Biophysical Journal, Volume 115

Supplemental Information

Retinal Configuration of ppR Intermediates Revealed by Photoirradia-

tion Solid-State NMR and DFT

Yoshiteru Makino, Izuru Kawamura, Takashi Okitsu, Akimori Wada, Naoki Kamo, Yuki Sudo, Kazuyoshi Ueda, and Akira Naito

		20- ¹³ C	14- ¹³ C	Configuration	Ref.
<i>p</i> pR (0°C)	G-state	13.3		13-trans, 15-anti	(1)
	M-intermediate	22.3		13-cis, 15-anti	(1)
<i>p</i> pR (-20°C)	G-state	13.5		13-trans, 15-anti	(1)
	M-intermediate	24.1, 22.5, 21.7		13-cis, 15-anti	(1)
<i>p</i> pR (-40°C)	G-state	13.5	121.7	13-trans, 15-anti	
	M-intermediate	22.3	126.8	13-cis, 15-anti	
<i>p</i> pR (-60°C)	G-state	13.6	121.6	13-trans, 15-anti	
	O-intermediate	16.4	115.4	13-trans, 15-syn	
	M-intermediate	22.6	127.1	13-cis, 15-anti	
	N'-intermediate	23.9	115.4	13 <i>-cis</i>	
<i>p</i> pR/pHtrII (0°C)	G-state	13.6		13-trans, 15-anti	(1)
	M-intermediate	22.7		13-cis, 15-anti	(1)
<i>p</i> pR/pHtrII (-20°C)	G-state	13.5		13-cis, 15-anti	(1)
	M-intermediate	23.5, 22.3, 21.3		13-cis, 15-anti	(1)
<i>p</i> pR/pHtrII (-40°C)	G-state	13.5		13-trans, 15-anti	
	O-intermediate	16.1		13-trans	
	M-intermediate	22.1, 22.9		13-cis, 15-anti	
	N'-intermediate	23.9		13- <i>cis</i>	
SrSRI (-40°C)	G-state	13.8		13-trans, 15-anti	(2)
	M-intermediate	19.8		13- <i>cis</i>	(2)
	P-intermediate	24.8		13-cis, 15-anti	(2)
bR	bR(568)(AT)	13.3	122.0	13-trans, 15-anti	(3)
	bR(568)(CS)	22.0	110.5	13-cis, 15-syn	(3)
	M_0	21.5	124.5	13-cis, 15-anti	(4)
		19.5		13-cis, 15-anti	(5)
	Mn	17.8 ^a	124.6 ^b	13-cis, 15-anti	(5)
					(6)
	Ν		115.2	13-cis, 15-anti	(7)
bR	AT	13.2	123.1	13-trans, 15-anti	(8)
(Y185F)	CS	21.7	110.0	13 aig 15 mm	(8)
	CS*	21.7 18.0	115.2	13-cis 15-syn	(0)
	US ·	10.0	113.5	13-cis, 15-syn	(0)
		19.2	123.4	13-cis, 13-anii 13 trans 15 anti	(0)
	0	13.2	123.1	13- <i>irans</i> , 13-anti	(0)

Table S1. ¹³C NMR chemical shift values of [14, 20-¹³C] Ret in retinal binding microbial proteins [ppm]

^aRef. (5).

^bRef. (6).

	¹³ C NMR chemical shift values [ppm]		
Base set	14- ¹³ C retinal	20- ¹³ C retinal	
6-311G	129.4	18.9	
6-311G*	126.8	17.6	
6-311G**	128.0	18.2	
6-311+G**	127.9	17.4	

Table S2. The basis set dependence of the calculation of chemical shift examined forG-state of retinal using several basis sets.

Figure S1. A. ¹³C CP-MAS NMR spectra and these difference spectra of the [20-¹³C] retinal labeled *ppR/pHtrII* complex at -40 °C using 4 kHz MAS. The range of these spectra was from 0 ppm to 200 ppm. 1D ¹³C CP MAS NMR spectra (a) acquired under initial dark conditions (Dark1), (b) acquired under irradiation with green light state (520 nm) (Green) and (c) obtained one day after turning off irradiation (dark2). And these difference spectra (d) obtained by subtracting Dark1 from Green (Green – Dark1), (e) obtained by subtracting Green from Dark2 (Dark2 – Green), and (f) obtained by subtracting Dark1 from Dark2 (Dark2 – Dark1). B. ¹³C CP-MAS NMR spectra and these difference spectra of the [14,20-¹³C] retinal labeled *p*PR alone without *p*HtrII at -40 °C using 4 kHz MAS. The range of these spectra was from 0 ppm to 200 ppm. 1D ¹³C CP MAS NMR spectra (a) acquired under initial dark conditions (Dark1), (b) acquired under irradiation (Dark2). And these difference spectra (d) obtained by subtracting Green from 0 ppm to 200 ppm. 1D ¹³C CP MAS NMR spectra (a) acquired under initial dark conditions (Dark1), (b) acquired under irradiation (Dark2). And these difference spectra (d) obtained by subtracting Dark1 from Green (Green – Dark1), (e) obtained by subtracting Green from Dark2 (Dark2 – Green).

Supporting References

- Tomonaga, Y., T. Hidaka, I. Kawamura, T. Nishio, K. Ohsawa, T. Okitsu, A. Wada, Y. Sudo, N. Kamo, A. Ramamoorthy, and A. Naito. 2011. An active photoreceptor intermediate revealed by in situ photoirradiated solid-state NMR spectroscopy. Biophys. J. 101: L50–L52.
- Yomoda, H., Y. Makino, Y. Tomonaga, T. Hidaka, I. Kawamura, T. Okitsu, A. Wada, Y. Sudo, and A. Naito. 2014. Color-discriminating retinal configurations of sensory rhodopsin I by photo-irradiation solid-state NMR spectroscopy. Angew. Chemie Int. Ed. 53: 6960–6964.
- Harbison, G.S., S.O. Smith, J.A. Pardoen, C. Winkel, J. Lugtenburg, J. Herzfeld, R. Mathies, and R.G. Griffin. 1984. Dark-adapted bacteriorhodopsin contains 13cis, 15-syn and all-trans, 15-anti retinal Schiff bases. Proc. Natl. Acad. Sci. 81: 1706–1709.
- Bajaj, V.S., M.L. Mak-Jurkauskas, M. Belenky, J. Herzfeld, and R.G. Griffin. 2009. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc. Natl. Acad. Sci. 106: 9244–9.
- Petkova, A.T., M. Hatanaka, C.P. Jaroniec, J.G. Hu, M. Belenky, M. Verhoeven, J. Lugtenburg, R.G. Griffin, and J. Herzfeld. 2002. Tryptophan interactions in bacteriorhodopsin: A heteronuclear solid-state NMR study. Biochemistry. 41: 2429–2437.
- Hu, J.G., B.Q. Sun, M. Bizounok, M.E. Hatcher, J.C. Lansing, J. Raap, P.J.E. Verdegem, J. Lugtenburg, R.G. Griffin, and J. Herzfeld. 1998. Early and late M intermediates in the bacteriorhodopsin photocycle: A solid-state NMR study. Biochemistry. 37: 8088–8096.
- Lakshmi, K. V., M.R. Farrar, J. Herzfeld, R.G. Griffin, J. Raap, J. Lugtenburg, and R.G. Griffin. 1994. Solid State¹³C and¹⁵N NMR Investigations of the N Intermediate of Bacteriorhodopsin. Biochemistry. 33: 8853–8857.
- Oshima, K., A. Shigeta, Y. Makino, I. Kawamura, T. Okitsu, A. Wada, S. Tuzi, T. Iwasa, and A. Naito. 2015. Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy. Photochem. Photobiol. Sci. 14: 1694–1702.