5.26 (s, 2H_{minor}), 4.77-4.72 (m, 1H_{minor}), 4.24-4.19 (m, 1H_{major}), 3.74-3.69 (m, 2H), 3.53-3.47 (m, 2H), 2.04 (brs, 1H), 1.45 (d, *J* = 6.8 Hz, 3H_{major}), 1.36 (d, *J* = 6.4 Hz, 3H_{minor}); ¹³C NMR: (100 MHz, CDCl₃) δ 135.6, 134.5, 128.7, 128.6, 128.4, 108.6, 78.3, 74.0, 70.3, 69.2, 61.6, 18.8; HRMS *m/z* (ESI) calcd. for C₁₃H₁₆O₃N₂Na (M + Na)⁺ 271.1053, found 271.1053.

N-(benzyloxy)-2-(2-hydroxyethoxy)acetimidoyl cyanide (2t) The reaction of 2methoxyethanol 1t (15.3 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (A) (120 mg, 0.4 mmol) in Acetone (0.6 mL) and H₂O (0.6 mL) under Ar at 50 °C for 24 h afforded 15.5 mg (33%) of 2t with 3.5:1 of two isomers. 2t: colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.37-7.35 (m, 5H), 5.30 (s, $2H_{major}$), 5.26 (s, $2H_{minor}$), 4.37 (s, $2H_{minor}$), 4.28 (s, $2H_{major}$), 3.79-3.74 (m, 2H), 3.64 (t, J = 4.0 Hz, $2H_{minor}$), 3.59 (t, J = 4.0 Hz, $2H_{major}$), 1.90 (brs, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 135.5, 129.9, 128.9, 128.73, 128.69, 128.64, 128.61, 128.5, 109.6, 79.2, 78.5, 73.2, 72.2, 68.5, 64.5, 61.65, 61.61; HRMS *m*/*z* (ESI) calcd. for C₁₂H₁₄O₃N₂Na (M + Na)⁺ 257.0897, found 257.0895.

N-(benzyloxy)-3-methoxypropanimidoyl cyanide (**3t**) The reaction of 2methoxyethanol **1t** (15.3 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (0.6 mL) and H₂O (0.6 mL) under Ar at 50 °C for 24 h afforded 16.7 mg (41%) of **3t** with 3:1 of two isomers. **3t**: colorless oil; ¹**H** NMR: (**400** MHz, CDCl₃) δ 7.38-7.36 (m, 5H), 5.30 (s, 2H_{major}), 5.26 (s, 2H_{minor}), 4.25 (s, 2H_{minor}), 4.17 (s, 2H_{major}), 3.43 (s, 3H_{minor}), 3.37 (s, 3H_{major}); ¹³C NMR: (**100** MHz, CDCl₃) δ 135.6, 135.4, 130.0, 129.3, 128.8, 128.7, 128.6, 128.5, 112.7, 109.6, 79.1, 78.4, 69.7, 65.8, 59.5, 58.5; HRMS *m/z* (ESI) calcd. for C₁₁H₁₃O₂N₂ (M + H)⁺ 205.0972, found 205.0969.

N-(benzyloxy)-5-hydroxy-2-propylhexanimidoyl cyanide (2u) The reaction of octan-2-ol **1u** (26.0 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (0.6 mL) and H₂O (0.6 mL) under Ar at 50 °C for 24 h afforded 24.2 mg (42%) of **2u** with dr 2:1 of two isomers. **2u**: colorless oil; ¹**H NMR: (400 MHz, CDCl₃)** δ 7.36-7.32 (m, 5H), 5.25 (s, 2H), 3.76-3.68 (m, 1H), 2.54-2.45 (m, 1H), 1.72-1.62 (m, 1H), 1.60-1.45 (m, 3H), 1.35-1.19 (m, 7H), 1.15-1.13 (m, 3H), 0.87 (t, *J* = 7.2 Hz, 3H); ¹³C **NMR: (100 MHz, CDCl₃)** δ 136.9, 136.3, 128.5, 128.3, 109.3, 77.6, 67.8, 67.3, 42.1, 41.8, 36.4, 36.1, 34.63, 34.56, 28.8, 28.3, 23.6, 23.5, 20.1, 20.0, 13.7; **HRMS** *m/z* (**ESI**) calcd. for C₁₇H₂₄O₂N₂Na (M + Na)⁺ 311.1730, found 311.1727.

N-(benzyloxy)heptanimidoyl cyanide (3u) The reaction of octan-2-ol **1u** (26.0 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), $K_2S_2O_8$ (81 mg, 0.3 mmol) and reagent

PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (0.6 mL) and H₂O (0.6 mL) under Ar at 50 °C for 24 h afforded 3.4 mg (7%) of **3u** with 2.1:1 of two isomers. **3u**: colorless oil; ¹**H NMR:** (**400 MHz, CDCl**₃) δ 7.40-7.33 (m, 5H), 5.25 (s, 2H_{minor}), 5.24 (s, 2H_{major}), 2.48 (t, *J* = 8.0 Hz, 2H_{minor}), 2.42 (t, *J* = 7.6 Hz, 2H_{major}), 1.63-1.58 (m, 2H), 1.32-1.29 (m, 6H), 0.89 (t, *J* = 7.2 Hz, 3H); ¹³C **NMR:** (**100 MHz, CDCl**₃) δ 139.6, 136.2, 135.9, 128.6, 128.5, 128.33, 128.31, 114.6, 110.4, 78.2, 77.6, 31.9, 31.22, 31.21, 28.6, 28.2, 27.8, 26.1, 25.3, 22.39, 22.37, 13.9; **HRMS** *m*/*z* (**ESI**) calcd. for C₁₅H₁₉ON₂ (M - H) 243.1497, found 243.1500.

N-(benzyloxy)-2-(4-hydroxybutan-2-yl)-5-methylhexanimidoyl cyanide (2v) The reaction of 3,7-dimethyloctan-1-ol **1v** (31.7 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 28.5 mg (45%) of **2v** with dr 2:1 of two isomers, 6.9 mg (24%) of **1v** was recovered. **2v**: colorless oil; ¹**H NMR: (400 MHz, CDCl₃)** δ 7.37-7.32 (m, 5H), 5.26-5.23 (m, 2H), 3.69-3.54 (m, 2H), 2.33-2.28 (m, 1H), 1.89-1.46 (m, 5H), 1.35-1.28 (m, 3H), 1.09-0.91 (m, 4H), 0.86-0.83 (m, 6H); ¹³C **NMR: (100 MHz, CDCl₃)** δ 136.45, 136.42, 136.38, 135.9, 129.0, 128.3, 128.2, 110.0, 109.9, 77.5, 60.52, 60.48, 48.0, 47.2, 36.88, 36.85, 36.5, 36.3, 32.6, 32.4, 27.8, 27.4, 26.5, 22.7, 22.6, 22.1, 22.0, 16.9, 16.5; **HRMS** *m/z* **(ESI)** calcd. for C₁₉H₂₈O₂N₂Na (M + Na)⁺ 339.2043, found 339.2042.

The Byproduct Analysis:

The results and the identified byproducts in some cases were summarized in **Supplementary Table 3.** For some substrates such as **11**, **1q**, the alcohols were recovered. For some substrates such as **1t**, **1u**, the main identified byproducts were β -scission products.

^{*a*} Reaction conditions: substrate (0.2 mmol), AgNO₃ (0.04 mmol), K₂S₂O₈ (0.3 mmol), PhSO₂(CN)NOBn (0.4 mmol), Acetone/H₂O (0.6 mL/0.6 mL), stirred at 50 °C under Ar (1 atm) for 24 h. ^{*b*} Diastereoselectivity was determined by ¹H NMR.

The Identification of Activation Site

As the alkanols have multiple carbon-hydrogen bonds with similar reactivity, the functionalized position is supposed to be determined. Thus, we designed an experiment to clarify the substitution position of alcohol substrates. With the developed radical decarboxylative strategy,^[11] the 2-(3-methoxypropyl)hexanoic acid **S1** could transformed to the corresponding oxime ether **8** in 66% yield (**Supplementary Fig. 1a**). Meanwhile, the functionalized alcohol **2a** modified from **1a** in our conditions was reacted with iodomethane to afford **S-8** in 14% yield (**Supplementary Fig. 1b**). We were glad to see that the ¹H NMR of **8** and **S-8** are almost identical except for different E/Z isomer ratio of the oxime ether groups (**Supplementary Fig. 2**). This is a powerful evidence that the functionalized position is the δ carbon-hydrogen bond of the alkanols.

Supplementary Figure 1. Synthesis of 8 and S-8. a Synthesis of 8 via reported decarboxylative stragegy. b Synthesis of S-8 from 2a.

Supplementary Figure 2. ¹H NMR of 8 and S-8

N-(benzyloxy)-2-(3-methoxypropyl)hexanimidoyl cyanide (8)^[12]

The reaction of 2-(3-methoxypropyl)hexanoic acid **S1** (37.6 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) in CH₃CN (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 12 h afforded 39.9 mg (66%) of **8** with 13:1 of two isomers. **8**: colorless oil; ¹**H NMR**: (**400 MHz, CDCl**₃) δ 7.38-7.32 (m, 5H), 5.24 (s, 2H_{*major*}), 5.23 (m, 2H_{*minor*}), 3.36-3.27 (m, 5H), 2.51-2.44 (m, 1H), 1.66-1.46 (m, 6H), 1.32-1.16 (m, 4H), 0.85 (t, *J* = 7.2 Hz, 3H); ¹³C **NMR**: (**100 MHz, CDCl**₃) δ 136.9, 136.9, 136.2, 128.4, 128.24, 128.20, 109.3,

77.5, 71.9, 58.5, 42.0, 32.1, 28.9, 26.9, 22.3, 13.8; **HRMS** m/z (**ESI**) calcd. for $C_{18}H_{26}O_2N_2Na$ (M + Na)⁺ 325.1887, found 325.1887.

N-(benzyloxy)-2-(3-methoxypropyl)hexanimidoyl cyanide (S-8)

The reaction of N-(benzyloxy)-2-(3-hydroxypropyl)hexanimidoyl cyanide **2a** (184.4 mg, 0.64 mmol), NaH (60% in oil) (30.7 mg, 1.2 equiv), MeI (136 mg, 1.2 equiv) in THF (5.0 mL) at r.t. for 12 h afforded 26.5 mg (14%) of **S-8** with 2:1 of two isomers. **S-8**: colorless oil; ¹H NMR: (**400 MHz, CDCl**₃) δ 7.37-7.31 (m, 5H), 5.24 (s, 2H_{major}), 5.23 (m, 2H_{minor}), 3.34-3.29 (m, 5H), 2.49-2.45 (m, 1H_{major}), 1.62-1.47 (m, 6H), 1.31-1.18 (m, 4H+1H_{minor}), 0.85 (t, *J* = 7.2 Hz, 3H); ¹³C NMR: (**100 MHz, CDCl**₃) δ 143.9, 136.9, 136.3, 135.9, 128.50, 128.49, 128.47, 128.3, 128.2, 113.2, 109.3, 78.2, 77.6, 71.9, 58.5, 42.0, 37.1, 32.1, 32.0, 29.2, 29.0, 27.1, 26.9, 22.4, 22.3, 13.8; **HRMS** *m/z* (**ESI**) calcd. for C₁₈H₂₆O₂N₂Na (M + Na)⁺ 325.1887, found 325.1884.

Mechanistic Studies

AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol), TEMPO (62.5 mg, 0.4 mmol) and reagent PhSO₂C(CN)=NOBn (A) (120 mg, 0.4 mmol) were added to a 20 mL Schlenk tube under Ar. Octan-1-ol 1a (26.0 mg, 0.2 mmol) was added via syringe, followed by addition of Acetone (1.0 mL), H₂O (1.0 mL). The formed mixture was stirred at 50 °C under Ar for 24 h. After cooling to room temperature, the mixture detected by TLC. No 2a was detected.

2) AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol), BHT (88.1 mg, 0.4 mmol) and reagent PhSO₂C(CN)=NOBn (A) (120 mg, 0.4 mmol) were added to a 20 mL Schlenk tube under Ar. Octan-1-ol 1a (26.0 mg, 0.2 mmol) was added

via syringe, followed by addition of Acetone (1.0 mL), H₂O (1.0 mL). The formed mixture was stirred at 50 °C under Ar for 24 h. After cooling to room temperature, the mixture detected by TLC. No **2a** was detected.

3) AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol), and reagent PhSO₂C(CN)=NOBn (**A**) (120 mg, 0.4 mmol) were added to a 20 mL Schlenk tube under Ar. 1-Octane **5** (22.8 mg, 0.2 mmol) was added via syringe, followed by addition of Acetone (1.0 mL), H₂O (1.0 mL). The formed mixture was stirred at 50 °C under Ar for 24 h. After cooling to room temperature, the mixture was diluted with water (10 mL) and extracted with EA (3×10 mL). The combined extracts were washed with a saturated solution of NaCl (15 mL), dried over MgSO₄, and evaporated in vacuo. The residue was purified by chromatography on silica gel (PE/EA = 5:1) to afford 2.1 mg undefined product, no aim product was detected.

4) AgNO₃ (6.8 mg, 0.04 mmol), $K_2S_2O_8$ (81 mg, 0.3 mmol), and reagent PhSO₂C(CN)=NOBn (A) (120 mg, 0.4 mmol) were added to a 20 mL Schlenk tube under Ar. 1-methoxyoctane 7 (28.8 mg, 0.2 mmol) was added via syringe, followed by addition of Acetone (1.0 mL), H₂O (1.0 mL). The formed mixture was stirred at 50 °C under Ar for 24 h. After cooling to room temperature, the mixture was diluted with water (10 mL) and extracted with EA (3 × 10 mL). The combined extracts were washed with a saturated solution of NaCl (15 mL), dried over MgSO₄, and evaporated in vacuo. The residue was detected.

5) The reaction of 2-methylbutan-1-ol 9 (44.1 mg, 0.5 mmol), AgNO₃ (17.0 mg, 0.1 mmol), K₂S₂O₈ (202.5 mg, 0.75 mmol) and reagent PhSO₂C(CN)=NOBn (A) (300 mg, 1.0 mmol) in Acetone (2.5 mL) and H₂O (2.5 mL) under Ar at 50 °C for 24 h afforded 28.9 mg (27%) of 10 with 13:1 of two isomers.

N-(benzyloxy)-2-methylbutanimidoyl cyanide (10)

10: colorless oil; ¹H NMR: (**400** MHz, CDCl₃) δ 7.40-7.32 (m, 5H), 5.25 (s, 2H), 3.24-3.18 (m, 1H_{minor}), 2.58-2.49 (m, 1H_{major}), 1.67-1.60 (m, 1H), 1.58-1.49 (m, 1H), 1.19 (d, J = 6.8 Hz, 3H_{major}), 1.13 (d, J = 6.8 Hz, 3H_{minor}), 0.91-0.86 (m, 3H); ¹³C NMR: (**100** MHz, CDCl₃) δ 137.5, 136.2, 128.5, 128.29, 128.28, 109.5, 77.6, 38.4, 33.3, 27.0, 17.5, 11.3; HRMS *m*/*z* (ESI) calcd. for C₁₈H₂₆O₂N₂Na (M + Na)⁺ 239.1155, found 239.1152.

Radical clock experiment:

We synthesized the cyclopropane substrate 1x. Under standard conditions, 1x was consumed. However, we didn't obtain the ring-opening product. In contrast, a mixture product of complex products was detected. We infer this is because the following three reasons: 1) the addition of ring-opening primary alkyl radical to reagent A is difficult. 2) the generated alkene product S2 was broken by $K_2S_2O_8$. 3) the produced product S2 might undergo further radical addition or cyclization reaction with the internal alkene group.

To a flame-dried 100-mL flask was added DCM (40 mL, 0.25 M), hex-5-en-1-ol (1.2 mL, 10 mmol, 1.0 equiv), and diiodomethane (1.2 mL, 25 mmol, 2.5 equiv). The solution was cooled to 0 °C and diethylzinc (25 mL of a 1.0 M solution in hexanes, 25 mmol, 2.5 equiv) was added dropwise over 10 min. Trifluoroacetic acid (1.9 mL, 25 mmol, 2.5 equiv) was added dropwise over 10 min. The reaction was stirred for 24 h under nitrogen while the ice bath was allowed to slowly warm to r.t. The reaction was opened to air and quenched with sat. aq. NH₄Cl. The solution was extracted with DCM (\times 3). The organic fractions were combined and washed with brine (\times 1), dried over MgSO₄, and concentrated. The crude residue was then added to a 50-mL flask with DCM (20 mL, 0.50 M), and m-CPBA (0.49 g of a 70% w/w suspension in H_2O , 2.0 mmol, 0.20 equiv) was added. The solution was stirred for 2 h open to air and then quenched with sat. aq. NH₄Cl. The mixture was extracted with DCM (\times 3), and the organic fractions were combined, washed with sat. aq. NaHCO₃ (\times 1) and brine (\times 1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (8/2 hexanes/EtOAc) to yield 1x as a colorless, fruity-smelling oil (0.21 g, 1.8 mmol, 18%).

4-cyclopropylbutan-1-ol (1x)^[13]

1x: colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 3.64 (t, J = 6.8 Hz, 2H), 1.63-1.56 (m, 2H), 1.49-1.42 (m, 3H), 1.25-1.19 (m, 2H), 0.67-0.64 (m, 1H), 0.42-0.37 (m, 2H), 0.02-(-0.02) (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) δ 63.1, 34.5, 32.6, 25.8, 10.8, 4.3;.

The reaction of 2-methylbutan-1-ol 1x (57.0 mg, 0.5 mmol), AgNO₃ (17.0 mg, 0.1 mmol), K₂S₂O₈ (202.5 mg, 0.75 mmol) and reagent PhSO₂C(CN)=NOBn (A) (300 mg, 1.0 mmol) in Acetone (2.5 mL) and H₂O (2.5 mL) under Ar at 50 °C for 24 h

afforded a mixture product of complex products

The reactivity of reagent E:

We tested the reactivity of reagent **E** [PhSO₂CH₂(H)NOBn] with **1a** as the substrate under standard conditions, and the corresponding product was isolated in 24% yield, which is lower compared to reagent **A** [PhSO₂CH₂(CN)NOBn]. In our previous report,^[12] the reactivity of reagent **A** and **E** was tested and the reaction rate of reagent **A** was three times faster compared to reagent **E**.

2-(3-hydroxypropyl)hexanal O-benzyl oxime (S3)

The reaction of octan-1-ol **1a** (26.0 mg, 0.2 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol) and reagent PhSO₂C(H)=NOBn (**E**) (110 mg, 0.4 mmol) in Acetone (1.0 mL) and H₂O (1.0 mL) under Ar at 50 °C for 24 h afforded 12.6 mg (24%) of product **S3** with E/Z=3:1 of two isomers. **S3**: colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.36-7.29 (m, 5H), 7.22 (d, J = 8.4 Hz, 1H_E), 6.43 (d, J = 8.4 Hz, 1Hz), 5.08 (s, 2Hz), 5.06 (2H_E), 3.61-3.58 (m, 2H), 3.11-3.06 (m, 1Hz), 2.26-2.20 (m, 1H_E), 1.58-1.21 (m, 11H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 156.3, 155.3, 138.6, 137.8, 128.4, 128.3, 128.26, 128.0, 127.8, 75.5, 62.7, 39.6, 37.1, 35.3, 32.9, 30.2, 29.2, 29.0, 22.6, 14.0; HRMS m/z (ESI) calcd. for C₁₆H₂₆NO₂ (M + H)⁺ 264.1964, found 264.1966.

Supplementary Figure 3. ¹H NMR of B

Supplementary Figure 4. ¹³C NMR of **B**

Supplementary Figure 5. ¹H NMR of C

Supplementary Figure 6. ¹³C NMR of C

Supplementary Figure 7. ¹⁹F NMR of C

Supplementary Figure 8. ¹H NMR of D

Supplementary Figure 9. ¹³C NMR of D

Supplementary Figure 10. ¹H NMR of 2a

Supplementary Figure 11. ¹³C NMR of 2a

Supplementary Figure 12. ¹H NMR of **2b**

Supplementary Figure 13. ¹³C NMR of 2b

Supplementary Figure 14. ¹H NMR of 2c

Supplementary Figure 15. ¹³C NMR of 2c

Supplementary Figure 16. ¹H NMR of 2d

Supplementary Figure 17. ¹³C NMR of 2d

Supplementary Figure 18. ¹H NMR of 2e

10

Supplementary Figure 19. ¹³C NMR of 2e

Supplementary Figure 20. ¹H NMR of 2f

Supplementary Figure 21. ¹³C NMR of 2f

Supplementary Figure 22. ¹H NMR of 2g

Supplementary Figure 23. ¹³C NMR of 2g

Supplementary Figure 24. ¹H NMR of 2h

Supplementary Figure 25. ¹³C NMR of 2h

Supplementary Figure 26. ¹H NMR of 2i

Supplementary Figure 27. ¹³C NMR of 2i

Supplementary Figure 28. ¹H NMR of 2j

Supplementary Figure 29. ¹³C NMR of 2j

Supplementary Figure 30. ¹H NMR of 2k

Supplementary Figure 31. ¹³C NMR of 2k

Supplementary Figure 32. ¹H NMR of 21

Supplementary Figure 33. ¹³C NMR of 2l

Supplementary Figure 34. ¹H NMR of 2m

Supplementary Figure 35. ¹³C NMR of 2m

Supplementary Figure 36. ¹H NMR of 2n

Supplementary Figure 37. ¹³C NMR of 2n

Supplementary Figure 38. ¹H NMR of 20

Supplementary Figure 39. ¹³C NMR of 20

Supplementary Figure 40. ¹H NMR of 2p

Supplementary Figure 41. ¹³C NMR of 2p

Supplementary Figure 42. ¹H NMR of 2q

Supplementary Figure 43. ¹³C NMR of 2q

Supplementary Figure 44. ¹H NMR of 2r

Supplementary Figure 45. ¹³C NMR of 2r

Supplementary Figure 46. ¹H NMR of **2s**

Supplementary Figure 47. ¹³C NMR of **2s**

Supplementary Figure 48. ¹H NMR of **2t**

Supplementary Figure 49. ¹³C NMR of 2t

Supplementary Figure 50. ¹H NMR of **3t**

Supplementary Figure 51. ¹³C NMR of **3t**

Supplementary Figure 52. ¹H NMR of **2u**

Supplementary Figure 53. ¹³C NMR of 2u

Supplementary Figure 54. ¹H NMR of 3u

Supplementary Figure 55. ¹³C NMR of 3u

Supplementary Figure 56. ¹H NMR of **2v**

Supplementary Figure 57. ¹³C NMR of 2v

Supplementary Figure 58. ¹H NMR of 8

Supplementary Figure 59. ¹³C NMR of 8

Supplementary Figure 60. ¹H NMR of S-8

Supplementary Figure 61. ¹³C NMR of S-8

Supplementary Figure 62. ¹H NMR of **10**

Supplementary Figure 63. ¹³C NMR of 10

Supplementary Figure 64. ¹H NMR of **1x**

Supplementary Figure 65. ¹³C NMR of **1x**

Supplementary Figure 66. ¹H NMR of S3

Supplementary Figure 67. ¹³C NMR of S3

Supplementary References

1. Díaz, L., Casas, J., Bujons, J., Llebaria, A. & Delgado, A. New Glucocerebrosidase Inhibitors by Exploration of Chemical Diversity of N-Substituted Aminocyclitols Using Click Chemistry and in Situ Screening. *J. Med. Chem.* **54**, 2069-2079, (2011).

2. Djerassi, C., Sheehan, M. & Spangler, R. J. Mass spectrometry in structural and stereochemical problems. CCIX. Functional group interaction after electron impact. Anomalous ether cleavage in bifunctional benzyloxy ethers. *J. Org. Chem.* **36**, 3526-3532, (1971).

3. Asano, K. & Matsubara, S. Amphiphilic Organocatalyst for Schotten-Baumann-Type Tosylation of Alcohols under Organic Solvent Free Condition. *Org. Lett.* **11**, 1757-1759, (2009).

 Melnitskii, I. A. Glukhova, O. F. Kiladze, T. K. Kantor, E. A. Rakhmankulov, D.
L. & Paushkin, Ya. M. Cleavage of formaldehyde acetals by Grignard reagents. *Doklady Akademii Nauk SSSR* 292, 1390-1392, (1987).

5. Murphy, J. A. *et al.* One-Carbon Extrusion from a Tetraazafulvalene. Isolation of Aldehydes and a Study of Their Origin. *J. Am. Chem. Soc.* **131**, 6475-6479, (2009).

6. Eliel, E. L., Nowak, B. E., Daignault, R. A. & Badding, V. G. Reductions with Metal Hydrides. XIV. Reduction of 2-Tetrahydropyranyl and 2-Tetrahydrofuranyl Ethers. *J. Org. Chem.* **30**, 2441-2447, (1965).

7. Vural, U., Durmaz, M. & Sirit, A. A novel calix[4]arene-based bifunctional squaramide organocatalyst for enantioselective Michael addition of acetylacetone to nitroolefins. *Org. Chem. Front.* **3**, 730-736, (2016).

8. Ryan, W. J., Banner, W. K., Wiley, J. L., Martin, B. R. & Razdan, R. K. Potent Anandamide Analogs: The Effect of Changing the Length and Branching of the End Pentyl Chain. *J. Med. Chem.* **40**, 3617-3625, (1997).

9. Gaspar, B. & Carreira, E. M. Cobalt Catalyzed Functionalization of Unactivated Alkenes: Regioselective Reductive C–C Bond Forming Reactions. *J. Am. Chem. Soc.* **131**, 13214-13215, (2009).

10. Landais, Y., Robert, F., Godineau, E., Huet, L. & Likhite, N. Free-radical carbooximation of olefins and subsequent radical-ionic cascades. *Tetrahedron* **69**, 10073-10080, (2013).

11. Kim, S., Lee, I. Y., Yoon, J. Y. & Oh, D. H. Novel radical reaction of phenylsulfonyl oxime ethers. A free radical acylation approach. *J. Am. Chem. Soc.* **118**, 5138-5139 (1996).

12. Zhu, Y., Wen, X., Song, S. & Jiao, N. Silver-Catalyzed Radical Transformation of Aliphatic Carboxylic Acids to Oxime Ethers. *ACS Catalysis* **6**, 6465-6472 (2016).

13. Mills, L. R., Barrera Arbelaez, L. M. & Rousseaux, S. A. L. Electrophilic Zinc

Homoenolates: Synthesis of Cyclopropylamines from Cyclopropanols and Amines. J. Am. Chem. Soc. **139**, 11357-11360, (2017).