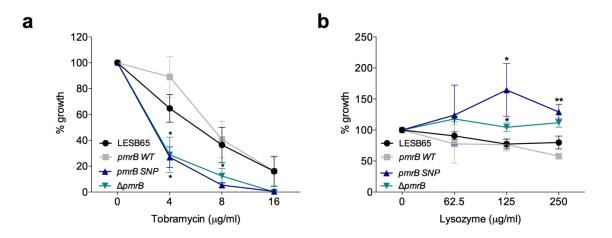
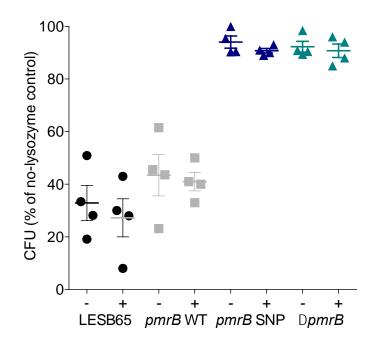
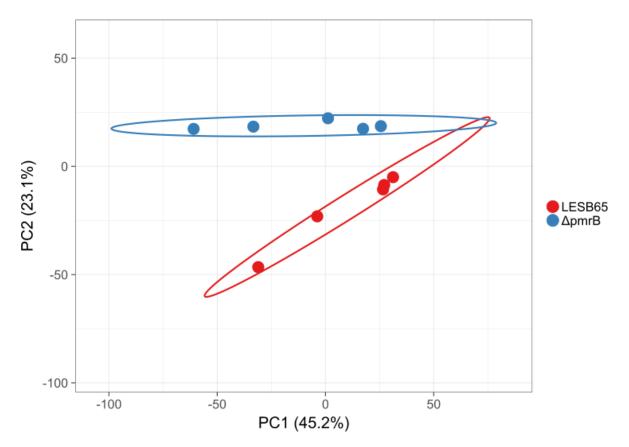
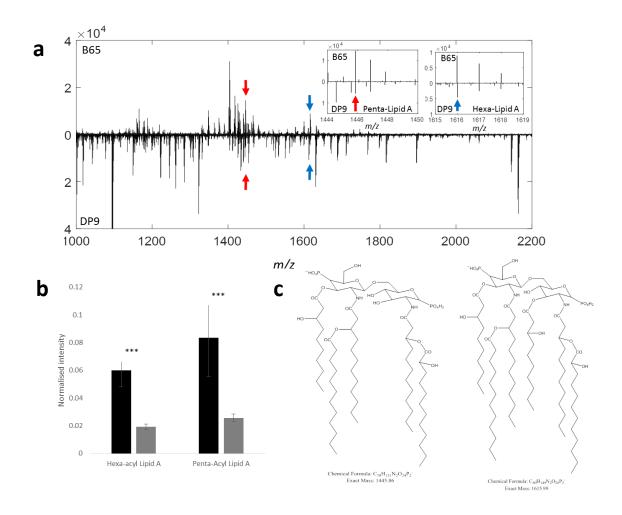
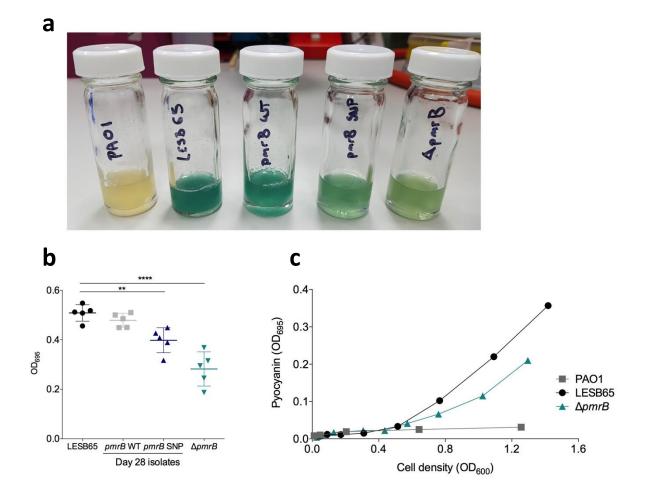

Evolutionary trade-offs associated with loss of PmrB function in host-adapted *Pseudomonas aeruginosa*

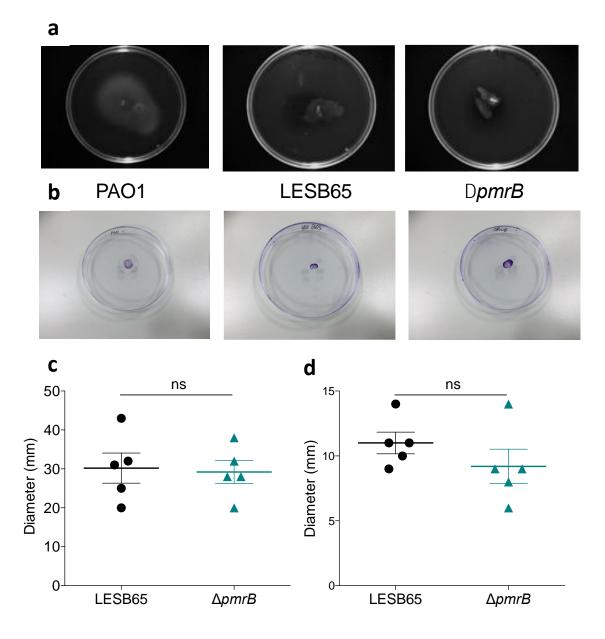

Bricio-Moreno et al.


Supplementary Figure 1. LESB65 and $\Delta pmrB$ show comparable resistance to the hostderived antimicrobials β -defensin 2 and m-CRAMP. Bacteria were cultured overnight in LB in the presence of (a) β -defensin 2 or (b) mCRAMP. Data are from a single experiment and presented as OD₆₀₀ as a percent of growth in LB alone (mean ±SD).


Supplementary Figure 2. Minimum inhibitory concentration assays. Percentage bacterial growth (OD_{600}) in the presence of antibiotic relative to growth in LB for (a) chloramphenicol, (b) ciprofloxacin, (c) colistin, (d) gentamicin, (e) polymyxin B, (f) tetracycline, and (g) tobramycin. Assays were performed at least five times with a minimum of three technical replicates per assay. Presented data are a composite of all assay results (mean ± SD). Significant differences vs LESB65 in two-way ANOVA: chloramphenicol ($\Delta pmrB$ p<0.05), ciprofloxacin (pmrBWT p<0.001, pmrBSNP p<0.0001, $\Delta pmrB$ p<0.0001), colistin (pmrBSNP p<0.0001, $\Delta pmrB$ p<0.0001), polymyxin B (pmrB SNP p<0.0001, $\Delta pmrB$ p<0.0001,


Supplementary Figure 3. The effect of *pmrB* mutation on *P. aeruginosa* grown in biofilm. (A) Percentage growth in tobramycin-containing artificial sputum media (ASM) relative to noantibiotic control. (B) Effect of engineered, inhibition-resistant lysozyme on growth of *P. aeruginosa* in ASM relative to no-lysozyme control. Data presented are mean \pm s.d. and are a composite of 3 independent experiments, each containing 3 technical replicates per isolate. *'s represent significant differences in two-way ANOVA with Dunnett's multiple comparison test versus LESB65. * = p<0.05, ** = p<0.01.


Supplementary Figure 4. Charge-engineering does not influence the susceptibility of *pmrB* mutants to lysozyme in planktonic culture. Isolates were grown in LB in the presence of 16 ug/ml native (-) or charge-engineered (+) lysozyme. Growth is presented as a percentage of the no-lysozyme control for each isolate and data points are individual biological replicates.


Supplementary Figure 5. Principal component biplot of LESB65 and $\Delta pmrB$ proteomics data showing all proteins detected. Five biological replicates were performed for each isolate.

Supplementary Figure 6. Lipid A modifications in LESB65 and \Delta pmrB. (a). Negative ion mode MALDI-TOF MS spectra of intact heat-inactivated LESB65 and $\Delta pmrB$ (m/z 1000 – 2200). Hexa–acyl lipid A (blue arrows) was measured at 1615.9873 (theoretical mass = 1615.9879, Δ ppm = - 0.37) and penta–acyl lipid A (red arrows) measured at 1445.8531 (theoretical mass = 1445.8572, Δ ppm = - 2.8). (b) Normalised intensity of measured hexa–acyl lipid A and penta–acyl lipid A of LESB65 (black) and $\Delta pmrB$ (grey). Four biological replicates (6 technical replicates) of each isolate, mean ± SD, *** = p<0.001 in unpaired t-test with Welch's correction. (c) Chemical structures of penta-acyl lipid A (left) and hexa-acyl lipid A (right).

Supplementary Figure 7. Pyocyanin production by LESB65 and $\Delta pmrB$. (a) Overnight cultures of *P. aeruginosa* PA01, LESB65, *pmrB* WT, *pmrB* SNP and $\Delta pmrB$ grown from a single colony. (b) Quantification of pyocyanin production by OD₆₉₅ reading of cell-free culture supernatants from overnight growth. (c) Pyocyanin production (OD₆₉₅) versus cell density (OD₆₀₀) during 10 hours of growth following subculture of an overnight culture of a single colony. Each data point represents a single biological replicate. ** = p<0.01, **** = p<0.0001 in one-way ANOVA with Dunnett's multiple comparison.

Supplementary Figure 8. Swimming and twitching motility are comparable in $\Delta pmrB$ and LESB65. (a) Swimming and (b) twitching motility of PAO1, LESB65 and $\Delta pmrB$ on/in agar. (c) Swim and (d) twitch diameter of LESB65 and $\Delta pmrB$ after 14 and 24 hour growth, respectively. Data points are individual biological replicates. ns = non-significant in unpaired t-test with Welch's correction.

Supplementary Table 1. Mutations identified by PacBio sequencing in *pmrB* SNP and *pmrB* WT. REF = reference (LESB65), ALT = alteration.

Position	Gene	Annotation	REF	ALT	pmrB SNP	pmrB WT
1461970	PALES_13561	hypothetical protein	С	Т		Thr>Thr
1462067	PALES_13561	hypothetical protein	G	А		Val>Met
1462105	PALES_13561	hypothetical protein	Т	С		His>His
1462122	PALES_13561	hypothetical protein	С	Т		Thr>lle
2108526	PALES_19541	Oxidoreductase	С	G	Gly>Gly	
2621560	PALES_24391	Nitric oxide reductase transcription regulator NorR2	G	Т	Thr>Asn	
3326890	PALES_30151	TonB-dependent receptor	С	G		Leu>Leu
3326928	PALES_30151	TonB-dependent receptor	С	G		Thr>Ser
3496996	PALES_31711	Cardiolipin Synthase 2	G	С		Arg>Pro
3560685	PALES_32271	Putative Transmembrane Sensor	G	С	Ala>Gly	
3899297	PALES_35161	Putative Solute Binding Protein	С	G		Thr>Thr
4531964	PALES_41021	Glutathione-regulated Potassium- efflux system protein KefB	Т	G	Thr>Pro	
5699445	PALES_51621	pmrB Two component regulator system signal sensor kinase	Т	A	Leu>GIn	
6247828	PALES_56441	Putative integral membrane transport protein	С	G		Ala>Pro
6473649	PALES_58431	WbpY Glycosyltransferase	А	G	Pro>Pro	Pro>Pro
6601388	PALES_59651	Ribonuclease P protein component	С	Т		Ala>Thr

Supplementary Table 2. Antimicrobial susceptibility of *P. aeruginosa* PAO1 with transposon insertions in *pmrB*. Minimum inhibitory concentration (μ g/ml) required for 90% growth inhibition. Data are median values of n=3 biological replicates.

Antibiotic	Isolate	MIC90 (µg/ml)
Tobramycin	PAO1	2
	pmrBtransposon 1 (phoAwp06q1A09)	1
	pmrBtransposon 2 (lacZwp08q1F09)	1
Colisitin	PAO1	8
	pmrBtransposon 1 (phoAwp06q1A09)	2
	pmrBtransposon 2 (lacZwp08q1F09)	2

Supplementary Table 3. Cif and Ivy upregulation during planktonic growth in *pmrB* mutants. Fold change in gene expression compared to LESB65 determined by qPCR performed on cultures grown in LB media and normalised using reference gene *proC*. Similar trends were observed with normalisation to *rpoD*. Data are from three biological replicates per isolate, each biological replicate containing two technical replicates.

Gene	LESB65	pmrB WT	pmrB SNP	∆pmrB
cif	1	2.36	4.90	8.58
ivy	1	0.28	4.64	1.57

Supplementary Table 4. Antimicrobial susceptibility of patients isolates

e		6	
L	1		

	Isolate	MIC50	MIC90		MIC50	MIC90
	B38	2	>128		16	64
Colistin	49194	0.5	8	Tobramycin	1	16
	B60	2	128		4	128
	B38	0.5	>128		32	>128
Polymyxin B	49194	0.25	8	Tetracycline	6	64
	B60	0.5	>128		16	>128

Patient A

b

Patient B

	Isolate	MIC50	MIC90		MIC50	MIC90
	1001010					
	B49	2	>128		16	>128
	B40	1	128		16	>128
	B41	16	>128	Tobramycin	4	128
Colistin	B109	8	>128		4	>128
	B64	2	>128		16	>128
	49137	1	128		2	64
	B65	2	>128		32	>128
	B49	2	128	Tatus avalia a	8	>128
Polymyxin B	B40	1	64		8	>128
ΓΟΙΥΠΙΥΧΙΠ Β	B41	1	64	Tetracycline	8	>128
	B109	0.5	32		4	64

B64	0.5	64	8	128
49137	0.5	16	8	64
B65	1	64	16	>128

Minimum inhibitory concentration (μ g per ml) required for **(a)** 50% or **(b)** 90% growth inhibition. Median MIC50 from a minimum of 5 replicates (range 5-7). The most sensitive isolates for each antibiotic are in bold and isolates with *pmrB* mutations are shaded grey. **Supplementary Table 5. Cif and Ivy upregulation during planktonic growth in clinical isolates with** *pmrB* **mutations.** Fold change in gene expression compared to paired isolates from the same patient determined by qPCR performed on cultures grown in LB media and normalised using reference gene *proC.* Similar trends were observed with normalisation to *rpoD.* Data are from three biological replicates per isolate, each biological replicate containing two technical replicates.

	Isolate	cif	ivy
Patient A	B38	1	1
	49194 (<i>pmrB</i> mutant)	3.84	2.41
Patient B	B40	1	1
	49137 (pmrB mutant)	3.41	3.55