

Supplementary Figure Legends

Figure E1. *Ex vivo* generation and proliferation of endogenous IL-5-independent IL-18differentiated eosinophils. The schematic protocol used to generate eosinophils from CD34⁺ LDEBM myeloid precursors in response to rIL-5 or rIL-18 (A). Differentiated CCR3 positive live cells were selected (B), based on isotype matched Siglec-F and CCR3 anti-IgG stained cells (C) to detect CCR3⁺/Siglec-F double positive eosinophils in response to rIL-5 and rIL-18 from the LGEBM of *IL-18^{-/-}*, *IL-5^{-/-}* and WT mice (D). The average percentage of eosinophils differentiated from multiple independent experiments in response to rIL-5 and rIL-18 are presented as the mean \pm SD, n=5 (E). A representative flow cytometer analysis of one-week rIL-18 differentiated from CD34⁺ LDEBM in response to another week with rIL-5, n=3 (F).

Figure. E2. CD101⁺CD274⁺ eosinophils are not detected in IL-18 gene deficient mice following the induction of *A. fumigatus*-induced experimental asthma. A representative photomicrograph of anti-MBP antibody immunostained lung sections shows eosinophils in *IL-5^{/-}*, *IL-18^{-/-}* mice and WT mice (A-C) following allergen-induced experimental asthma (n=6 mice/group). A representative flow cytometer dot blot analysis of BALF CCR3 positive leukocytes were selected for the detection of CCR3⁺Siglec-F⁺ eosinophils (D, E). The CCR3⁺Siglec-F⁺ eosinophils of *IL-5^{-/-} IL-18^{-/-}* and WT mice were analyzed for the expression of CD101 and CD274. Representative flow cytometer analysis detected high expression of CD101⁺ (F-H) or CD274⁺ (J-L) in eosinophils from BALF detected based on isotype matched anti-IgG of CD101 or CD274 (I, M), n=4 independent experiments.

1 Supplementary Material

2 Material and Methods

3 **Mice.**

Pathogen-free BALB/c and IL-18 gene-deficient (IL-18^{-/-}) C57 background mice 4 5 were purchased from the Jackson Laboratory (Bar Harbor, ME). IL-5 genedeficient (IL-5^{-/-}) mice were kindly provided by Marc Rothenberg, MD, PhD 6 (Cincinnati Children's Hospital Medical Center, Cincinnati OH). Mice were 7 8 maintained in a pathogen-free barrier facility. All experiments were conducted with 9 gender-matched, 6-8 week old mice. The Tulane Institutional Animal Care and 10 Use Committee (IACUC) approved the animal protocol in accordance with 11 National Institute of Health (NIH) guidelines.

12

13 Mouse bone marrow-derived eosinophils.

14 Bone marrow cells were collected from the femurs and tibiae of WT mice, IL-5 gene-deficient mice $(IL-5^{-/})$ and IL-18 gene-deficient mice $(IL-18^{-/})$ by flushing the 15 16 cut opened bones with IMDM medium (Invitrogen). RBCs were lysed using RBC lysing buffer (Sigma-Aldrich). The RBCs lysed bone marrow cells were washed 17 with PBS containing 0.1% BSA and low-density eosinophil bone marrow cells 18 19 (LDEBM) precursors obtained via Percoll density gradient were cultured at 10⁶/ml 20 in medium containing RPMI 1640 (Invitrogen) with 20% FBS (Cambrex Corp), 100 21 IU/ml penicillin and 10 µg/ml streptomycin (Cellgro), 2 mM glutamine (Invitrogen), 22 25 mM HEPES and 1x nonessential amino acids and 1 mM sodium pyruvate (Life 23 Technologies), and 50 µM 2-ME (Sigma-Aldrich) supplemented with 100 ng/ml

24 stem cell factor (SCF; PeproTech) and 100 ng/ml FLT3 ligand (FLT3-L; 25 PeproTech) from days 0 to 4. On day 4, the medium containing SCF and FLT3-L was replaced with medium containing 10 ng/ml mouse rIL-5 or rIL-18 (R&D 26 Systems) as per the method described earlier. ^{E1} On day 7, all non-adherent cells 27 were removed and supplemented with10 ng/ml rlL-5 or rlL-18. The medium with 28 rIL-5 or rIL-18 was replaced on every 3rd day for 3-4 weeks. A flow cytometer 29 using 5x10⁵ cells was performed for eosinophil analysis following staining the cells 30 31 with a combination of anti-CCR3, anti-Siglec-F, and anti-CD274 antibodies.

32

33 Allergic patient characteristics and eosinophil subsets analysis.

34 Asthma and eosinophilic esophagitis (EoE) patients, along with normal patients, were selected without regard to age, gender or race in collaboration with the 35 36 Tulane Eosinophilic Disorder Center (TEDC). The CD101 and CD274 expressing 37 eosinophils analysis will be performed by flow cytometer analysis in the blood and 38 nasal lavage, tissues biopsies of allergic and non-allergic patients using anti-CCR3, 39 anti-siglec-8, anti-CD274 and anti-CD101 antibodies with their respective isotype 40 controls obtained from BD Biosciences, BioLegend, and eBiosciences. Detailed subject characteristics are provided in the supplementary Table 1. 41

42

43 Flow cytometer analysis.

44 Mouse bone-marrow derived eosinophils and CD-2 IL-5 tg mice spleen eosinophils 45 were stained with the following combination of antibodies along with a live/dead 46 cell marker and different fluorochrome-labeled: anti-mCCR3, anti-mSiglecF, anti-

47 mCD274 and anti-mCD101 with their respective isotype controls obtained from BD 48 Biosciences, BioLegend, eBiosciences and Miltenyi Biotec. A live/dead marker 49 (BioLegend) was used to exclude dead cells. Data were acquired with a BD Accuri 50 flow cytometer or FACSCalibur flow cytometer (BD Biosciences) and analyzed 51 with FlowJo software version 7.1 (Tree Star). Positive cells were identified by 52 comparison to the appropriately conjugated isotype controls.

53

54 **Confocal microscopy.**

55 FACS purified rIL-5 and rIL-18 generated eosinophils were fixed in 4% 56 paraformaldehyde followed by ice-cold methanol. Anti-MBP and rat IgG-Alexa 57 Fluor 647 antibody (Molecular Probes) were applied for the immunofluorescence staining of the eosinophils followed by 4', 6-diamidino-2-phenylindole 58 59 dihydrochloride (DAPI: Molecular Probes) mounting. Images were collected using 60 a confocal microscope (Leica Microsystems). FITC was excited using an argon laser at 488 nm, and DAPI, nuclear stain, was excited using a 405 nm diode laser 61 62 (Coherent) and eosinophil cytoplasm and nucleus images were taken and 63 analyzed by IMARIS software (Biplane AG).

64

65 Electron microscopy.

66 Cultured eosinophils were fixed in 3% glutaraldehyde and Cacodylate buffer 67 overnight at 4°C followed by 1% osmic acid in Cacodylate buffer for 1 hour and 68 dehydrated in ethanol. They were embedded in LX 112 resin and polymerized for

69 2 days at 60°C. Sections were cut, mounted and examined with a Zeiss EM 912
70 electron microscope.

71

72 **RT-PCR analysis.**

73 The rIL-5 and rIL-18 derived eosinophils were suspended in RNAzol B (Tel-Test) at a concentration of 1ml/10⁶ cells and extraction proceeded as per the 74 manufacturer's instructions. The precipitated RNA was harvested by centrifugation, 75 76 washed in 70% ethanol, dried, and suspended in sterile diethyl pyrocarbonate 77 (DEPC)-treated water. RNA (1µg) prepared as described was subjected to DNase 78 I treatment (Invitrogen) and reverse transcribed using a First Strand cDNA 79 Synthesis Kit for RT-PCR (avian myeloblastosis virus reverse transcriptase; Roche 80 Diagnostics). cDNA (1µl) was subjected to TaqMan (Q) PCR using a FAM-labeled 81 probe and primers for each eosinophil granular genes (MBP, ECP, EDN, and 82 EPO). All experiments included a no-reverse transcriptase and no-template 83 controls and mouse β-actin was used as the endogenous control. Transcripts at each time point are normalized to β-actin. Values were expressed in relative 84 85 expression; fold change (mean \pm SD). The primers that were used in the study: F-AACTTGCCTAGGGATGCAGA-3': R-5'-86 mMBP. 5' GAGGTAGCGACAGGTCTTGC-3'; mEPO, F-5'-ATGGAGACAGATTCTG GTGG-87 3'; R-5'-AGTATTGTCGCATACAATC C-3'; *mECP* F-5'-CCGTGGACCCAC 88 89 AGTGACAGC-3'; R-5'-TCTGGGAAGGGGTTGGTCGCT-3'; *mEDN*, F-5'-ATTGAC 90 CCCCTCCCGGTGGTTT-3'; R-5'-TGTGTAACTGTTAACGGCCCGCAT-3';

91mCD101,F-5'-CAGGGTAACCTTCGGCTCTG-3';R5'-92GATGCGGTACCCTGGGAATTA-3'.mCD274, F-5'-TCACAGCCTGCTGTCACTT-

93 3'; R-5'-TAAGGTCCTCCTCTCG CC-3'; β-Actin, F-5'94 CGATGCCCTGAGGCTCTTTTCC-3'; R-5'-CATCCTGTCA GCAATGCCTGGG95 3'.

96 Microarray Analysis.

97 The Agilent Bioanalyzer was used to test the RNA guality (2100 Hewlett Packard) 98 using the RNA 6000 Pico Assay and Ovation Pico WTA System v2 (Nugen) was 99 used to synthesizing cDNA target from 1 -10 ng of total RNA. Further, the Encore 100 Biotin Module (NuGEN) was used to both chemical fragment and biotin - label the 101 cDNA target. The samples are hybridized to a standard Probe Array Cartridge 102 (GeneChip Mouse Gene 1.0 ST Array, Affymetrix) in the GeneChip Hybridization 103 Oven 640 (Affymetrix). Probe arrays were washed and stained using the Fluidics 104 Station 450 (Affymetrix). The arrays were scanned with the Affymetrix GeneChip 105 Scanner 3000 7G. Command Console and Affymetrix operating software program 106 was used to create raw data files.

107

108 Experimental allergic airway murine model of asthma.

109 A mouse model of allergic asthma was established using methods described 110 previously. ^{E2} In brief, mice were lightly anesthetized with isoflurane (Iso-Flo; 111 Abbott Laboratories), and 100 μ g (50 μ l normal saline) of *Aspergillus fumigatus* 112 (Greer Laboratories) or 50 μ l of normal saline alone was given intranasal using a 113 micropipette with the mouse held in the supine position.

114

115 Bronchoalveolar Lavage Fluid (BALF).

116 The mice were euthanized by CO₂ inhalation. Immediately thereafter, a midline 117 neck incision was made, and the trachea was cannulated. The lungs were lavage 118 2 times with 1.0 ml PBS containing 1% FCS and 0.01 mM EDTA. The recovered 119 BALF was centrifuged at 400g for 5 minutes at 4°C and re-suspended in PBS 120 containing 1% FCS. Total cell numbers were counted with a hemocytometer. Cytospin preparations of 5 x 10⁴ cells were stained with Giemsa-Diff-Quick (Dade 121 Diagnostics), and differential cell counts were determined. The BALF eosinophil 122 123 counts were expressed as an indication of lung eosinophilia.

124 Lung tissue eosinophils analysis.

5-μm tissue paraffin sections of mouse lung sections were immunostained with
 antiserum against the mouse eosinophil major basic protein (anti-MBP) as per the
 method described previously. ^{E3}

128

129

130 **Statistical analysis.**

131The nonparametric Mann–Whitney *U*-test was employed for comparison of data132between two groups, and Krustal–Wallis for comparison of more than two groups.133Parametric data were compared using *t* -tests or analysis of variance. Values are134reported as mean \pm S.D. *P* -values < 0.05 were considered statistically significant.</td>

135

136

137

138 Supplementary References

- E1. Dyer KD, Moser JM, Czapiga M, Siegel SJ, Percopo CM, Rosenberg HF.
 Functionally competent eosinophils differentiated ex vivo in high purity from
 normal mouse bone marrow. J Immunol 2008; 181:4004-9.
- E2. Rajavelu P, Rayapudi M, Moffitt M, Mishra A, Mishra A. Significance of paraesophageal lymph nodes in food or aeroallergen-induced iNKT cell-mediated
 experimental eosinophilic esophagitis. Am J Physiol Gastrointest Liver Physiol
 2012; 302: G645-54.
- E3. Venkateshaiah SU, Zhu X, Rajavelu P, Niranjan R, Manohar M, Verma AK, et al.
 Regulatory effects of IL-15 on allergen-induced airway obstruction. J. Allergy
 Clin Immunol 2017.

	Age (Year)	Gender	Diagnosis	Treatment			
Healthy Individual							
1	32	F	Normal	None			
2	29	М	Normal	None			
3	50	F	Normal	None			
4	24	F	Normal	PPI			
5	37	F	Normal	PPI			
6	35	М	Normal	None			
7	31	F	Normal	None			
8	64	М	Asthma/COPD	INH GCS			
9	33	F	Asthma/sarcoid	INH GCS			
10	47	F	Asthma	Prednisone			
11	28	F	Asthma	INH GCS			
12	29	F	Asthma	Prednisone, INH GCS, Nasal steroid			
13	54	F	Asthma	Xolair			
14	52	М	Asthma	INH GCS			
15	14	М	Asthma	INH GCS, Omeprazole			
16	60	F	Asthma	Prednisone, INH GCS, Nasal steroid			
17	54	F	Asthma/ rhinitis	Xolair			
18	29	F	Asthma/ rhinitis	Prednisone, INH GCS, Nasal steroid			
19	33	F	Asthma/ rhinitis	INH GCS, Nasal steroid			
20	34	М	Asthma/ rhinitis	Prednisone, INH GCS, Nasal steroid			
21	36	F	Asthma/ rhinitis	Prednisone, INH GCS, Nasal steroid			
22	53	F	GERD/ EoE	Famatodine			
23	18	M	EoE	None			
24	20		GERD/ EoE	Milk and wheat elimination			
25	48		Dyspnagia/EoE	Nasal steroid			
26	58	F	GERD/Dyspagia	Omeprozole			
27	16	M	GERD/EoE	Protonix			

Supplementary T 1: Patient clinical Characteristics.

16765Symbol	Fold change 1.5977836	Hpgds Ctsl	1.9841925 20.004852	Epsti1 AF251705	3.393537 2.4778054	H2-T24 Ubl4	1.5814703 -1.5257152	Cd97 Def6	-1.4712859 -1.8332913	Gm15922 Pip5k1b	-1.7750001 -2.396449
Tok Q	-1.2108622	Mx1	3.9526718	Plxna1	1.7617811	Gm10320	-1.5535886	Csgalnact2	-2.0309918	Vcl	-2.4301975
Parp8	1.8107626	Gm6166	5.084049	Gnb2l1	-1.4399115	Ppp2150 Tkt	-1.5167649	Dstn	-1.4871391	Paqr7	-2.0677285
Pdcd4	1.3898603	lfi2/12a	5.4/32/5/ 11 631666	AG 133 103.2 Peli1	1.572595	Junb	1.3013182	Diap i Hk2	-1.0124141	Pval	-1.8751411
Ctla2a	1.4508667	Thbs1	2.9893436	Rabl5	1.527117	Acot7	-1.6113366	Sipa1l3	-1.6871387	lkzf2	-2.3662126
Ms4a4c	4.0642414	Tlr1	2.3581104	Rel	1.9529502	Adk	-1.5886397	Zxdc	-1.7815939	F630111L10Rik	-1.9037659
Trps1	2.006977	Cd36	3.0666277	Cyb5r3	1.5066248	Mfsd10	-1.5169681	Cbara1	-1.7736956	Tob1	-1.692371
Alpk1	1.647012	Parp14	2.166224	Usp18 Mod0	7.8723907	Zfp36	2.0194001	Gse1	-1.7454232	C1rl Acss1	-2.3206272 -2.817985F
AI504432	1.591/554	CXCI16	1.970302	Ccdc86	1.521023	Fos	5.027671	Ppox Nomo1	-1.6222917	Cib1	-2.6545062
Ptori	1.9493752	Prdx4	2.0452628	Sepp1	2.6875854	Fam108c	-1.5891843	Hcfc2	-1.6870457	Acss2	-2.132123
Cd93	1.5982546	Cd69	2.445385	Ly96	2.5889127	BC037034	-1.9473037	Tmem2	-1.4963788	Gfod1	-2.60839
Map4k4	1.6367196	Apobec1	2.7568455	Cln8	2.0609653	Men1	-1.5465966	Ncoa7	-1.560232	Ctsh	-2.0736647
Sap30	1.9946864	Gstm1	1.8203621	Anxa4	2.8591878	ler3	2.0692282	Dnpep	-1.6616567	Axin2	-2.256172
Gm12699	1.4532923	Irgm1 Stot1	8.79289	Ttc1	1 7535148	Ints4	-1.6848999	l ta4h	-1 921311	Tmem164	-2.8008623
Gm9766	1.3354632	Fam49a	1.999489	Gbp4	7.4034925	Asxl1	-1.6510412	Tmem208	-1.8208532	Sla	-2.761573
Tir2	1.8701211	Ms4a7	9.70932	Trim30d	19.20999	Tmem40	-1.6089977	Lrrfip2	-1.49742	Atp2a3	-2.5959554
Ms4a6c	2.0411248	Eif2ak2	2.615751	Mdfic	2.1775117	Scap Vif1b	-1.5101694 -1 5571955	Chd7	-1.6990633	21153 A1153	-2.6650074
Rbm47	2.0544372	AW112010	17.292887	RIPK3 Ptms	1.6081029	Gm8995	1.3895621	Limd2 Gm12481	-1.8764482	Cnr2	-2.2237759
Trim30a	4.5958433	Herco Gm7084	4.325467	Loals8	2.9053535	Plagl2	-1.5618947	Rab27a	-1.9380895	Mylk	-2.3797207
Cd14	2.0183291	Zeb2	1.6093024	AC122806.1	1.5706496	Strn	-1.582299	Tcp11l2	-1.7039105	Pdlim7	-2.7596223
BC147527	2.3367753	Tubb6	2.0245323	lrg1	8.512985	Mmp12	601.8838	S1pr4	-1.6158768	ll1rl1 Nbool2	-2.857577
Lpcat1	1.4403828	Aim2	1.6162112	Mitf	1.825419	Lacrh	-1.5107901	Stim1	-1.8123893	Nol	-2.3963356
Cd180	1.7696785	Alcam	1.9731284	Gpr97	-1.4328309	Mtmr12	-1.6600503	Adipor1	-1.4647644	Nt5c3	-1.9857137
Ly6c1	2.066024	Abi3	1.6878219	D14Ertd668e	11.769002	Gmip	-1.6130192	Gm9034	-1.9009108	Rnf125	-2.5210266
1700034H14Rik	1.2264786	RSad2 losf6	11.947412	Gngt2	2.0476813	Abca7	-1.5264024	Myl12b	-1.6752338	Glipr2	-2.3607166
Saa3	38.04057	Dnajc13	1.6322272	Lbr	-1.5130674	Bri3bp	-1.7257515	Acsl4	-1.6573985	Hck Dad1	-2.597085
MS4a60	4.2108917	Lgmn	10.475298	lgf1	9.080402	Reep5 Fam118b	-1.5449005	Rcsd1	-1.7468522	Itab2	-3.2602545
Slfn5	3.679039	Snx5	1.5547254	Gm/582	1.893151	Stk11	-1.5361586	Orai2	-1.7930597	5330426P16Rik	-2.3279762
Snx30	1.530436	Ly9	1.586905	Wwp1	2.0546556	Zwint	-1.62781	Adrbk1	-2.2524917	Cox7a1	-2.2780817
Msr1	6.787488	Arhgap26	1.5419935	Myo1e	2.5291796	Rin3	-1.5096706	Kif3b	-1.6142254	Mboat1	-3.141216
AI607873	4.034886	Appl2	2.319764	Gm16026	2.0666752	Mtmr3	-1.5180544	Ptpn7	-2.4368784	libra Rab37	-3.0260603
lfi44	5.9145155	Trim34a	2.838317	B2m	1.9421402	Synez Alas1	-1.6590618	Camk2g	-2.1510744	Arap3	-2.8308287
Gm11428	2.3707697	Fnbp1I	3.0818894	Galnt7	1.6674182	Eif4a2	-1.7619184	Arid3a	-1.8358113	Gfi1b	-3.6903653
Pyhin1	5.2381287	Mx2	10.208	Gm4070	2.0313342	Exoc6	-1.6927879	Alox5ap	-1.7191224	Klrb1f	-3.5296092
Srsf3	1.2443994	A530032D15Rik	1.9416376	Phyh	1.8854586	Kcnab2	-1.8443729	Rps6ka1	-2.415727	Pglyrp1	-3.07828
Ly6a	22.300526	Plscr1	2 03441	II15	20.505178	Nfyb	-1.6428541	Dennd4a	-1.6555367	Cln3	-3.6011093
Marcks	3.954168	Fundc1	1.5792446	Jun	24.776539	Lypiaz Tagin2	-2.0106568	Mrpl41	-2.1595097	Nfe2	-4.1209526
Ms4a6b	7.0100217	Zbp1	8.634837	Gbp7 Gbp1	2.7920806	Wbp2	-1.7273291	Pdlim1	-2.5039122	Pla2g3	-3.4533517
lfit3	5.130362 83.09525	Nup210	-1.1503824	Plin2	2.8494685	Etf1	-1.6895021	Niyn9 Derl1	-1.7557539	4632428N05Rik	-3.5165362
Tubb2a	1.9485376	Trafd1	2.0318599	BC006779	1.9156773	Heatr5a	-1.8025247	Nqo2	-1.8265634	Adra2a	-3.6569436
lfi204	9.950549	Sigapz Sic31a1	1.7607462	Reep4	-1.5094303	Sykb	-1.343742	Trerf1	-1.8164843	Upp1	-3.3261774
Clec4a3	2.7477698	Zufsp	2.2652657	Sp100	2.7064753	Amir Meaf9	-1.0828404	Sec24a	-2.4293616	Rab44	-4.3490653
Tgtp1	10.20353	Clec4e	3.990909	G530011006Rik	7.281815	Surf4	-1.9854017	Rsu1	-2.0358117	F2rl2	-3.7633297
IfI2020 Taf1d	3.372781	lfih1	19.620697	Gm4951	7.056487	Tmed4	-1.3150674	Hval3	-1.7204657	Grina	-3.0084548
Lgals3bp	3.1869497	Gm5582	1.5670313	SNORA76	-1.5688239	Cdk2ap2	-1.5101179	Hist1h1c	-1.3317913	Spns3 Tuba8	-5.970436
Mpeg1	1.8432044	Oas3	5 4294505	Ptgs2	19.029766	Traf3ip3	-1.9486462	Mboat7	-2.269088	Cotl1	-4.6846633
Cops7b	-1.1929224	Elk3	1.6321967	Znfx1	2.4855525	Nrm	-1.934019	Gba2	-2.0378454	Cd55	-4.6093554
Tpm4	1.976	Lpp	1.9768475	Rrbp1 Davy	1.5798213	Grk6	-1.7189924	St3gal4	-2.3724773	lqsec1	-3.725634
Pf4	3.4205542	Mmp8	5.1751037	NIrc5	3.7413154	Gm11868	-1.5353901	Prr13	-1.9195843	Anxa11	-4.9368744
Kif23	1.4622722	Cd86	2.448642	Ccl4	7.764238	Atg9a	-1.4084349	Ltb4r1	-2.037916	Arsb	-5.342794
Zfp187	1.4285791	ADR012 Gpr137b-ps	1.510997	n-R5s1	1.4611309	Rabit	-1.4196776	Mfsd5	-1.9127399	Bhlhe40	-3.2740574
Npy	6.7258596	Sh3qlb1	2.8271368	Ddx58	3.005823	41167	-1.6868688	Pnpla7	-1.8462437	Lpcat3	-4.7379913
Clec4d	3.5702777	C230081A13Rik	1.8339324	Hist1h1a	-1.530798	Ing1	-1.4901292	Flot1 Itga2b	-2.1492026	Lilra6	-4.4367967
Osgep	1.3689857	Sgpl1	2.37972	CD274	17.519873	Gss	-1.2931271	Ankrd44	-2.1265647	Siglec 5(E)	-5.692438
Slfn8	6.2340865	Lipa	1.5414226	Anxa1	1.8857256	Pik3cb	-1.3274628	Eef2k	-2.7220473	Perp	-5.7366967
Oas1g	1.9032629	Rin2 Gbp9	1.7562006	Miki	1.7992138	CIS02 Kdm5b	-1.6667881	Ckap4	-1.8515227	Padi4	-5.543704
lfi205	6.5848107	lsa15	5.915503	Rbm38	-1.6857207	Add1	-1.6443403	Kif21b	-2.0265846	Aqp9	-6.228664
Casp4	2.322265	Parp12	2.5202184	H2-Q0	1.545606	G6pdx	-1.6915126	Ston2 Akna	-1.7715594	Suox	-7.910738
Macf1	1.4001329	Atf3	4.752628	Ccl12	8.664734	Ptk2b	-1.5647969	Btk	-2.309672	Adora3	-0.33200
Slfn1	6.699837	Emp1	2.4648194	Mpp1	1.7258685	Stim2	-1.6033244	St14	-2.2296848	Olfm4	-8.865338
Rnf213	3.1720839	Spp1 Deppd1a	1 5670206	Pdpn	3.034531	Atm Eno1	-1.5403583	Atxn1	-1.7044345	Gm9847	-7.881515
Zcchc11	1.7631749	Casp1	3.1738133	Gla p B5o54	2.6233373	B4galt3	-1.763353	Aldh2	-2.78948	Ly6g	-16.465357
Apoe	3.0230672	Vegfa	1.61019	n-Roso4 Ada	2.1008140	Sh3bgrl3	-1.5216616	Unc13d	-2.1860797	Rasgrp4	-11.843885
Gp5	1.2778836	H2-Q6	2.2867665	Lamp2	1.3534625	Mknk1	-1.7818584	St3gal1	-2.742279	Myo1d	-0.900000
Dpep2	1.7120758	Fnip2	2.6148233	Mrps28	-1.5213538	Lrmp	-1.6776307	Cat	-2.19086	Naaladl1	-20.464846
A530040E14Rik	1.9734762	Atp7a	1.7834997	H2-D1	1.3600413	SDI1 The1d10e	-1./682605	Ccdc109a	-2.1741357	Cyp11a1	-53.097454
Lpi IIZr	3.8852677	Sidilii9 Psme2h-ns	1.5115619	Mbnl3 Man4k2	-1.6823198	Cd37	-2.1850789	Man2b1	-1.8768756	Mgll	-38.62288
Rtp4	4.709913	Abca1	2.172051	wap4ĸ∠ Fosh	-1.5072157 5.6951118	Ndel1	-1.4616419	∠310001A20Rik Taldo1	-2.7356675	⊑nan Fox	-73.25011
Xaf1	7.7757535	Slfn10-ps	3.5452497	H2-T22	3.588243	Acadsb	-2.066481	Cd300lb	-1.8606455	Lipg	-317.05554
Zfp36l1	4.3627143	Dtx3I	3.0860522	Prkag1	-1.534945	Ccng2	-1.6520759	Gpx4	-1.9749722	Selm	-1619.0679
Ltn1	-1.2647562	lfit1	48.24167								