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1 Supplemental Tables

Table S1: Estimation correctness of the investigated methods. LDSC behaves
differently depending on whether covariates are present. The entries marked with *
indicate that although the estimated quantity is empirically unbiased in simulations, it is
given by the division of two biased estimates (the estimate in the second column divided
by the product of the square roots of the estimates in the first column), suggesting that
estimation errors cancel each other in the division. We are not currently aware of a
theoretical justification for this behavior. The entry marked with ** is only empirically
correct as long as covariates are excluded from the analysis.

heritability genetic covariance genetic correlation

no covariates
PCGC X X X
LDSC X X X
REML 7 7 X∗

with covariates
PCGC X X X
LDSC 7 7 X∗∗

REML 7 7 X∗

Table S2: Please see Supplemental Excel file

Table S3: Results of real data analysis of schizophrenia (SCZ) and bipolar
disorder (BIP), when using the LDAK model assumptions [6] instead of the
standard assumptions used in the results reported in the main text.

Covariates SCZ BIP
σ̂2
g ĥ2 σ̂2

g ĥ2 Correlation

Omitted
PCGC-s 0.048 0.048 0.254 0.254 0.850

(0.051) (0.051) (0.056) (0.056) (0.439)

PCGC-s-LD 0.052 0.052 0.288 0.288 0.862
(0.059) (0.059) (0.064) (0.064) (0.488)

Included
PCGC-s 0.407 0.400 0.471 0.461 0.438

(0.054) (0.055) (0.057) (0.059) (0.080)

PCGC-s-LD 0.410 0.403 0.486 0.476 0.442
(0.060) (0.062) (0.063) (0.066) (0.086)
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Table S4: Results of real data analysis of type 1 diabetes (T1D) and coronary
artery disease (CAD), using the ldsc software1. Shown are the estimated genetic
variance σ2

g and the genetic correlation, as obtained from the ldsc software. Marginal
heritability estimates are not reported because they are not estimated in the ldsc soft-
ware. Values marked with "-" could not be computed because of negative or illegal
parameter estimates.

Covariates T1D CAD
σ̂2
g σ̂2

g Correlation

Omitted LDSC-omit 0.385 (0.049) 0.644 (0.069) 0.298 (0.069)
LDSC-omit+intercept 0.055 (0.066) 0.102 (0.102) -1.07 (1.90)

Included LDSC -1.80 (0.040) -0.338 (0.060) -
LDSC+intercept -0.016 (0.037) 0.037 (0.090) -

Table S5: Results of real data analysis, using in-sample SNP normalization.
The table is similar to Table 2 in the main text, but both studies estimated the minor
allele frequencies based on the (shared) controls rather than using HapMap 3 estimates.

Covariates T1D CAD
σ̂2
g ĥ2 σ̂2

g ĥ2 Correlation

Omitted

PCGC-s 0.295 0.295 0.469 0.469 0.231
(0.051) (0.051) (0.064) (0.064) (0.090)

PCGC-s-LD 0.291 0.291 0.465 0.465 0.231
(0.050) (0.050) (0.064) (0.064) (0.090)

LDSC-omit 0.284 0.284 0.451 0.451 0.215
(0.050) (0.050) (0.064) (0.064) (0.094)

LDSC-omit + intercept 0.505 0.505 0.014 0.014 -
(0.552) (0.552) (0.131) (0.131) -

Included

PCGC-s 0.277 0.210 0.498 0.457 0.239
(0.069) (0.052) (0.072) (0.066) (0.119)

PCGC-s-LD 0.274 0.208 0.493 0.452 0.239
(0.068) (0.052) (0.064) (0.059) (0.119)

LDSC -1.80 - -0.45 - -
(0.042) - (0.057) - -

LDSC + intercept 0.040 0.030 -0.065 - -
(0.080) (0.060) (0.099) - -

1https://github.com/bulik/ldsc
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Table S6: Results of real data analysis when regressing the top 10 princi-
pal components out of the genotypes and possibly using them as additional
covariates.

Covariates T1D CAD
σ̂2
g ĥ2 σ̂2

g ĥ2 Correlation

Omitted

PCGC-s 0.219 0.219 0.406 0.406 0.200
(0.043) (0.043) (0.063) (0.063) (0.117)

PCGC-s-LD 0.226 0.226 0.419 0.419 0.198
(0.044) (0.044) (0.065) (0.065) (0.116)

LDSC-omit 0.301 0.301 0.538 0.538 0.241
(0.045) (0.045) (0.066) (0.066) (0.085)

LDSC-omit + intercept -0.016 -0.016 -0.057 -0.057 -
(0.097) (0.097) (0.112) (0.112) -

Included

PCGC-s 0.258 0.196 0.471 0.432 0.287
(0.066) (0.050) (0.069) (0.063) (0.123)

PCGC-s-LD 0.266 0.202 0.487 0.446 0.284
(0.068) (0.052) (0.065) (0.060) (0.122)

LDSC -1.78 - -0.36 - -
(0.039) - (0.057) - -

LDSC + intercept -0.060 - -0.11 - -
(0.044) - (0.096) - -

Table S7: Results of real data analysis when using in-sample SNP normaliza-
tion and regressing the top 10 principal components out of the genotypes.
The table is similar to Supplemental Table 6, but both studies estimated the minor allele
frequencies based on the (shared) controls rather than using HapMap 3 estimates.

Covariates T1D CAD
σ̂2
g ĥ2 σ̂2

g ĥ2 Correlation

Omitted

PCGC-s 0.237 0.237 0.456 0.456 0.210
(0.045) (0.045) (0.064) (0.064) (0.103)

PCGC-s-LD 0.232 0.232 0.447 0.447 0.207
(0.044) (0.044) (0.063) (0.063) (0.102)

LDSC-omit 0.195 0.195 0.383 0.383 0.091
(0.045) (0.045) (0.064) (0.064) (0.135)

LDSC-omit + intercept -0.081 - -0.096 - -
(0.080) - (0.129) - -

Included

PCGC-s 0.278 0.211 0.534 0.489 0.306
(0.068) (0.052) (0.072) (0.066) (0.110)

PCGC-s-LD 0.273 0.207 0.524 0.479 0.303
(0.066) (0.050) (0.065) (0.059) (0.108)

LDSC -1.84 - -0.50 - -
(0.041) - (0.056) - -

LDSC + intercept -0.065 - -0.14 - -
(0.046) - (0.106) - -
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Table S8: PCGC-s genetic correlation estimates between WTCCC1 pheno-
types. The traits and their assumed prevalences (following [1]) are Crohn’s disease
(CD, 0.1%), type 1 diabetes (T1D; 0.5%), bipolar disorder (BD, 0.5%), rheumatoid
arthritis (RA; 0.75%), type 2 diabetes (T2D; 3%), coronary artery disease (CAD; 3.5%)
and hypertension (HT; 5%). All analyses included sex as a covariate. T1D and RA
analyses additionally excluded the MHC region from the analysis and used MHC SNPs
as covariates (Supplemental Note).

CD T1D BD RA T2D CAD HT

CD 0.067 0.217 0.047 0.155 0.114 0.259
(0.128) (0.077) (0.104) (0.098) (0.097) (0.087)

T1D 0.067 0.090 0.387 -0.054 0.192 0.089
(0.128) (0.128) (0.137) (0.161 ) (0.139) (0.155)

BD 0.217 0.090 -0.012 -0.145 0.011 0.136
(0.077) (0.128) (0.117) (0.116) (0.103) (0.100)

RA 0.047 0.387 -0.012 0.228 0.314 0.226
(0.104) (0.137) (0.117) (0.121) (0.105) (0.124)

T2D 0.155 -0.054 -0.145 0.228 0.343 0.371
(0.098) (0.161) (0.116) (0.121) (0.097) (0.092)

CAD 0.114 0.192 0.011 0.314 0.343 0.280
(0.097) (0.139) (0.103) (0.105) (0.097) (0.096)

HT 0.259 0.089 0.136 0.226 0.371 0.280
(0.087) (0.155) (0.100) (0.124) (0.092) (0.096)
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2 Supplemental Figures

0

0.25

0.5

0.75

1
ge

ne
tic

 v
ar

ia
nc

e

var(cov) / var(liability) (%)
0 12.5 25 50 

 
PCGC−s
PCGC−s−LD
LDSC−omit
REML

0

0.25

0.5

0.75

1

co
va

ria
nc

e

var(cov) / var(liability) (%)
0 12.5 25 50 

 
PCGC−s
PCGC−s−LD
LDSC−omit
REML

0

0.25

0.5

0.75

1

co
rr

el
at

io
n

var(cov) / var(liability) (%)
0 12.5 25 50 

 
PCGC−s
PCGC−s−LD
LDSC−omit
REML

Figure S1: The performance of the evaluated methods when measuring the genetic
variance σ2

g
t (also called the conditional heritability in the main text) instead of the

marginal heritability h2t = σ2
g

t

1+var(Ct
iβ) (see Methods in main text for further clarification

regarding these terms).
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Figure S2: The performance of the evaluated methods under different heritability levels
for trait 1. The black horizontal lines indicate the true parameter values. The genetic
covariance values were set to obtain a genetic correlation of 50%.
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Figure S3: The performance of the evaluated methods under different genetic correlation
levels. The black horizontal lines indicate the true parameter values.
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Figure S4: The performance of the evaluated methods under different prevalence levels.
The in-sample case control ratio was 50% in all experiments.
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Figure S5: The effect of the LD parameter θ. Larger values of θ lead to a stronger
correlation between adjacent SNPs. The standard error of all methods increases with
the degree of LD.
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Figure S6: The performance of the evaluated methods under different levels of overlap
between the control groups of the two studies.
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Figure S7: The performance of the evaluated methods under different numbers of
measured covariates.
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Figure S8: The performance of the evaluated methods under different sample sizes
for study 1. PCGC and PCGC-s become increasingly more accurate as sample sizes
increase.
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Figure S9: The performance of the evaluated methods under different numbers of
simulated SNPs.
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Figure S10: The performance of the evaluated methods under different polygenicity
levels. The x axis is the fraction of SNPs in the genome that influence the trait of study
1.
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Figure S11: The performance of the evaluated methods when LDSC weights test statis-
tics according to their postulated posterior variance (but still using a constrained inter-
cept[2]), as implemented in the ldsc software2.

2https://github.com/bulik/ldsc
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Figure S12: The performance of the evaluated methods when LDSC uses logistic re-
gression rather than linear regression based summary statistics.
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Figure S13: The performance of the evaluated methods when LDSC uses logistic regres-
sion rather than linear regression based summary statistics. Here, the logistic regression
test statistics included the covariates instead of omitting them.
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Figure S14: The performance of the evaluated methods under different levels of covariate
strength, when LDSC regresses the covariates out of the phenotypes and genotypes.
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Figure S15: The performance of the evaluated methods under different levels of covariate
strength, when LDSC regresses the covariates out of the phenotypes and genotypes and
fits an intercept.
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Figure S16: The performance of the evaluated methods when data is generated according
to the LDAK model [6], under different prevalence levels for study 1. All methods
yield biased estimates of heritability and of genetic covariance, because they use an
incorrect model that assigns a uniform prior variance for the effect size of every SNP,
regardless of its MAF and LD patterns. In contrast, genetic correlation estimates are
unbiased, suggesting that the approximation errors of the heritabilities and of the genetic
covariance are canceled when dividing the latter by the former. REML is not evaluated
in this experiment because we are not aware of a REML-based method for estimation
of genetic covariance under the LDAK model, which would be required for comparison
with Figure S17.
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Figure S17: The performance of the evaluated methods when data is generated according
to the LDAK model [6] (as in Figure S16), using modified versions of the evaluated
methods which use the LDAK model for estimation. PCGC-s and PCGC-s-LD yield
unbiased estimates because they use the correct underlying model, whereas LDSC-omit
is biased because it ignores the effect of covariates. REML was not evaluated in this
experiment because we are not aware of a REML-based method for estimation of genetic
covariance under the LDAK model.
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3 PCGC without Covariates

PCGC was described in [3] in the context of heritability estimation. Here we show the
derivation for estimation of genetic covariance. This is a generalization of heritability,
which in the absence of covariates can be seen as the genetic covariance of a trait with
itself. We first present the derivation when there are no covariates. A derivation with
covariates is presented in Section 4. The derivation here does not make use of summary
statistics. A description of how PCGC can be reformulated to use summary statistics
is presented in Section 5.

We first establish some notations. We assume the same mixed effects liability threshold
model described in the main text. Namely, every individual is associated with a latent
liability ait for every studied trait t, where ait = git + eit, and git,eit are genetic and
environmental effects, respectively. We further assume git ∼ N (0, σ2

g t
), eit ∼ N (0, 1−σ2

g t
).

The environmental effects are assumed to be independent and identically distributed
between individuals, and cov(git1 , g

j
t2) = ρt1,t2G

i,j
t1,t2 , where G

i,j
t1,t2 is the genetic similarity

coefficient between individual i in study t1 and individual j in study t2. Every individual
is also associated with an observed affection status indicator yit = 1

[
ait > τt

]
, where

τt = Φ−1(1−Kt) is the affection cutoff for a trait with prevalence Kt, and where Φ−1(·)
is the inverse standard normal cumulative distribution.
Note that when t1 and t2 refer to the same trait, the genetic covariance coincides with
heritability, ρt1,t2 = σ2

g t
. Our derivation therefore encapsulates heritability estimation

as a special case.

We assume an ascertained case-control study where cases are overrepresented relative
to the trait prevalence. Denote Pt as the case-control proportion in study t, and define
ỹit , (yit − Pt)/

√
Pt(1− Pt) as the standardized phenotype of individual i in study t.

Further denote sit as an observed selection indicator for individual i in study t, such that
sit = 1 for all individuals in the study. We assume that sit is conditionally independent of
all other variables given yit. PCGC approximates the expected value of ỹit1 ỹ

j
t2 conditional

on the ascertainment scheme and on the genetic similarity coefficient of individuals i and
j via a Taylor expansion around Gi,jt1,t2 = 0. Namely, the first order Taylor expansion
when there are no covariates is given by:

E
[
ỹit1 ỹ

j
t2 | s

i
t1 , s

j
t2 , G

i,j
t1,t2

]
= Gi,jt1,t2f (t1, t2) ρt1,t2 +O

(
(Gi,jt1,t2)2

)
, (1)

where sit is a shorthand notation for sit1 = 1, and where f (t1, t2) is given by:

f (t1, t2) =
√
Pt1(1− Pt1)Pt2(1− Pt2)φ(τt1)φ(τt2)

Kt1(1−Kt1)Kt2(1−Kt2) . (2)

Here, φ(·) is the standard normal density. Therefore, ρt1,t2 can be estimated by regressing
ỹit1 ỹ

j
t2 on Gi,jt1,t2f (t1, t2).

The derivation of Equation 1 is carried out as follows. We first write down the expected
value of ỹit1 ỹ

j
t2 conditional on the ascertainment scheme and on the genetic similarity

coefficient of individuals i and j. By using Bayes rule and the assumption that sit is
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conditionally independent of all other variables given yit, we obtain:

E
[
ỹit1 ỹ

j
t2 | s

i
t1 , s

j
t2 , G

i,j
t1,t2

]
=

1∑
yi

t1
,yj

t2
=0

yit1 − Pt1√
Pt1(1− Pt1)

yjt2 − Pt2√
Pt2(1− Pt2)

P (yit1 , y
j
t2 | s

i
t1 , s

j
t2 , G

i,j
t1,t2)

=

∑1
yi

t1
,yj

t2
=0

yi
t1
−Pt1√

Pt1 (1−Pt1 )
yj

t2
−Pt2√

Pt2 (1−Pt2 )
P (yit1 , y

j
t2 |G

i,j
t1,t2)P (sit1 | y

i
t1)P (sjt2 |y

j
t2)

P (sit1 , s
j
t2 |G

i,j
t1,t2)

.

(3)

Next, we approximate Equation 3 via a Taylor expansion around Gi,jt1,t2 = 0. Denote the
numerator as A(Gi,jt1,t2) and the denominator as B(Gi,jt1,t2). The Taylor expansion takes
the form:

E
[
ỹit1 ỹ

j
t2 | s

i
t1 , s

j
t2 , G

i,j
t1,t2

]
= A(0)
B(0) + A′(0)B(0)−B′(0)A(0)

B(0)2 Gi,jt1,t2 +O
(
(Gi,jt1,t2)2

)
. (4)

Equation 4 can be simplified because A(0) = 0. This can be verified by noting that
setting Gi,jt1,t2 = 0 in Equation 4 yields A(0)/B(0) on the one hand, but setting Gi,jt1,t2 = 0
also causes the random variables ỹit1 , ỹ

j
t2 to become independent conditional on sit1 , s

j
t2 ,

and therefore leads to the decomposition:

E
[
ỹit1 ỹ

j
t2 | s

i
t1 , s

j
t2 , G

i,j
t1,t2 = 0

]
= E

[
ỹit1 | s

i
t1

]
E
[
ỹjt2 | s

j
t2

]
= 0, (5)

because E
[
ỹit | sit

]
= 0 by definition.

We conclude that the Taylor expansion takes the form:

E
[
ỹit1 ỹ

j
t2 | s

i
t1 , s

j
t2 , G

i,j
t1,t2

]
= A′(0)
B(0)G

i,j
t1,t2 +O

(
(Gi,jt1,t2)2

)
. (6)

To compute B(0), we first compute the probability of cases and controls to participate
in the study. Define st,0 = P (sit = 1|yit = 0), st,1 = P (sit = 1|yit = 1) as the selection
probabilities of controls and cases, respectively. Using the definition of Pt and Bayes
rule, we have:

Pt = P (yit = 1|sit = 1) = P (yit = 1)P (sit = 1|yit = 1)
P (yit = 0)P (sit = 1|yit = 0) + P (yit = 1)P (sit = 1|yit = 1)

= Ktst,1
(1−Kt)st,0 +Ktst,1

. (7)

After rearrangement, we obtain:

st,0 = st,1
Kt(1− Pt)
(1−Kt)Pt

. (8)

We assume without loss of generalization that st,1 = 1, but the results remain exactly
the same regardless.

Next, we use the fact that the variables sit1 , s
j
t2 become independent given Gi,jt1,t2 = 0.
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Therefore, by using Equation 8, B(0) is given by:

B(0) = P (sit1)P (sjt2)

=
(
P (yit1 = 0)st1,0 + P (yit1 = 1)st1,1

) (
P (yjt2 = 0)st2,0 + P (yjt2 = 1)st2,1

)
=
(

(1−Kt1)Kt1(1− Pt1)
(1−Kt1)Pt1

+Kt1

)(
(1−Kt2)Kt2(1− Pt2)

(1−Kt2)Pt2
+Kt2

)
= Kt1

Pt1

Kt2

Pt2
. (9)

It remains to derive A′(0). We use the following lemma, derived in Section 2.2 of [3]. If
the affection cutoffs of individuals i and j are τt1 and τt2 , respectively, then:

d

dGi,jt1,t2
P (yit1 = yjt2 |G

i,j
t1,t2) |

Gi,j
t1,t2

=0 = φ(τt1)φ(τt2)ρt1,t2

d

dGi,jt1,t2
P (yit1 6= yjt2 |G

i,j
t1,t2) |

Gi,j
t1,t2

=0 = −φ(τt1)φ(τt2)ρt1,t2 . (10)

Therefore, A’(0) is explicitly given by:

A′(0) =
√

Pt1
1− Pt1

Pt2
1− Pt2

st1,0st2,0φ(τt1)φ(τt2)ρt1,t2

+
√

Pt1
1− Pt1

1− Pt2
Pt2

st1,0st2,1φ(τt1)φ(τt2)ρt1,t2

+
√

1− Pt1
Pt1

Pt2
1− Pt2

st1,1st2,0φ(τt1)φ(τt2)ρt1,t2

+
√

1− Pt1
Pt1

1− Pt2
Pt2

st1,1st2,1φ(τt1)φ(τt2)ρt1,t2 . (11)

By incorporating the definition of st,0 in Equation 8 and assuming st,1 = 1, we obtain:

A′(0) = Kt1

1−Kt1

Kt2

1−Kt2

√
1− Pt1
Pt1

1− Pt2
Pt2

φ(τt1)φ(τt2)ρt1,t2

+ Kt1

1−Kt1

√
1− Pt1
Pt1

1− Pt2
Pt2

φ(τt1)φ(τt2)ρt1,t2

+ Kt2

1−Kt2

√
1− Pt1
Pt1

1− Pt2
Pt2

φ(τt1)φ(τt2)ρt1,t2

+
√

1− Pt1
Pt1

1− Pt2
Pt2

φ(τt1)φ(τt2)ρt1,t2

=

√
(1−Pt1 )(1−Pt2 )

Pt1Pt2
φ(τt1)φ(τt2)ρt1,t2

(1−Kt1)(1−Kt2) . (12)

Finally, we combine Equations 9 and 12 into Equation 6 to obtain:

E
[
ỹit1 ỹ

j
t2 | s

i
t1 , s

j
t2 , G

i,j
t1,t2

]
=

√
(1−Pt1 )(1−Pt2 )

Pt1 Pt2
φ(τt1 )φ(τt2 )ρt1,t2

(1−Kt1 )(1−Kt2 )
Kt1
Pt1

Kt2
Pt2

Gi,jt1,t2 +O
(
(Gi,jt1,t2)2

)

=
√
Pt1(1− Pt1)Pt2(1− Pt2)φ(τt1)φ(τt2)Gi,jt1,t2

Kt1(1−Kt1)Kt2(1−Kt2) ρt1,t2 +O
(
(Gi,jt1,t2)2

)
. (13)

This completes the derivation.
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4 PCGC with Covariates

Here we derive the PCGC genetic covariance estimator in the presence of covariates.
We extend the model presented in the previous section as follows. We assume that
every individual in study t carries a vector of covariates Ci

t, including an intercept. The
liability ait is now given by ait = git + eit + (Ci

t)Tβt, where βt is a vector of fixed effects.
Denote P it as the in-sample probability of individual i in study t being a case conditional
on her covariates, P it = P (yit = 1 |Ci

t, s
i
t = 1 ; βt). We define the standardized phenotype

of individual i as ỹit = (yit − P it )/
√
P it (1− P it ).

We show below that the first order Taylor expansion of the conditional expectation of
ỹit1 ỹ

j
t2 is now given by:

E
[
ỹit1 ỹ

j
t2 |C

i
t1 ,C

j
t2 , s

i
t1 , s

j
t2 , G

i,j
t1,t2

]
= Gi,jt1,t2f

(
Ci
t1 ,C

j
t2 ; βt1 ,βt2 , t1, t2

)
ρt1,t2 +O

((
Gi,jt1,t2

)2
)
, (14)

where f
(
Ci
t1 ,C

j
t2 ; βt1 ,βt2 , t1, t2

)
depends on the covariates of individuals i and j, on

the fixed effects and on the case-control proportions and the prevalences of the two
studied traits, and is explicitly given by:

f
(
Ci
t1 ,C

j
t2 ; βt1 ,βt2 , t1, t2

)
,

φ(τ it1)√
P it1(1− P it1)

(
Ki
t1 + (1−Ki

t1)Kt1 (1−Pt1 )
Pt1 (1−Kt1 )

)
φ(τ jt2)√

P jt2(1− P jt2)
(
Kj
t2 + (1−Kj

t2)Kt2 (1−Pt2 )
Pt2 (1−Kt2 )

)
[
qi,jt1,t2;0,0 + qi,jt1,t2;0,1 + qi,jt1,t2;1,0 + qi,jt1,t2;1,1

]
, (15)

where Ki
t = 1 −

(
1− P it

)
/
(
1 + Kt(1−Pt)

Pt(1−Kt)P
i
t − P it

)
is the population-level probability of

being a case (derived in [3]), τ it = Φ−1 (1−Ki
t

)
is the individual-level affection cutoff,

and the terms in the parentheses are given by:

qi,jt1,t2;0,0 = Kt1(1− Pt1)
Pt1(1−Kt1)

Kt2(1− Pt2)
Pt2(1−Kt2)P

i
t1P

j
t2 .

qi,jt1,t2;0,1 = Kt1(1− Pt1)
Pt1(1−Kt1)P

i
t1(1− P jt2)

qi,jt1,t2;1,0 = Kt2(1− Pt2)
Pt2(1−Kt2)(1− P it1)P jt2

qi,jt1,t2;1,1 = (1− P it1)(1− P jt2). (16)

Unlike the previous section, the term f
(
Ci
t1 ,C

j
t2 ; βt1 ,βt2 , t1, t2

)
is different for every

pair of individuals. We first derive Equation 14 under the assumption that the fixed
effects are known, and then describe estimation with unknown fixed effects.

The derivation of Equation 14 is carried out as follows. As before, we begin by writ-
ing down the conditional expectation of ỹit1 ỹ

j
t2 and use Bayes rule and the conditional
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independence assumptions to obtain:

E
[
ỹit1 ỹ

j
t2 |C

i
t1 ,C

j
t2 , s

i
t1 , s

j
t2 , G

i,j
t1,t2

]
=

1∑
yi

t1
,yj

t2
=0

yit1 − P
i
t1√

P it1(1− P it1)

yjt2 − P
j
t2√

P jt2(1− P jt2)
P (yit1 , y

j
t2 |C

i
t1 ,C

j
t2 , s

i
t1 , s

j
t2 , G

i,j
t1,t2)

=

∑1
yi

t1
,yj

t2
=0

yi
t1
−P i

t1√
P i

t1
(1−P i

t1
)

yj
t2
−P j

t2√
P j

t2
(1−P j

t2
)
P (yit1 , y

j
t2 |C

i
t1 ,C

j
t2 , G

i,j
t1,t2)P (sit1 | y

i
t1)P (sjt2 |y

j
t2)

P (sit1 , s
j
t2 |C

i
t1 ,C

j
t2 , G

i,j
t1,t2)

.

(17)

Next, we approximate Equation 17 via a Taylor expansion around Gi,jt1,t2 = 0. As
before, we denote the numerator and denominator as A(Gi,jt1,t2) and B(Gi,jt1,t2), respec-
tively. The term A(0) is once again equal to 0, as can be verified by seeing that setting
Gi,jt1,t2 = 0 in the first order Taylor expansion of the expression A(Gi,jt1,t2)/B(Gi,jt1,t2) leads
to the expression A(0)/B(0) on the one hand, but that the conditional expectation
E
[
ỹit1 ỹ

j
t2 |C

i
t1 ,C

j
t2 , s

i
t1 , s

j
t2 , G

i,j
t1,t2 = 0

]
decomposes into a product of conditional expec-

tations of ỹit1 and of ỹjt2 , each of which is equal to 0 by definition. We therefore once
again have a Taylor expansion of the form:

E
[
ỹit1 ỹ

j
t2 |C

i
t1 ,C

j
t2 , s

i
t1 , s

j
t2 , G

i,j
t1,t2

]
= A′(0)
B(0)G

i,j
t1,t2 +O

(
(Gi,jt1,t2)2

)
. (18)

To compute B(0), we use the fact that the variables sit1 , s
j
t2 become independent given

Gi,jt1,t2 = 0 and the covariates. Therefore, by using Equation 8, B(0) is given by:

B(0) = P (sit1 |C
i
t1)P (sjt2 |C

j
t2)

=
(
Ki
t1 + (1−Ki

t1)Kt1(1− Pt1)
(1−Kt1)Pt1

)(
Kj
t2 + (1−Kj

t2)Kt2(1− Pt2)
(1−Kt2)Pt2

)
. (19)

To compute A′(0), we rewrite the numerator of Equation 17 using the results in Equation
10, and additionally incorporate Equation 8 as follows:

A′(0) =
P it1P

j
t2√

P it1(1− P it1)P jt2(1− P jt2)

Kt1(1− Pt1)
Pt1(1−Kt1)

Kt2(1− Pt2)
Pt2(1−Kt2)φ(τ it1)φ(τ jt2)ρt1,t2

+
P it1(1− P jt2)√

P it1(1− P it1)P jt2(1− P jt2)

Kt1(1− Pt1)
Pt1(1−Kt1)φ(τ it1)φ(τ jt2)ρt1,t2

+
(1− P it1)P jt2√

P it1(1− P it1)P jt2(1− P jt2)

Kt2(1− Pt2)
Pt2(1−Kt2)φ(τ it1)φ(τ jt2)ρt1,t2φ(τ it1)φ(τ jt2)ρt1,t2

+
(1− P it1)(1− P jt2)√

P it1(1− P it1)P jt2(1− P jt2)
φ(τ it1)φ(τ jt2)ρt1,t2 . (20)

Equation 14 is obtained by combining Equations 19 and 20 into Equation 18. This
completes the derivation.

When the fixed effects are unknown we carry out a two steps procedure, as explained
in [3]. In the first stage we estimate the fixed effects while ignoring the covariance
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structure via logistic regression. The theory of generalized estimating equations shows
that such an estimation procedure tends to produce highly accurate estimates [4] (the
formula for the variance of the estimators needs to be modified to account for the
covariance structure, but this is out of the scope of our work). In the second stage we
use the estimated fixed effects to compute a conditional in-sample affection probability
P it = P (yit = 1 |Ci

t, s
i
t1 ; β), which enables us to use the Taylor approximation described

above.

5 Adapting PCGC to use Summary Statistics

Here we describe how PCGC can be modified to use summary statistics. Our derivation
assumes the presence of covariates. Settings without covariates can be regarded as
a special case with a single constant covariate carried by all individuals (a so-called
intercept). To avoid dependency on the previous section, we first reestablish the relevant
notations.

Denote Pt as the proportion of cases in study t and P it as the in-sample probability of
individual i in study t of being a case conditional on her covariates. Further denote
Ki
t = 1 −

(
1− P it

)
/
(
1 + Kt(1−Pt)

Pt(1−Kt)P
i
t − P it

)
as the population-level probability of being

a case, and define τ it = Φ−1 (1−Ki
t

)
. Note that in the absence of covariates P it = Pt,

Ki
t = Kt and τ it = τt for all individuals.

The PCGC covariance estimator is given by regressing the conditionally-standardized
phenotype products

yi
t1
−P i

t1√
P i

t1
(1−P i

t1
)

yj
t2
−P j

t2√
P j

t2
(1−P j

t2
)
on the conditionally-modified genotype prod-

ucts Gi,jt1,t2Q
i,j
t1,t2 , where Q

i,j
t1,t2 is given by:

Qi,jt1,t2 ,
1∑

a,b=0
uit1,au

j
t2,b
, (21)

where

uit,0 ,
φ(τ it )√

P it (1− P it )
(
Ki
t + (1−Ki

t)
Kt(1−Pt)
Pt(1−t)

)Kt(1− Pt)
Pt(1−Kt)

P it (22)

uit,1 ,
φ(τ it )√

P it (1− P it )
(
Ki
t + (1−Ki

t)
Kt(1−Pt)
Pt(1−t)

) (1− P it
)
. (23)

Note that each term uit,0 and uit,1 depends only on information from study t.

A key ingredient in the adaptation of PCGC for summary statistics is the assumed form
of the genetic similarity coefficients:

Gi,jt1,t2 ,
1
m

m∑
k=1

Xk,i
t1 X

k,j
t2 , (24)

where Xk,i
t is the kth variant carried by individual i in study t, after normalization at

the population level. Therefore, both Gi,jt1,t2 and Qi,jt1,t2 are given by sums of products
of terms, where each term depends only on an individual from one of the two studies.
This is the underlying idea that enables to compute the PCGC estimator via summary
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statistics. However, we note that is is straightforward to extend our results to accom-
modate frequency or LD-dependent architectures or multiple variance components, as
shown in Sections 6 and 7.

We now provide the full derivation of our results. The PCGC covariance estimator is
explicitly given by:

ρ̂pcgc-covar
t1,t2 =

∑
i,j /∈St1,t2

ỹit1 ỹ
j
t2G

i,j
t1,t2Q

i,j
t1,t2∑

i,j /∈St1,t2

(
Gi,jt1,t2Q

i,j
t1,t2

)2 , (25)

where St1,t2 is the set of all pairs of indices i, j that refer to the same individual who is
shared between the two studies, and ỹit ,

yi
t1
−P i

t1√
P i

t1
(1−P i

t1
)
.

To compute Equation 25 without having access to genetic and phenotypic data, we
require the following summary statistics:

zk,covar
t ,

∑
i

ỹitX
k,i
t

1∑
a=0

uit,a

r̂k,h,covar
t ,

∑
i

Xk,i
t Xh,i

t

1∑
a,b=0

uit,au
i
t,b. (26)

If the two studies include overlapping individuals, we also require the following summary
statistics for each of the overlapping individuals:

wit ,
√
Gi,it,tỹ

i
t

( 1∑
a=0

uit,a

)
. (27)

The summary statistic wit are not privacy preserving because they expose (a noisy version
of) the phenotype of individual i, and some indirect information about her covariates.
This is often not a problem, because overlapping individuals often consist of control
cohorts, in which the phenotypes are already known. Nevertheless, we propose a privacy-
preserving approximation in Section 5.2.

We now describe how Equation 25 can be rewritten to use only the above summary
statistics. The numerator of Equation 25 can be rewritten to use only summary statistics
as follows. We first decompose the numerator into two terms:∑

i,j /∈St1,t2

ỹit1 ỹ
j
t2G

i,j
t1,t2Q

i,j
t1,t2 =

∑
i,j

ỹit1 ỹ
j
t2G

i,j
t1,t2Q

i,j
t1,t2 −

∑
i,j∈St1,t2

ỹit1 ỹ
j
t2G

i,j
t1,t2Q

i,j
t1,t2 . (28)

We will handle each term separately. By using Equations 24 and 21, the first term on
the right hand side of Equation 28 can be reformulated as follows:

∑
i,j

ỹit1 ỹ
j
t2G

i,j
t1,t2Q

i,j
t1,t2 =

∑
i,j

ỹit1 ỹ
j
t2

(
1
m

m∑
k=1

Xk,i
t1 X

k,j
t2

) 1∑
a,b=0

uit1,au
j
t2,b


= 1
m

m∑
k=1

(∑
i

ỹit1X
k,i
t1

1∑
a=0

uit1,a

)∑
j

ỹjt2X
k,j
t2

1∑
b=0

ujt2,b


= 1
m

m∑
k=1

zk,covar
t1 zk,covar

t2 . (29)

22



Using Equations 21 and 27, the second term on the right hand side of Equation 28 can
be rewritten as follows:

∑
i,j∈St1,t2

ỹit1 ỹ
j
t2G

i,j
t1,t2Q

i,j
t1,t2 =

∑
i,j∈St1,t2

ỹit1 ỹ
j
t2

√
Gi,it1,t1G

j,j
t2,t2

1∑
a,b=0

uit1,au
j
t2,b

=
∑

i,j∈St1,t2

(√
Gi,it1,t1 ỹ

i
t1

1∑
a=0

uit1,a

)(√
Gj,jt2,t2 ỹ

j
t2

1∑
b=0

ujt2,b

)

=
∑

i,j∈St1,t2

wit1w
j
t2 . (30)

The derivation in Equation 30 requires having access to the genotypes and covariates of
overlapping individuals. If there are no covariates and the number of overlapping indi-
viduals having each of the four possible combinations of phenotypes is known, Equation
30 can be simplified considerably by using the approximation Gi,jt1,t2 ≈ 1.0 for overlapping
individuals. However, we caution that this approximation is very sensitive to the data
preprocessing, because Gi,jt1,t2 6=

√
Gi,it1,t1

√
Gj,jt2,t2 if studies t1, t2 were preprocessed sepa-

rately (see Supplemental section on the effects of preprocessing the data for a discussion
of this issue).

If a third party with no access to the overlapping individuals wishes to approximate the
second term on the right hand side of Equation 28, she may do so using a sum of Taylor
Expansions around the mean covariates vector for each of the four possible combinations
of phenotypes of overlapping individuals. Typically the only overlapping individuals are
controls, which simplifies this approximation. The derivation is provided in Section 5.2.

We now consider the denominator of Equation 25. As in the analysis of the numerator,
we first decompose the denominator into two terms:∑

i,j /∈St1,t2

(
Gi,jt1,t2Q

i,j
t1,t2

)2
=
∑
i,j

(
Gi,jt1,t2Q

i,j
t1,t2

)2
−

∑
i,j∈St1,t2

(
Gi,jt1,t2Q

i,j
t1,t2

)2
. (31)

As before, we will handle each term separately. The first term on the right hand side of
Equation 31 can be reformulated as follows:

∑
i,j

(
Gi,jt1,t2Q

i,j
t1,t2

)2
=
∑
i,j

( 1
m

m∑
k=1

Xk,i
t1 X

k,j
t2

) 1∑
a,b=0

uit1,au
j
t2,b

2

= 1
m2

∑
i,j

 m∑
k,h=1

Xk,i
t1 X

k,j
t2 X

h,i
t1 X

h,j
t2

 1∑
a,b,c,d=0

uit1,au
j
t2,b
uit1,cu

j
t2,d


= 1
m2

m∑
k,h=1

∑
i

Xk,i
t1 X

h,i
t1

1∑
a,c=0

uit1,au
i
t1,c

∑
j

Xk,j
t2 X

h,j
t2

1∑
b,d=0

ujt2,bu
j
t2,d


= 1
m2

m∑
k,h=1

r̂k,h,covar
t1 r̂k,h,covar

t2 . (32)

A possible drawback of the summary statistics r̂k,h,covar
t is their large number. If the

linkage disequilibrium (LD) patterns within both studies are approximately the same as
in a reference population based on which LD patterns were computed, we can carry out
an approximate analysis with only a single summary statistics, as described in Section
5.1.
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Finally, the second term on the right hand side of Equation 31 can be easily computed by
a research group with access to the genotypes and covariates of overlapping individuals
(only covariate can suffice when using the approximation Gi,jt1,t2 ≈ 1). Otherwise, we
describe an approximation of this term in Section 5.2.

5.1 Approximate Summary Statistics without LD

Recall from Equation 32 that computation of the sum
∑
i,j

(
Gi,jt1,t2Q

i,j
t1,t2

)2
via summary

statistics requires summary statistics for every pair of variants. Here we describe an
approximation that requires only a single summary statistics, E

[
Qi,it,t

]
, and empirically

yields very accurate approximations.

The approximation consists of assuming independence between covariates and genetic
variants (technically, one needs to assume only that for every pair of individuals i,j and
pair of variants k, h, the covariates of individuals i,j are independent of the product
Xk,i
t1 X

h,i
t1 X

k,j
t2 X

h,j
t2 , which is a very mild assumption). Using this assumption and the

law of large numbers, the denominator of Equation 25 can be approximated as:

∑
i,j /∈St1,t2

(
Gi,jt1,t2Q

i,j
t1,t2

)2
≈ |{(i, j) | (i, j) /∈ St1,t2}|Ei,j /∈St1,t2

[(
Gi,jt1,t2Q

i,j
t1,t2

)2
]

≈ |{(i, j) | (i, j) /∈ St1,t2}|Ei,j /∈St1,t2

[(
Gi,jt1,t2

)2
]
Ei,j /∈St1,t2

[(
Qi,jt1,t2

)2
]

= |{(i, j) | (i, j) /∈ St1,t2}|Ei,j /∈St1,t2

[(
Gi,jt1,t2

)2
]
Ei,j /∈St1,t2


 1∑
a,b=0

uit1,au
j
t2,b

2


= |{(i, j) | (i, j) /∈ St1,t2}|Ei,j /∈St1,t2

[(
Gi,jt1,t2

)2
]
Ei,j /∈St1,t2

 1∑
a,b,c,d=0

uit1,au
i
t1,cu

j
t2,b
ujt2,d


= |{(i, j) | (i, j) /∈ St1,t2}|Ei,j /∈St1,t2

[(
Gi,jt1,t2

)2
]
Ei,j /∈St1,t2

[
Qi,it1Q

j,j
t2

]
. (33)

To proceed, we first make use of the fact that when the in-sample LD patterns in both
studies are the same, we have:

Ei,j /∈St1,t2

[(
Gi,jt1,t2

)2
]

= nt1nt2
m

E [`] , (34)

where E[`] is the unbiased estimate of the mean LD score among all genetic variants
in the data (see [5] for an explanation). Second, we use the fact that Qi,it1 , Q

j,j
t2 are

independent for i, j /∈ St1,t2 , as they depend only on the covariates of individuals i,j,
which are sampled from their respective distributions. Using these facts, Equation 33
can be approximated as:∑

i,j /∈St1,t2

(
Gi,jt1,t2Q

i,j
t1,t2

)2
≈ nt1nt2

m
E [`] E

[
Qi,it1

]
E
[
Qj,jt2

]
. (35)

We conclude that the denominator of the PCGC estimator (Equation 25) can be ap-
proximated as nt1nt2

m E [`] E
[
Qi,it1

]
E
[
Qj,jt2

]
.

Finally, we note that if the covariate-genotypes independence assumption above does not
exactly hold, one can obtain a better fit by assuming conditional independence given
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phenotypes, and then apply the approximation:

∑
i,j /∈St1,t2

(
Gi,jt1,t2Q

i,j
t1,t2

)2
≈ N cas,casE

[(
Gcas,cas
t1,t2 Qcas,cas

t1,t2

)2
]

+N cas,conE

[(
Gcas,con
t1,t2 Qcas,con

t1,t2

)2
]

+N con,casE

[(
Gcon,cas
t1,t2 Qcon,cas

t1,t2

)2
]

+N con,conE

[(
Gcon,con
t1,t2 Qcon,con

t1,t2

)2
]
,

(36)

where N cas,cas is the number of non-overlapping individuals in the two studies who are
cases for both traits, E

[(
Gcas,cas
t1,t2 Qcas,cas

t1,t2

)2
]
is the mean value of of (Gi,jt1,t2Q

i,j
t1,t2)2 for

a pair of cases in the two studies, and the other quantities are defined analogously.
One can then apply the approximation for each of the four summands separately. This
approximation is typically not required because overlapping individuals consist mainly
of shared controls.

5.2 Third Party Approximations

If two studies include overlapping individuals, the PCGC estimators cannot be computed
exactly by a third party with no access to the covariates of these overlapping individuals.
Here we propose a summary statistics based approximation. Recall that the denominator
of the PCGC estimator (Equation 25) can be approximated without access to individual-
level data using the approximation described in Section 5.1. We are therefore left with
the task of approximating the second term in the numerator of Equation 25, given by∑
i,j∈St1,t2

ỹit1 ỹ
j
t2G

i,j
t1,t2Q

i,j
t1,t2 ..

As a first step, we can approximate Gi,j ≈ 1 since i and j refer to the same individual,
which simplifies this term to

∑
i,j∈St1,t2

ỹit1 ỹ
j
t2Q

i,j
t1,t2 . We propose approximating this term

by approximating the expectation for every combination of the two phenotypes:

∑
i,j∈St1,t2

ỹit1 ỹ
j
t2Q

i,j
t1,t2 ≈

∑
yi

t1
,yj

t2
∈{0,1}

n
yi

t1
,yj

t2
t1,t2 E

[
ỹit1 ỹ

j
t2Q

i,j
t1,t2

∣∣∣ yit1 , yjt2] , (37)

where n
yi

t1
,yj

t2
t1,t2 is the number of overlapping individuals having phenotypes yit1 and yjt2 .

However, unlike before we cannot make independence assumptions because the terms
in the expectations refer to the same individuals, and therefore terms belonging to the
two studies are likely to use the same covariates.

Instead, we propose to use summary statistics of the mean covariates vector for every
combination of phenotypes, E

[
Ci
t1

;Cj
t2 | y

i
t1 , y

j
t2

]
. Typically this is feasible because over-

lapping individuals consist almost exclusively of controls. Using this information, we
can approximate the term E

[
ỹit1 ỹ

j
t2Q

i,j
t1,t2 | y

i
t1 , y

j
t2

]
via a first order Taylor expansion of

ỹit1 ỹ
j
t2Q

i,j
t1,t2 around the mean covariate values, respectively. Since the first-order Taylor

expansion is linear in the covariates, the approximate expectation is linear in the mean
covariates vector. Although the derivations are technically straightforward, they are
extremely tedious to write down explicitly. Nevertheless, it is not difficult to code these
computations algorithmically.
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6 Allele-frequency and LD Dependent Genetic Architec-
tures

The derivations in the sections above assume a genetic similarity matrix of the form
G = XXT /m. It is possible to consider alternative architectures, which assign different
weights to different SNPs based on their MAF levels, their LD-scores, or other properties
[6]. In this case, the genetic similarity matrix can be written as G = XWXT /M , where
W is an m×m diagonal matrix of SNP weights, and M =

∑
kW

kk is a normalization
factor which guarantees that the mean entry in the diagonal of the resulting matrix is
1.0. Assuming that the weights are known, it is straightforward to adapt PCGC and
PCGC-s for such architectures, as we now describe.

Adapting PCGC for alternative architectures is straightforward, by using the correct
(weighted) form of the genetic similarity entries Gi,jt1,t2 in Equation 25. To adapt PCGC-
s, we need to adapt the summary statistics in Equation 26 by (a) multiplying each
summary statistic zk,covar

t by
√
W kk/M , and (b) multiplying each summary statistic

r̂k,h,covar
t by

√
W kkW hh/M .

Instead of using the summary statistics r̂k,h,covar
t , we can approximate the denominator

of the modified form of Equation 25 (as described in Section 5.1) by replacing the average
LD score E[`] =

∑
k,h

(
r̂kh
)2
/m in Equation 35 with the term

∑
k,hW

kkW hh
(
r̂kh
)2
/M .

Hence, we can approximate the denominator of the PCGC-s estimator via:

nt1nt2
1
M

∑
k,h

W kkW hh
(
r̂kh
)2

E
[
Qi,it1

]
E
[
Qj,jt2

]
. (38)

Importantly, the above derivation demonstrates that we can carry out estimation using
the exact same summary statistics as in the unweighted version of PCGC-s. Hence, it is
possible to evaluate heritability and genetic correlation under various sets of modeling
assumptions given a single set of summary statistics.

7 Extension to Multiple Variance Components

The derivations in the sections above describe estimation of a single variance component.
The extension to multiple variance components is straightforward [3]. In the presence
of multiple variance components, the PCGC estimator is obtained via a multivariate
Taylor expansion of the form:

E
[
ỹit1 ỹ

j
t2 |C

i
t1 ,C

j
t2 , s

i
t1 , s

j
t2 , G

i,j
t1,t2

]
=

V∑
v=1

Gi,jt1,t2; vQ
i,j
t1,t2ρt1,t2; v +

V∑
v=1
O
((
Gi,jt1,t2; v

)2
)
, (39)

where V is the number of variance components, Gi,jt1,t2; v is the genetic similarity coeffi-
cient between individuals i and j according to variance component v and ρt1,t2; v is the
corresponding coefficient. The multivariate regression estimator is now given by:

ρ̂pcgc-multi
t1,t2 ,

(
(Zt1,t2)T Zt1,t2

)−1
(Zt1,t2)T Ỹ t1,t2 . (40)
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In Equation 40, Ỹ t1,t2 is a (nt1nt2 − |St1,t2 |)×1 vector of ỹit1 ỹ
j
t2 values for non-overlapping

individuals and Zt1,t2 is a (nt1nt2 − |St1,t2 |) × V matrix where column v is a vector of
Gi,jt1,t2; vQ

i,j
t1,t2 values for non-overlapping individuals.

We now describe how Equation 40 can be computed via summary statistics. We consider
the terms

(
(Zt1,t2)T Zt1,t2

)−1
and (Zt1,t2)T Ỹ t1,t2 separately.

We begin with the term (Zt1,t2)T Ỹ t1,t2 . This term is a vector with V elements, each
of which corresponds to the summation

∑
i,j /∈St1,t2

Gi,jt1,t2; vQ
i,j
t1,t2 ỹ

i
t1 ỹ

j
t2 . Following the

derivation in Equations 28 and 29, each such term can be computed via:∑
i,j /∈St1,t2

Gi,jt1,t2; vQ
i,j
t1,t2 ỹ

i
t1 ỹ

j
t2 = 1

mv

∑
k∈v

zk,covar
t1 zk,covar

t2 −
∑

i,j∈St1,t2

Gi,jt1,t2; vQ
i,j
t1,t2 ỹ

i
t1 ỹ

j
t2 , (41)

where mv is the number of variants used to compute genetic similarity coefficient v and
k iterates over all variants participating in this genetic similarity coefficient. As before,
the second term on the right hand side can be computed by a party with access to the
covariates of overlapping individuals, using the summary statistics wit in Equation 27 or
using the approximations described in Section 5.2.

The term
(
(Zt1,t2)T Zt1,t2

)
is a V × V matrix, wherein each entry

(
(Zt1,t2)T Zt1,t2

)v,w
corresponds to the summation

∑
i,j /∈St1,t2

Gi,jt1,t2; vG
i,j
t1,t2;w

(
Qi,jt1,t2

)2
. Following the deriva-

tion in Equations 31 and 32, this term can be computed via summary statistics as follows:∑
i,j /∈St1,t2

Gt1,t2; vGt1,t2;w
(
Qi,jt1,t2

)2
=

1
mvmw

∑
k∈v,h∈w

r̂k,h,covar
t1 r̂k,h,covar

t2 −
∑

i,j∈St1,t2

Gt1,t2; vGt1,t2;w
(
Qi,jt1,t2

)2
. (42)

The second term on the right hand side can be computed by a party with access to the
covariates of overlapping individuals, or using approximations similar to those described
in Section 5.1.

8 Estimating the Liability Variance Due to Covariates

Heritability estimation requires dividing the genetic variance estimator of study t,
(
σ̂2
g

)
t
,

by an estimate of the liability variance var(ait) = 1 + var
(
(Ci

t)Tβt
)
. However, since

the data we have is ascertained, we cannot directly estimate β. Instead we use the
non-parametric variance estimator proposed in [3]. Namely, we employ the law of total
variance to decompose var(ait) as follows:

var(ait) = E
[
var

(
ait

∣∣∣ (Ci
t)Tβt

)]
+ var

(
E
[
ait

∣∣∣ (Ci
t)Tβt

])
. (43)

The first term on the right hand side of Equation 43 is equal to one by definition, so
our task is estimating the second term, which is equal to var

(
(Ci

t)T )βt
)
by definition.

Since τti , τt + (Ci
t)Tβt, we can instead estimate var(τti). We employ the law of total

variance again to obtain:

var(τti) = E
[
var

(
τti

∣∣∣ yi)]+ var
(
E
[
τti

∣∣∣ yi]) . (44)

27



Following the derivation in [3] we can estimate the right hand side of Equation 44 as
follows:

E
[
var

(
τti

∣∣∣ yit)] = Ktvar(τ it | yit = 1) + (1−Kt)var(τ it | yit = 0).

var
(
E
[
τti

∣∣∣ yit]) = Kt(1−Kt)
(
E
[
τ it

∣∣∣ yit = 1
]
− E

[
τ it

∣∣∣ yit = 0
])2

. (45)

The affection cutoffs τti are conditionally independent of the selection variables sit given
the phenotypes yit. We can therefore estimate the expectations and variances in Equation
45 by their sample estimates.

Consequently, heritability estimation via summary statistics (without having access to
genotype or phenotype data) requires the summary statistic var(τti).

9 Logistic Regression based Summary Statistics

Case control studies often report logistic regression rather than linear regression based
Z-scores. We demonstrate here that although the PCGC estimator should ideally be
computed with linear regression Z-scores, logistic regression Z-scores are approximately
the same as linear regression Z-scores under large sample sizes. Thus, the use of logistic
regression based summary statistics is expected to yield accurate estimates as well,
as verified in our simulations. Our derivation here assumes that variants are single
nucleotide polymorphisms (SNPs) and does not consider covariates. The use of logistic
regression based summary statistics with covariates leads to inaccurate estimates, as
demonstrated in the main text. We note that a somewhat similar treatment was provided
in [7], but this treatment only concerned the estimated effect sizes, whereas here we are
concerned with the Z-scores of the estimates.

Recall that linear regression Z-scores are given by:

Zk,linear
t ,

1
√
nt

∑
i

ỹitX
k,i
t . (46)

Logistic regression Z-scores are given by:

Zk,logistic
t ,

β̂k√
Var(β̂k)

, (47)

where β̂k is the estimate of the logistic regression coefficient of SNP k. We show that
under several mild assumptions Zk,logistic

t ≈ Zk,linear
t under large sample sizes.

Our derivation is carried out in two stages. First, we apply a Taylor expansion to
show that β̂k ≈ Zk,linear

t√
ntPt(1−Pt)

, where Pt is the case-control proportion in study t. Then,

we approximate Zk,logistic
t via a Taylor expansion around β̂k = 0 and incorporate the

estimate of β̂k from the first stage to complete the derivation.

First stage: We now demonstrate that β̂k ≈ Zk,linear
t√

ntPt(1−Pt)
under large sample sizes.

We consider a logistic regression model with the covariates vector Xk
t and an intercept.

Unfortunately, logistic regression does not admit a closed form solution. To circumvent
this difficulty, we will approximate the solution by using a profile log likelihood instead
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of the true log likelihood. Namely, we will first find the maximum likelihood estimate
(MLE) of the intercept coefficient βk0 under the assumption βk = 0 and then express
the MLE of βk as a function of β̂k0 and of Zk,linear

t . This approximation is likely to be
accurate if βk ≈ 0, which is likely to hold for polygenic traits.

Finding the MLE of βk0 under the assumption βk = 0 is easy. The log likelihood is:

`(βk0 ) = −ntPt log(1 + exp(−βk0 ))− nt(1− Pt) log(1 + exp(βk0 )), (48)

and after differentiating it and setting the derivative to zero, we obtain:

β̂k0 = log(Pt/(1− Pt). (49)

To proceed we assume that under large sample sizes, logistic regression and linear re-
gression estimate the same conditional mean function. The approximation is accurate
when the first order approximation of the logistic function as a function of X is close to
the actual function, which is the case when βk ≈ 0 (more generally, the approximation
holds when both the logistic and linear approximation of the true function estimate a
very small coefficient for the tested variant). Formally, denote Elinear

[
ỹti |X

k,i
t

]
as the

linear regression estimated conditional mean of ỹti given Xk,i
t , and Elogistic

[
yti |X

k,i
t

]
as the logistic regression estimated conditional mean of yit given X

k,i
t . Then we assume

that for every value of Xk,i
t :

Elinear[ỹit |X
k,i
t ] = Elinear

[
yit − Pt√
Pt(1− Pt)

∣∣∣∣∣Xk,i
t

]

= Elinear[yit |X
k,i
t ]− Pt√

Pt(1− Pt)

≈ Elogistic[yit |X
k,i
t ]− Pt√

Pt(1− Pt)
. (50)

This assumption enables us to express β̂k as a function of Zk,linear
t .

We begin by simplifying the logistic regression estimate. According to the definition of
logistic regression, we have:

Elogistic[yit|X
k,i
t ] = P (yit = 1|Xk,i

t ) = 1
1 + exp(−Xk,i

t β̂k − β̂k0 )
. (51)

We approximate this quantity via a Taylor expansion around β̂k = 0 and then plug in
the approximated value of β̂k0 from Equation 49 to obtain:

Elogistic[yit|X
k,i
t ] ≈ 1

1 + exp(−βk0 )
+ Xk,i

t exp(−βk0 )(
1 + exp(−βk0 )

)2 β̂k
≈ 1

1 + (1− Pt)/Pt
+ Xk,i

t (1− Pt)/Pt
(1 + (1− Pt)/Pt)2 β̂

k

= Pt + Pt(1− Pt)Xk,i
t β̂k. (52)

We now consider a linear regression model. Denoting γ̂k as the coefficient estimate of
Xk,i
t in the regression of ỹit on X

k,i
t , we have:

γ̂k =
√
nt

Zk,linear
t∑
i

(
Xk,i
t

)2 ≈
Zk,linear
t√
nt

, (53)
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where we made the approximation
∑
i

(
Xk,i
t

)2
≈ nt. Although this it not guaranteed to

hold in case-control studies where the allele frequencies are different from the population
frequencies, the approximation remains accurate under high levels of polygenicity where
each SNP exerts a very small effect on the phenotype. Therefore, the linear regression
estimate of the conditional mean is closely approximated as follows:

Elinear[ỹit |X
k,i
t ] = Xk,i

t γ̂k ≈ Xk,i
t

Zk,linear
t√
nt

. (54)

Finally, we combine Equations 52 and 54 into Equation 50 and rearrange to obtain:

β̂k ≈ Zk,linear
t√

ntPt(1− Pt)
. (55)

This completes the derivation.

Second stage: In the second stage we demonstrate that Zk,logistic
t ≈ Zk,linear

t by approx-
imating Zk,logistic

t via a Taylor expansion around β̂k = 0. We begin by deriving Var(β̂k).
Define X̃k

t as a matrix with two columns, where the first column contains ones and the
second column contains Xk

t . The observed information matrix is given by
(
X̃k
t

)T
D X̃k

t ,
where D is given by:

D = diag
((

1 + exp
(
−Xk,i

t β̂k − β̂k0
)−1

)(
1 + exp

(
Xk,i
t β̂k + β̂k0

)−1
))

. (56)

The covariance matrix
((

X̃k
t

)T
D X̃k

t

)−1
can be computed analytically using the for-

mula for inversion of a 2× 2 matrix. Namely, Var(β̂k) is given by:

Var(β̂k) =
∑
iD

i,i(∑
iD

i,i
) (∑

iD
i,i(Xk,i

t )2
)
−
(∑

iD
i,iXk,i

t

)2 . (57)

To write Var(β̂k) in an analytic form, denote n0
t , n1

t and n2
t as the number of individuals

with 0, 1 and 2 minor alleles in SNP k, respectively. Further denote D0, D1 and D2 as
the values of the diagonal entries of D corresponding to individuals with 0, 1 and 2 minor
alleles, respectively (note that the ith diagonal entry in D depends only on the number
of minor alleles carried by individual i). Finally, denote Xk

t,0, Xk
t,1 and Xk

t,2 as the values
of the genotypes carried by individuals with 0, 1 and 2 minor alleles, respectively, after
normalization. Using these notations, we can rewrite Equation 57 as follows:

Var(β̂k) =
∑2
a=0 n

a
tD

a(∑2
a=0 n

a
tD

a
)(∑2

a=0 n
a
tD

a
(
Xk
t,a

)2
)
−
(∑2

a=0 n
a
tD

aXk
t,a

)2 . (58)

We can now incorporate Equation 58 into Equation 47 and then compute a first order
Talylor expansion of Zk,logistic

t around β̂k = 0. After also using the approximation of
βk0 from Equation 49 and applying some algebra, the first order Taylor approximation
takes the form:

Zk,logistic
t ≈

Pt

√(∑2
a,b=0,a 6=b n

a
tn

b
t

(
Xk
t,a

)2
)
− 2

(∑2
a,b=0,a<b n

a
tn

b
tX

k
t,aX

k
t,b

)
√
ntPt/(1− Pt)

β̂k.

=
Pt

√∑2
a,b=0,a<b n

a
tn

b
t

(
Xk
t,a −Xk

t,b

)2

√
ntPt/(1− Pt)

β̂k. (59)
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Next, we use the fact that the genotypes were initially coded as 0,1,2 and then standard-
ized by substracting twice the minor allele frequency pk and dividing by

√
2pk(1− pk).

We therefore have:

1√
2pk(1− pk)

= Xk
t,2 −Xk

t,1 = Xk
t,1 −Xk

t,0 =
Xk
t,2 −Xk

t,0
2 . (60)

Using this fact, Equation 59 can be rewritten as:

Zk,logistic
t ≈

Pt

√
n0
tn

1
t + n1

tn
2
t + 4n0

tn
2
t√

ntPt/(1− Pt)
√

2pk(1− pk)
β̂k. (61)

To proceed, we note that under large sample sizes and assuming Hardy-Weinberg equi-
librium (HWE), we have n0

t ≈ nt(1−pk)2, n1
t ≈ 2ntpk(1−pk), n2

t ≈ nt(pk)2. In practice,
HWE and these approximations do not hold exactly in case-control studies, but the de-
viation is very small for highly polygenic traits where each SNP has a small effect. By
incorporating these approximations into Equation 61, we obtain:

Zk,logistic
t ≈

Ptnt
√

2pk(1− pk)3 + 2(pk)3(1− pk) + 4(pk)2(1− pk)2√
ntPt/(1− Pt)

√
2pk(1− pk)

β̂k.

=
Ptnt

√
(1− pk)2 + (pk)2 + 2pk(1− pk)√

ntPt/(1− Pt)
β̂k

=
√
ntPt(1− Pt)β̂k. (62)

Finally, we combine Equations 55 and 62 to obtain:

Zk,logistic
t ≈

√
ntPt(1− Pt)

Zk,linear
t√

ntPt(1− Pt)
= Zk,linear. (63)

This completes the derivation.

10 Additional Summary Statistics

In [2] it is proposed to use LD score regression in case control studies by treating each
SNP as a pair of binary variables, which enables using summary statistics of the form:

Zk,binary
t,m ,

√
ntPt(1− Pt)

(
p̂k,cas
t,m − p̂k,con

t,m

)
√
p̂kt,m

(
1− p̂kt,m

) , (64)

where Zk,binary
t,m is the summary statistics of the maternal allele of SNP k in study t,

p̂kt,m is the in-sample maternal allele frequency of SNP k in study t, and p̂k,cas
t,m , p̂k,con

t,m

are its in-sample maternal allele frequency among cases and controls, respectively. The
paternal allele summary statistic Zk,binary

t,p is defined analogously. [2] argue that using
LD score regression with these summary statistics and a constrained intercept yields
approximately the correct genetic correlation estimate. Here we reach the same conclu-
sion, by showing that these summary statistics are approximately proportional to linear

31



regression-based summary statistics of maternal and paternal alleles, which can prov-
ably be used to estimate genetic correlation owing to the relation to PCGC discussed
in the main text.

We begin by establishing some notations. Denote Xk,i
t,m, X

k,i
t,p as the maternal and pa-

ternal alleles of SNP k of individual i in study t, respectively, where Xk,i
t,m, X

k,i
t,p ∈ {0, 1}.

Further denote Xk,i
t = Xk,i

t,m +Xk,i
t,p as the un-standardized value of SNP k of individual

i in study t, and denote X̃k,i
t,m = Xk,i

t,m−pk

√
2pk(1−pk)

as the standardized value of the maternal

allele, and denote X̃k,i
t,p = Xk,i

t,p−pk

√
2pk(1−pk)

analogously for the paternal allele, where pk is the
minor allele frequency of SNP k. Note that the notations here are slightly different from
those used in the rest of the paper and the Supplemental material, where we defined
Xk,i
t as the standardized value of SNP k. This modification facilitates the notations in

this section.

Using these notations, we define the maternal, paternal and standard linear regression
summary statistics of the form:

Zk,linear
t,m ,

1
√
nt

∑
i

X̃k,i
t,mỹ

i
t

Zk,linear
t,p ,

1
√
nt

∑
i

X̃k,i
t,p ỹ

i
t.

Zk,linear
t ,

1
√
nt

∑
i

(
X̃k,i
t,m + X̃k,i

t,p

)
ỹit. (65)

In the large sample limit we have:
∑
k

Zk,linear
t1,m Zk,linear

t2,m +
∑
k

Zk,linear
t1,p Zk,linear

t2,p ≈ 1
2
∑
k

Zk,linear
t1 Zk,linear

t2 . (66)

The approximation is obtained by applying the approximation that for each r ∈ {m, p}
the sum

∑
k Z

k,linear
t1,r Zk,linear

t2,r is the same in the large sample limit. This sum is used
in the numerator of the PCGC-s covariance estimator described in the main text. We
conclude that the sum of the maternal and paternal linear regression-based summary
statistics can be used to estimate genetic correlation, since genetic correlation is a ratio
and is therefore invariant to scaling by 1

2 .

We now show that in the large sample limit we have:

Zk,binary
t,m ≈ 2

√
2Pt(1− Pt)Zk,linear

t,m +

√
ntpkPt(1− Pt)√

(1− pk)
(2Pt − 1)

Zk,binary
t,p ≈ 2

√
2Pt(1− Pt)Zk,linear

t,p +

√
ntpkPt(1− Pt)√

(1− pk)
(2Pt − 1). (67)

These approximations demonstrate that Zk,binary
t,m is approximately proportional to Zk,linear

t,m

when the case-control ratio Pt is close to 1
2 , and can therefore be used to estimate genetic

correlation as well. All the derivations henceforth refer to the maternal allele but are
equally applicable to the paternal allele.
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We first rewrite Equation 65 as follows:

Zk,linear
t,m = 1

√
nt

∑
i

ỹti
Xk,i
t,m − pk√

2pk(1− pk)

= 1
√
nt

∑
i

ỹti
Xk,i
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= 1
√
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∑
i

yit − Pt√
Pt(1− Pt)

Xk,i
t,m√

2pk(1− pk)

=
∑
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i
tX

k,i
t,m − Pt

∑
iX

k,i
t,m√

2ntPt(1− Pt)pk(1− pk)

≈
∑
i y
i
tX

k,i
t,m − ntPtpk√

2ntPt(1− Pt)pk(1− pk)
. (68)

Here, the first equality uses the definition of X̃k,i
t as a standardized SNP, the second

equality uses the fact that
∑
i ỹti = 0 by definition, the third equality uses the definition

of ỹti , the fourth equality is a straightforward expansion and the final approximation
uses a large sample approximation.

Next, we rewrite Equation 64 as follows:

Zk,binary
t,m ,

√
ntPt(1− Pt)

(
p̂k,cas
t,m − p̂k,con

t,m

)
√
p̂kt,m

(
1− p̂kt,m

)
≈
√
ntPt(1− Pt)√
pk (1− pk)

∑
iX
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t,my
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∑
iX

k,i
t,m(1− yi)

nt

=
√
Pt(1− Pt)√
ntpk (1− pk)

(
2
∑
i

Xk,i
t,my

i −
∑
i

Xk,i
t,m

)

≈
√
Pt(1− Pt)√
ntpk (1− pk)

(
2
∑
i

Xk,i
t,my

i − ntpk
)
. (69)

Here, both approximations are based on large sample assumptions and the assumption
that the in-sample maternal allele frequency p̂kt,m is approximately the same as the
population-level allele frequency pk for highly polygenic traits.

Finally, we combine Equations 68 and 69 to obtain:

Zk,binary
t,m ≈

√
Pt(1− Pt)√
ntpk (1− pk)

(
2
(
Zk,linear
t,m

√
2ntPt(1− Pt)pk(1− pk) + ntPtp

k
)
− ntpk

)

= 2
√

2Pt(1− Pt)Zk,linear
t,m +

√
ntpkPt(1− Pt)√

(1− pk)
(2Pt − 1).

(70)

We conclude that Zk,binary
t,m is approximately proportional to Zk,linear

t,m if the sample case-
control ratio Pt is close to 0.5. Therefore, genetic correlation estimates are likely to be
accurate when using the summary statistics Zk,binary

t,m , Zk,binary
t,p .
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11 The Effect of Ignoring Covariates

Here we prove the result reported in the main text, that under certain conditions,
omitting measured covariates does not bias heritability or genetic correlation estimates.
Specifically, the estimates remain unbiased if the covariate effects are normally dis-
tributed and are uncorrelated with the genetic effect.

The proof proceeds as follows. Recall that the liability for individual i in study t is
given by ait = git + eit +

(
Ci
t

)T
βt, where Ci

t is a vector of covariates and var(git) +
var(eit) = 1. If we treat the term

(
Ci
t

)T
βt as an unobserved random variable and

assume it is uncorrelated with the genetic effect, then the liability variance is given by
var (gti) + var

(
eti
†
)
, where eti† = eit +

(
Ci
t

)T
βt. If we additionally assume that eti†

is normally distributed, then all the model assumptions hold except for the constraint
var

(
git
)
+var

(
eti
†
)

= 1 (the variables eti† are by definition independently and identically
distributed).

Since the liability is unobserved, it is unidentifiable up to multiplication. We can there-
fore define a new model in which covariates are omitted, and estimate the model param-
eters in this new model. Denote git

∗ and eti
∗ as the genetic and environmental effects

in this new model, respectively. We proceed by making the assumption var
(
git
∗) +

var (eti∗) = 1. Define σ2
g
∗
t

= var
(
git
∗), σe2∗t = var

(
eit
∗), ρ∗t1,t2 = cov

(
git1
∗
, git2

∗) as the ge-
netic variance, the environmental variance and the genetic covariance in this new model,
respectively. Then we have:

σ2
g
∗
t

= var
(
git
)

var
(
git
)

+ var (eti†)

σe2
∗
t =

var
(
eti
†
)

var
(
git
)

+ var (eti†)

ρ∗t1,t2 = ρt1,t2√
var

(
git1
)

+ var
(
eit1
†)√var

(
git2
)

+ var
(
eit2
†) . (71)

Consequently, heritability and genetic correlation in this new model are given by:

h2∗
t ,

σ2
g
∗
t

1 = var
(
git
)

var
(
git
)

+ var (eti†)
= var

(
git
)

var
(
ait
) = h2

t

rgt1,t2
∗ ,

ρ∗t1,t2√
σ2
g
∗
t1
σ2
g
∗
t2

= ρt1,t2√
var

(
git1
)
var

(
git2
) = rgt1,t2 . (72)

We conclude that when the assumptions of covariate normality and lack of correlation
with genetic effects hold, heritability and genetic correlation in the omitted-covariates
model is the same as in the covariates model. Therefore, estimates of these quantities
are unbiased when these assumptions hold.

12 Real Data Analysis

We performed stringent quality control preprocessing to avoid genotyping artifacts from
biasing the results. SNPs were excluded if they had minor allele frequency < 5%,
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missingness rates > 1%, a significantly different missingness rate between cases and
controls, or a significant deviation from Hardy Weinberg equilibrium among the controls
group. In the Wellcome Trust Case Control Consortium (WTCCC) analysis, controls
consisted of individuals from the national blood service control group. Individuals were
excluded from the analysis if they were in the WTCCC exclusion lists or if they had
missingness rates > 1%. We further excluded individuals with a standardized similarity
coefficient > 0.05 with at least one other individual, by greedily removing individuals
according to the number of related individuals they had, until no related individuals
remained. In Table 1 and in Supplemental Tables S3 and S5 we additionally projected all
genotype vectors to the subspace that is orthogonal to the top 10 principal components
to prevent spurious results due to population structure. However, we caution that the
analysis is sensitive to this procedure (see next section).

The analysis of each pair of WTCCC traits included approximately 1,950 cases, 1,450
shared controls and 275,000 SNPs that passed the quality filtering in both data sets.
Following [1], the assumed prevalence for the traits was Crohn’s disease (CD, 0.1%), type
1 diabetes (T1D; 0.5%), bipolar disorder (BD, 0.5%), rheumatoid arthritis (RA; 0.75%),
type 2 diabetes (T2D; 3%), coronary artery disease (CAD; 3.5%) and hypertension (HT;
5%).

The schizophrenia data set included 1745 cases and 2586 controls. The bipolar disorder
data set included 1268 cases and 3707 controls. 2566 controls were shared between the
two data sets. After quality control, the analysis included 635,339 SNPs shared between
the two data sets. These SNPs were taken from genotyped and imputed data provided
by the Psychiatric Genomics Consortium (PGC), and filtered to ensure that no two
SNPs had r2 > 0.9. The MHC region was excluded from all analyses of these disorders.
The assumed population prevalence for both disorders was 1%.

When analyzing the PGC datasets according to the LDAK model assumptions [6],
we first computed SNP LD-weightings using LDAK [6], and then multiplied the LD-
weighting of SNP j by (pj(1−pj))0.75 (where pj is the MAF of SNP j) to obtain its final
weight. We then used these weights to compute a weighted genetic similarity coefficient
between every pair of individuals. These weighted genetic similarity coefficients were
used in the PCGC-s estimator, as explained in Section 6. LDAK estimated the weight
of 244,640 SNPs as zero, which decreased the number of SNPs used in the estimation
to 390,699. The LDAK commands we used to compute weightings were:

ldak5 . l i nux −−b f i l e <plink_fi le_name>
−−cut−weights <file_name>

ldak5 . l i nux −−b f i l e <plink_fi le_name>
−−ca l c−weights−a l l <file_name>

Every SNP k was standardized by subtracting 2pk and dividing by
√

2pk(1− pk), where
pk is its minor allele frequency. The minor allele frequencies were computed using
Hapmap 3 data rather than from the data itself, To ensure that the summary statistics
in both data sets use the same normalization.

Sex was used as a covariate in all analyses. The top 10 principal components were used
as additional covariates in Table 1 and in Supplemental Tables S3 and S5. To use SNPs
from the MHC region as covariates for T1D and RA, we ranked all SNPs in chromosome
6 between loci 25963966 and 34013250 (hg18) according to their correlation with the
phenotype and then selected the 24 top SNPs (for T1D) and the top 31 SNPs (for RA)
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by maximizing the area under the receiving operating characteristic curve (AUC) via a
five-fold cross validation using a logistic regression model. All SNPs in the MHC region
were excluded from the genetic similarity matrix computations of T1D and RA.

LD scores were computed in-sample using the overlapping controls with a 0.1 centiMor-
gan window via the ldsc software3 and were used by both PCGC-s-LD and LDSC. In
Table 2, LDSC used a predetermined intercept and weighted all summary statistics by
the inverse of the LD scores as recommended in [2], but a second weighting was not
performed (see the discussion in the main text for further elaboration on these issues).
The results with two rounds of weighting were similar (Table S5).

In all analyses, confidence intervals were computed using a block jackknife procedure
with 200 blocks of SNPs, as in LDSC [2].

13 The Effects of Preprocessing the Data

The main text compares the performance of LDSC with omitted covariates to PCGC
with included covariates. Under ideal conditions, LDSC with omitted covariates is
almost equivalent to PCGC with omitted covariates, and this indeed was the case under
the simulation studies. However, this equivalence can break down due to preprocessing
of the data. Here we provide a short discussion of these issues. We consider LDSC
invoked with weighting of the test statistics by the inverse of the LD score (but not by
their posterior variance) and with a predetermined intercept. Recall that the PCGC-s
and LDSC estimators in the absence of covariates are given by:

ρ̂pcgc-s
t1,t2 =

√
nt1nt2
m

∑m
k=1 z

k
t1z

k
t2 −

∑
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ỹit1 ỹ
j
t2G

i,j
t1,t2

nt1nt2
m2

∑m
k,h=1 r̂

k,h
t1 r̂k,ht2 −

∑
i,j∈St1,t2

(
Gi,jt1,t2

)2 . (73)

ρ̂ldsc
t1,t2 =

√
nt1nt2
m

∑m
k=1 z

k
t1z

k
t2 −

∑
i,j∈St1,t2

ỹit1 ỹ
j
t2

nt1nt2
m E [`]

. (74)

Here, St1,t2 is the set of pairs of indices i, j that refer to the same individual in the two
studies, and E [`] is the mean LD score among all variants in the study.

If both studies used the exact same preprocessing prior to computing the test statistics,
Equations 73 and 74 are almost equivalent: The second term of the numerator of Equa-
tion 74 (the so-called LDSC intercept) very closely approximates the second term of the
numerator of Equation 73, because the genetic similarity coefficient of an individual with
herself is typically very close to 1.0 when using a large number of variants. Furthermore,
the denominator of Equation 74 is an unbiased estimator of the denominator of Equation
73 when the LD patterns in the two studies are the same as in a reference population
from which LD scores was computed [5]. The two aforementioned assumptions are un-
likely to hold exactly under case-control sampling, but our simulation studies indicate
that under a highly polygenic trait model, the deviation from these assumptions is very
small.

Unfortunately, the two assumptions can be violated when the two studies differ in the
preprocessing of the data. Namely, the genotype distribution in the two studies can
differ when using different SNP normalizations or when regressing principal components
out of the genotypes.

3https://github.com/bulik/ldsc
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We first consider the effect of different normalization of SNPs. Under ideal conditions,
every SNP k is standardized by substracting 2pk and dividing by

√
2pk(1− pk), where

pk is its minor allele frequency. However, pk is an unknown parameter that needs to be
estimated from data. Many studies estimate this value from the sample and thus use a
a study-specific normalization. This can lead to situations where the genetic similarity
coefficient of an individual shared between two studies, given by

∑
kX

k,i
t1 X

k,j
t2 /m (where

i and j refer to the same individual) can deviate from 1.0. Although the deviation is
typically small (less than 0.03 on average in the analysis of the WTCCC data), the
LDSC estimator is very sensitive to such small deviations.

Regression of principal components can also affect the approximate equivalence between
Equations 73 and 74. Ref. [5] argues that regression of principal components is likely
to have a minimal effect on short-range LD patterns in the data, and thus advocates
estimating LD using a limited window size. However, regression of PCs can lead to small
deviations in the genetic similarity coefficient estimates of an individual with herself from
1.0, which can severely affect the LDSC intercept.

We note that although genetic similarity coefficient estimates of an individual with
herself that deviate from 1.0 are biased estimators, treating these genetic similarity
coefficients as if they were 1.0, without also correcting the first part of the numerator
accordingly, can increase rather than decrease the bias of ρ̂ldsc

t1,t2 .

We conclude that estimating variance components via summary statistics is sensitive
to preprocessing. We therefore recommend that researchers provide summary statistics
that can minimize the bias due to preprocessing, by enabling other researchers to repli-
cate the preprocessing procedure. Namely, we recommend that researchers publish the
in-sample LD information of their samples after normalization and regression of princi-
pal components. We further recommend that researchers normalize SNPs according to
published minor allele frequencies based on a reference population rather than in-sample
estimates. Finally, we recommend that researchers publish the estimated principal com-
ponents so that researchers with access to overlapping individuals can replicate the
preprocessing exactly for these overlapping individuals. We carried out these steps in
the results reported in the manuscript.

14 Simulations

The simulation procedure consisted of first generating SNPs with LD patterns and then
generating phenotypes based on these SNPs. Here we describe these steps.

The simulation of LD is an active research topic, but existing simulation require an
elaborate model of population history [8], which is beyond the scope of our study. The
use of real genotypes is hardly an option, because simulation of case-control studies
requires first obtaining a population sample with millions of individuals and then down-
sampling cases and controls. Here we used a simple model based on a Gaussian field
with a single parameter controlling the degree of LD, similarly to other simulations of
case-control studies [9]. Briefly, we first sampled a minor allele frequency for each SNP
k in the range [0.05,0.5]. Afterwards, two independent vectors vm,vp corresponding to
maternal and paternal chromosomes were sampled for each individual from a zero mean
multivariate normal distribution with a covariance matrix R obeying Rkh = θ|k−h|,
where θ ∈ [0, 1] is a tunable parameter. Finally, the maternal and paternal alleles of
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each SNP k were set to the minor allele if vkm and vkp exceeded the normal distribution
percentile corresponding to their respective MAF. The normal vectors were generated
without explicitly computing the matrix R, using the well known result that a first
order normal autoregressive process with autocorrelation parameter θ has the covariance
matrix R [10].

Each SNP was first encoded as a vector of {0,1,2} (corresponding to the number of minor
alleles) and then standardized to have a zero mean and unit variance in the population.

The two effects of each SNP were sampled from N
(

0,
σ2

gt1
/m ρt1,t2/m

ρt1,t2/m σ2
gt2

/m

)
, where m is the

number of SNPs.

Binary covariates were generated as vectors of {0,1} and then standardized. Covariate
effects were generated in several stages. First, the effect of each covariate j in study t, βjt ,
was sampled from N (0, 1). Afterwards, the effect of the first covariate was multiplied
by a parameter w ≥ 1. Finally, all effects βjt were scaled by a constant to ensure
that the contribution of the covariates to the liability variance,

∑
j

(
βjt

)2
, yields the

desired heritability level. This procedure enables tuning the normality of the aggregated
covariates effect via the parameter w; Values of w close to 1 yield an approximately
normal distribution of the aggregate effect.

The liability of every individual was computed as the weighted sum of the SNPs and
the covariates multiplied by their effects, and an environmental term sampled from
N
(
0, 1− σ2

g t

)
. The affection cutoff was determined empirically from the data as the

1−K percentile of the liabilities, whereK was the simulated prevalence level. Individuals
with liability greater than the affection cutoff were marked as cases.

In each experiment we first generated a population of size nt/Kt (where nt is the desired
sample size and Kt is the trait prevalence) and then sampled the desired number of cases
and controls from this population.

To generate simulations with MAF and LD-dependent SNP weightings, we made several
modifications to the simulations algorithm. First, we divided the SNPs in to 10 different
LD blocks, where the correlation between the Gaussian fields in each LD block b is
a different number θb, with θb ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95). This was
done in order for some SNPs to have significantly different LD scores (and thus different
weights) than the others. Second, the SNP effects were sampled from a MAF and
LD-dependent distribution, using the LDAK model [6]. Specifically, the effect of every
SNP k, βk, was generated from a zero-mean normal distribution with variance (pk(1−
pk))0.75wk/M , where the weights wk were selected to minimize the average L2 norm of
the quantity 1−

∑m
k=1

(
rkj
)2
wk across all SNPs j.

We computed the LDAK weights using the LDAK software [6]. Specifically, after creat-
ing an (unascertained) population of individuals, we created a plink file for a randomly
selected subset of 10,000 individuals, and then computed the SNP weights by invoking
LDAK with the options:

ldak5 . l i nux −−b f i l e <plink_fi le_name>
−−no−th in YES −−cut−weights <file_name>
ldak5 . l i nux −−b f i l e <plink_fi le_name>
−−ca l c−weights−a l l <file_name> −−quick−weights YES.

We used the quick-weights option to expedite the simulation studies (which encompasses
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hundreds of different simulations). We note that our results demonstrate that PCGC
can be adapted for different genetic architectures, and so the specific weight values are
not of central importance for this demonstration.

Unless otherwise stated, all simulated datasets consisted of two studies of two traits
with 1% prevalence, 50% heritability and 50% genetic correlation, with each study
having 2,000 cases, 1,000 unique and 1,000 overlapping controls, 10,000 single nucleotide
polymorphisms (SNPs) with a correlation of between 25% and 90% between adjacent
SNPs. In most simulations all SNPs influenced the phenotype, though we verified that
relaxing this assumption does not affect the results (Figure S10). 100 simulations were
conducted for each unique combination of settings.

15 Use of Alternative Methods

Here we describe how LDSC and REML were used in the results section.

REML estimates were computed via GCTA [11]. Specifically, heritability was estimated
via the following two commands:
gcta64 −−b f i l e <file_name> −−make−grm −−out <file_name>
gcta64 −−grm <file_name> −−reml−b ivar −−pheno <phenotypes_f i l e>

−−reml−bivar−preva l ence <t r a i t 1 preva lence> <t r a i t 2 preva lence>
−−qcovar <cova r i a t e s f i l e >

LDSC estimates in the real data analysis were computed via the command:
python l d s c . py −−w−ld <file_name> −−r e f−ld <file_name>

−−rg <sumstats1>,<sumstats1>
−−samp_prev <sample_prevalence1 >,<sample_prevalence2>
−−pop−prev <prevalence1 >,<preva lence2> −−M<#var iant s>

When using a predetermined intercept, we also added the arguments:
i n t e r c ep t−h2 1 ,1 −−i n t e r c ep t−gencov 0 , <in t e r c ep t >

where the provided intercept was computed as described in [2].
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