Supplementary Material

Chemotaxonomy of Mycotoxigenic Small-Spored Alternaria Fungi – Do Multitoxin Mixtures Act as an Indicator for Species Differentiation?

Theresa Zwickel^{1,2*}, Sandra M. Kahl^{3,4}, Michael Rychlik² and Marina E. H. Müller^{3*}

*Correspondence: Marina E. H. Müller; mmueller@zalf.de

Table-S4: Mean content (n=5) of produced *Alternaria* toxins tenuazonic acid (TeA), alternariol (AOH), alternariol monomethyl ether (AME), altenuisol (ATL), sum of altenuene and isoaltenuene (sum(iso)ALT, altertoxin I (ATX-I), altertoxin II(ATX-II), stemphyltoxin-III (STTX-III), alterperylenol (ALP), tentoxin (TEN) and altenuic acid III (AA-III) by the *Alternaria alternata*, *A. arborescens*, *A. tenuissima* and *A. infectoria* isolates at 25 °C after 14 days in rice in g/kg (marked with *) or mg/kg (± standard deviation SD; n.d. not detected = <LOD) and detected sulfated forms (marked with (s))

The names of the strains consist of a code of country (first capital letter; G: Germany, R: Russia), region (capital letter; H: Helpt, N: Novosibirsk, St: Steinfurth), identification number and sporulation group (a: A. alternata, ab: A. arborescens, i: A. infectoria and t: A. tenuissima) (Table-S1).

n.d.: not detected (value <LOD (Table-S3))

- # only one value above LOO detected
- * mean content in g/kg (all not marked values in mg/kg)
- (s): sulfated form of respective Alternaria toxin detected

¹ Federal Institute for Risk Assessment (BfR), Berlin, Germany, ² Chair of Analytical Food Chemistry, Technical University of Munich, Munich, Germany, ³ Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany, ⁴ University of Potsdam, Institute of Biochemistry und Biology, Potsdam, Germany

Table-S4	TeA	АОН	AME	ATL	sum(iso)ALT	ATX-I	ATX-II	STTX-III	ALP	TEN	AA-III	INF		
mean content in g/kg (marked with *) ± SD in g/kg or mean content in mg/kg ± SD in mg/kg														
Alternaria alte	Alternaria alternata isolates													
EGS 34-016	6.10 ±2.45	163 ±65	35.1 ± 14.6 (s)	63.3 ±2.4	124 ±25	2.70 ±0.35	n.d.	225.2 ±0.4	14.0 ±0.1	n.d.	11.1 ±3.6	n.d.		
GH 16a	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	5.9 ± 0.6	n.d.	n.d.	n.d.		
GH 21a	591 ±98	345 ±137 (s)	92.3 ±22.3 (s)	12.2 ±1.3	131 ±18	6.62 ±0.35	6.53 ±0.15	19.4 ±5.0	n.d.	2.64 ±0.99	34.0 ±3.3	n.d.		
GH 23a	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	9.4 ±0.1	n.d.	n.d.	n.d.		
GH 32a	4.00 ±0.31*	532 ±145	2.16 ±0.55* (s)	33.8 ±16.6	131 ±33	164 ±23	47.6 ±13.2	39.4 ±8.8	n.d.	51.2 ±9.0	n.d.	n.d.		
GH 49a	n.d.	n.d.	n.d.	n.d.	n.d.	125 ±28	n.d.	n.d.	179 ±39	n.d.	n.d.	d.		
GST 03a	360 ±111	n.d.	n.d.	n.d.	n.d.	87.6 ±27	13.7 ±4.7	20.9 ± 7.4	5.9 ± 1.2	n.d.	n.d.	n.d.		
GST 05a	9.29 ±2.94*	5.67 ±2.18* (s)	5.18 ±1.49* (s)	1.22 ±0.33* (s)	16.4 ± 7.5	2.04 ±0.59*	936 ±425	856 ± 329	37.3 ±5.8	117 ±34	3.45 ± 0.47	n.d.		
GST 08a	n.d.	924 ±340 (s)	1.12 ±0.49* (s)	327 ±64	120 ±35	267 ±70	83.1 ±35.4	107 ±42	10.1 ±2.7	46.9 ± 12.8	98.3 ±24.3	n.d.		
GST 11a	396 ±44	90.4 ±0.4	5.55 ± 1.13	6.19 ± 0.72	n.d.	50.2 ±12.5	n.d.	n.d.	45.3 ±0.8	n.d.	n.d.	n.d.		
GST 15a	9.11 ±2.02*	28.9 ±11.6* (s)	7.98 ±2.33* (s)	1.86 ±0.69* (s)	241 ±52 (s)	78.1 ±33.0	7.02 ± 1.83	9.75 ± 3.00	6.99 ±2.21	n.d.	289 ±49	n.d.		
GST 17a	5.89 ±1.12*	3.85 ± 1.50 * (s)	770 ± 363	177 ±80	41.3 ±9.97	412 ±155	59.5 ±17.6	80.1 ±14.1	7.55 ±3.14	105 ±39	19.6 ±0.4	n.d.		
GST20a	1.66 ±0.62*	240 ±51	1.56 ±0.28*	138 ±42	40.2 ±9.9	1.18 ±0.50*	765 ±194	798 ± 101	12.5 ±2.3	56.5 ± 17.8	8.16 ± 1.62	n.d.		
GST 24a	4.12 ±1.04*	184 ±49	1.01 ±0.32*	143 ±41	68.7 ±13.2	440 ±179	225 ±47	336 ±40	23.9 ±4.5	n.d.	n.d.	n.d.		
GST 30a	3.12 ±0.98*	1.18 ±0.48*	2.26 ±0.76*	440 ± 131	156 ±60	588 ±288	124 ±38	143 ±47	21.8 ±6.2	1.50 ± 0.45	11.1 ±4.1	n.d.		
GST 37a	3.32 ±1.08*	161 ±32	1.04 ±0.16*	114 ±27	25.9 ±0.9	916 ±224	323 ±91	263 ±66	9.90 ±1.58	1.03 ±0.30*	n.d.	n.d.		
GST 38a	9.32 ±1.71*	636 ± 114	4.13 ±0.98* (s)	596 ± 129	95.8 ±20.0	693 ±132	283 ±89	327 ± 139	n.d.	20.6 ± 8.1	3.63#	n.d.		
GST 40a	n.d.	6.29 ±1.95* (s)	2.48 ±1.01* (s)	856 ± 334	553 ±111	61.3 ±9.7	6.09 ± 0.54	10.2 ± 5.05	12.8 ±3.2	n.d.	338 ± 136	n.d.		
RN 06Aa	4.35 ±1.06*	6.66 ±1.95	6.17 ± 0.72	n.d.	n.d.	100 ±16	170 ±62	350 ± 130	n.d.	0.37 ±0.10	n.d.	n.d.		
RN 06Ba	6.33 ±1.38*	13.9 ±1.7* (s)	4.70 ±1.14* (s)	$660 \pm 109 \text{ (s)}$	75.1 ±17.4	717 ±209	516 ±208	362 ± 155	8.62 ±2.53	123 ±34	5.23 ± 1.66	n.d.		
RN 11Ca	1.05 ±0.36*	$687 \pm 168 \text{ (s)}$	2.16 ±0.64* (s)	297 ±75	92.4 ±11.9	529 ±154	234 ± 73	313 ±81	n.d.	8.08 ±0.30	5.75#	n.d.		

Table-S4	TeA	АОН	AME	ATL	sum(iso)ALT	ATX-I	ATX-II	STTX-III	ALP	TEN	AA-III	INF
	<u> </u>	-			` ′	L		g ± SD in mg/kg	L			
Alternaria arborescens isolates												
CSB 102605	1.52 ±0.48*	2.45 ±0.83* (s)	985 ±353 (s)	1.48 ±0.51* (s)	27.9 ±6.9	n.d.	14.2 ±0.1	365 ± 109	n.d.	n.d.	2.61 ±0.62	n.d.
GH 35ab	2.67 ±0.38*	985 ±353 (s)	976 ±445 (s)	22.7 ± 7.8 (s)	$253 \pm 70 \text{ (s)}$	n.d.	n.d.	n.d.	n.d.	n.d.	42.7 ± 11.4	n.d.
GST 07ab	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
GST 22ab	2.51 ±1.20*	$585 \pm 286 \text{ (s)}$	745 ±45 (s)	166 ±21	n.d.	1.61 ±0.44*	236 ±95	267 ± 110	11.7 ±2.2	349 ± 157	n.d.	n.d.
GST 28ab	938 ±13	979 ±1	1.02 ±0.05*	136 ±27	n.d.	n.d.	n.d.	12.1 ±2.2	n.d.	n.d.	n.d.	n.d.
GST 32ab	n.d.	22.3 ±6.7	n.d.	n.d.	n.d.	38.1 ±17.2	45.1 ±6.3	n.d.	41.5 ±9.2	n.d.	n.d.	d.
GST 33ab	16.7 ±4.4*	8.21 ±1.04* (s)	2.36 ±0.57* (s)	321 ±76	14.1 ±3.7	525 ±252	367 ±143	447 ±137	29.2 ± 5.3	9.68 ± 1.42	1.21 ±0.19	n.d.
GST 41ab	1.64 ±0.41*	5.96 ± 1.80 * (s)	1.14 ±0.52* (s)	274 ±107	95.1 ±20.7	353 ±148	234 ±90	269 ± 117	n.d.	n.d.	n.d.	n.d.
GST 53ab	8.45 ±2.21*	2.30 ±0.70*	3.88 ±0.94* (s)	867 ±219	165 ±52	288 ± 74	74.2 ±12.1	96.9 ±18.5	1.2 ±0.4	112 ±4	19.5 ±6.8	n.d.
RN 02Cab	6.31 ±1.45*	14.5 ±2.04* (s)	4.91 ±0.18* (s)	1.17 ±0.14* (s)	364 ±107	583 ±96	213 ±39	140 ±46	14.4 ± 1.8	147 ±50	98.1 ±17.7	n.d.
RN 05Bab	n.d.	1.30*#	4.45 ±0.63*	693 ±73	18.5 ± 0.7	204 ± 78	685 ± 20	424 ±69	n.d.	26.4 ± 1.2	n.d.	n.d.
Table-S4	TeA	АОН	AME	ATL	sum(iso)ALT	ATX-I	ATX-II	STTX-III	ALP	TEN	AA-III	INF
Table-S4	TeA	АОН			` /	ı		STTX-III eg ± SD in mg/kg		TEN	AA-III	INF
Table-S4 Alternaria ten	-				` /	ı				TEN	AA-III	INF
	-				` /	ı				TEN 9.92 ±3.00	AA-III 6.43 ±0.43	INF n.d.
Alternaria ten	uissima isolate	s	mean co	ntent in g/kg (ma	rked with *) ± SD	in g/kg or mea	n content in mg/k	g ± SD in mg/kg				
Alternaria tena EGS 34-015	uissima isolate	s 65.2 ±1.4 (s)	mean co	ntent in g/kg (ma	rked with *) ± SD	in g/kg or mea	28.8 ±7.5	$g \pm SD \text{ in mg/kg}$ 340 ± 113	n.d.	9.92 ±3.00	6.43 ±0.43	n.d.
Alternaria tena EGS 34-015 GH 18t	<i>uissima</i> isolate 1.70 ±0.71* 5.56 ±0.60*	65.2 ±1.4 (s) 1.05 ±0.18*	mean co 1.14 ±0.02* (s) 594 ±26	n.d. 24.4 ±6.0	109 ±1 n.d.	in g/kg or mea 113 ±4 57.6 ±6.8	28.8 ±7.5 38.2 ±11.1	340 ±113 62.8 ±11.9	n.d. n.d.	9.92 ±3.00 n.d.	6.43 ±0.43 n.d.	n.d.
Alternaria tena EGS 34-015 GH 18t GH 26t	1.70 ±0.71* 5.56 ±0.60* 669 ±175	65.2 ±1.4 (s) 1.05 ±0.18* 153 ±12 (s)	mean co 1.14 ±0.02* (s) 594 ±26 24.0 ±2.5	n.d. 24.4 ±6.0 27.2 ±6.0	109 ±1 n.d. 18.8 ±5.9	113 ±4 57.6 ±6.8 n.d.	28.8 ±7.5 38.2 ±11.1 n.d.	340 ± 113 62.8 ± 11.9 n.d.	n.d. n.d. n.d.	9.92 ±3.00 n.d. 105 ±25	6.43 ±0.43 n.d. n.d.	n.d. n.d. n.d.
Alternaria tena EGS 34-015 GH 18t GH 26t GH 29t	1.70 ±0.71* 5.56 ±0.60* 669 ±175 1.11 ±0.24*	s $65.2 \pm 1.4 \text{ (s)}$ $1.05 \pm 0.18^*$ $153 \pm 12 \text{ (s)}$ 23.8 ± 10.9	mean co 1.14 ±0.02* (s) 594 ±26 24.0 ±2.5 115 ±23 (s)	n.d. 24.4 ±6.0 27.2 ±6.0 n.d.	109 ±1 n.d. 18.8 ±5.9 5.66 ±0.83	113 ±4 57.6 ±6.8 n.d. 20.4 ±8.2	28.8 ±7.5 38.2 ±11.1 n.d. 10.6 ±0.6	340 ± 113 62.8 ± 11.9 n.d. 74.3 ± 8.7	n.d. n.d. n.d. n.d.	9.92 ±3.00 n.d. 105 ±25 29.6 ±7.9	6.43 ±0.43 n.d. n.d. n.d.	n.d. n.d. n.d.
Alternaria tent EGS 34-015 GH 18t GH 26t GH 29t GH 31t	<i>uissima</i> isolate $1.70 \pm 0.71^*$ $5.56 \pm 0.60^*$ 669 ± 175 $1.11 \pm 0.24^*$ $6.20 \pm 1.23^*$	\$ 65.2 \pm 1.4 (s) 1.05 \pm 0.18* 153 \pm 12 (s) 23.8 \pm 10.9 469 \pm 167	mean co 1.14 ±0.02* (s) 594 ±26 24.0 ±2.5 115 ±23 (s) 2.48 ±0.84* (s)	n.d. 24.4 ±6.0 27.2 ±6.0 n.d. n.d.	109 ±1 n.d. 18.8 ±5.9 5.66 ±0.83 n.d.	113 ±4 57.6 ±6.8 n.d. 20.4 ±8.2 124 ±17	28.8 \pm 7.5 38.2 \pm 11.1 n.d. 10.6 \pm 0.6 244 \pm 28	340 ± 113 62.8 ± 11.9 n.d. 74.3 ± 8.7 783 ± 147	n.d. n.d. n.d. n.d. n.d.	9.92 ±3.00 n.d. 105 ±25 29.6 ±7.9 232 ±60	6.43 ±0.43 n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d.
Alternaria tent EGS 34-015 GH 18t GH 26t GH 29t GH 31t GH 36t	uissima isolate $1.70 \pm 0.71*$ $5.56 \pm 0.60*$ 669 ± 175 $1.11 \pm 0.24*$ $6.20 \pm 1.23*$ 936 ± 296	s $65.2 \pm 1.4 \text{ (s)}$ $1.05 \pm 0.18^*$ $153 \pm 12 \text{ (s)}$ 23.8 ± 10.9 469 ± 167 $325 \pm 95 \text{ (s)}$	mean co 1.14 ±0.02* (s) 594 ±26 24.0 ±2.5 115 ±23 (s) 2.48 ±0.84* (s) 152 ±67 (s)	n.d. 24.4 ±6.0 27.2 ±6.0 n.d. 21.4 ±5.7	109 ±1 n.d. 18.8 ±5.9 5.66 ±0.83 n.d. 51.2 ±24.8	113 ±4 57.6 ±6.8 n.d. 20.4 ±8.2 124 ±17 150 ±10	28.8 \pm 7.5 38.2 \pm 11.1 n.d. 10.6 \pm 0.6 244 \pm 28 70.6 \pm 5.9	$ \begin{array}{r} 340 \pm 113 \\ 62.8 \pm 11.9 \\ \hline 0.4.3 \pm 8.7 \\ \hline 783 \pm 147 \\ 66.2 \pm 2.3 \\ \end{array} $	n.d. n.d. n.d. n.d. n.d.	9.92 ± 3.00 n.d. 105 ± 25 29.6 ± 7.9 232 ± 60 50.8 ± 19.5	6.43 ±0.43 n.d. n.d. n.d. n.d. 23.7 ±9.6	n.d. n.d. n.d. n.d. n.d.
Alternaria tenu EGS 34-015 GH 18t GH 26t GH 29t GH 31t GH 36t GH 46t	uissima isolate $1.70 \pm 0.71*$ $5.56 \pm 0.60*$ 669 ± 175 $1.11 \pm 0.24*$ $6.20 \pm 1.23*$ 936 ± 296 $6.11 \pm 2.78*$	s $65.2 \pm 1.4 \text{ (s)}$ $1.05 \pm 0.18^{*}$ $153 \pm 12 \text{ (s)}$ 23.8 ± 10.9 469 ± 167 $325 \pm 95 \text{ (s)}$ $1.24 \pm 0.12^{*}$	mean co 1.14 ±0.02* (s) 594 ±26 24.0 ±2.5 115 ±23 (s) 2.48 ±0.84* (s) 152 ±67 (s) 4.39 ±1.67* (s)	n.d. 24.4 ±6.0 27.2 ±6.0 n.d. n.d. 21.4 ±5.7 543 ±131	109 ±1 n.d. 18.8 ±5.9 5.66 ±0.83 n.d. 51.2 ±24.8 9.38 ±3.70	113 ±4 57.6 ±6.8 n.d. 20.4 ±8.2 124 ±17 150 ±10 701 ±149	28.8 \pm 7.5 38.2 \pm 11.1 n.d. 10.6 \pm 0.6 244 \pm 28 70.6 \pm 5.9 176 \pm 27	$6g \pm SD \text{ in mg/kg}$ 340 ± 113 62.8 ± 11.9 n.d. 74.3 ± 8.7 783 ± 147 66.2 ± 2.3 186 ± 20	n.d. n.d. n.d. n.d. n.d. n.d.	9.92 ± 3.00 n.d. 105 ± 25 29.6 ± 7.9 232 ± 60 50.8 ± 19.5 187 ± 37	6.43 ±0.43 n.d. n.d. n.d. 23.7 ±9.6 n.d.	n.d. n.d. n.d. n.d. n.d. n.d.
Alternaria tent EGS 34-015 GH 18t GH 26t GH 29t GH 31t GH 36t GH 46t GH 50t	uissima isolate $1.70 \pm 0.71^*$ $5.56 \pm 0.60^*$ 669 ± 175 $1.11 \pm 0.24^*$ $6.20 \pm 1.23^*$ 936 ± 296 $6.11 \pm 2.78^*$ $3.72 \pm 0.78^*$	s $65.2 \pm 1.4 \text{ (s)}$ $1.05 \pm 0.18^*$ $153 \pm 12 \text{ (s)}$ 23.8 ± 10.9 469 ± 167 $325 \pm 95 \text{ (s)}$ $1.24 \pm 0.12^*$ $1.78 \pm 0.15^*$	mean co 1.14 ±0.02* (s) 594 ±26 24.0 ±2.5 115 ±23 (s) 2.48 ±0.84* (s) 152 ±67 (s) 4.39 ±1.67* (s) 1.18 ±0.12* (s)	n.d. 24.4 ±6.0 27.2 ±6.0 n.d. n.d. 21.4 ±5.7 543 ±131 128 ±27	109 ±1 n.d. 18.8 ±5.9 5.66 ±0.83 n.d. 51.2 ±24.8 9.38 ±3.70 n.d.	113 ±4 57.6 ±6.8 n.d. 20.4 ±8.2 124 ±17 150 ±10 701 ±149 860 ±78	28.8 \pm 7.5 38.2 \pm 11.1 n.d. 10.6 \pm 0.6 244 \pm 28 70.6 \pm 5.9 176 \pm 27 141 \pm 39	$ \begin{array}{r} 340 \pm 113 \\ 62.8 \pm 11.9 \\ \hline 0.4.3 \pm 8.7 \\ \hline 783 \pm 147 \\ 66.2 \pm 2.3 \\ \hline 186 \pm 20 \\ 244 \pm 54 \\ \end{array} $	n.d. n.d. n.d. n.d. n.d. n.d. 24.8 ±4.6	9.92 ± 3.00 n.d. 105 ± 25 29.6 ± 7.9 232 ± 60 50.8 ± 19.5 187 ± 37 31.0 ± 12.0	6.43 ±0.43 n.d. n.d. n.d. 23.7 ±9.6 n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d.

Table-S4	TeA	АОН	AME	ATL	sum(iso)ALT	ATX-I	ATX-II	STTX-III	ALP	TEN	AA-III	INF
	mean content in g/kg (marked with *) ± SD in g/kg or mean content in mg/kg ± SD in mg/kg											
Alternaria ten	<i>uissima</i> isolate	s										
GST 16t	4.33 ±0.98*	11.7 ±3.7* (s)	5.06 ±0.97* (s)	1.19 ±0.09* (s)	308 ±68	195 ±67	36.4 ± 2.6	38.0 ±11.1	3.72 ±0.90	25.8 ±4.3	95.4 ± 26.8	n.d.
GST 19t	1.12 ±0.30*	6.71 ±0.04* (s)	1.73 ±0.08* (s)	295#	198 ± 75	123 ±19	30.3 ±4.4	62.8 ± 9.9	3.83 ±2.73	107 ±22	47.0 ± 10.8	n.d.
GST 23t	3.98 ±1.27*	5.76 ±0.09*	205 ±4	n.d.	n.d.	568 ±117	142 ±32	206 ±63	n.d.	50.6 ±1.1	n.d.	n.d.
GST 31t	7.20 ±1.56*	3.09 ±1.12*	3.48 ±0.71* (s)	511 ±84	164 ± 23	793 ±173	252 ± 56	202 ±70	n.d.	67.2 ±13.9	3.25 ± 0.63	n.d.
GST 44t	2.46*#	975#	329#	56.0#	n.d.	500#	n.d.	182#	72.5#	27.0#	n.d.	n.d.
GST 47t	6.57 ±1.28*	6.41 ±0.29*	3.81 ±0.85* (s)	583 ±121	329 ±91	348 ±111	117 ±14	150 ± 13	9.92 ±0.34	116 ±28	167 ± 17	n.d.
GST 52t	3.43 ±0.52*	2.61 ±0.37*	3.41 ±0.59*	479 ±96	103 ±18	845 ±171	254 ± 35	319 ± 79	16.6 ±3.0	2.90 ±0.71	27.8 ± 5.2	n.d.
RN 01At	3.08 ±0.69*	3.27 ±0.43* (s)	4.37 ±0.80* (s)	74.4 ±12.5	118 ±23	87.9 ±12.7	33.9 ± 10.4	62.3 ± 16.4	n.d.	1.31 ±0.36	8.29 ± 1.25	n.d.
RN 02At	12.4 ±2.3*	26.9 ±5.57* (s)	9.10 ±2.03* (s)	2.59 ± 0.50 * (s)	336 ±69	398 ±122	171 ±43	119 ±21	16.2 ±1.7	38.2 ±6.9	66.2 ± 13.2	n.d.
RN 02Bt	5.12 ±0.38*	6.78 ±1.22	14.0 ± 2.3	130 ±8	n.d.	572 ±253	623 ± 202	750 ± 103	26.5 ±4.2	69.0 ±22.9	n.d.	n.d.
RN 02Dt	3.31 ±1.23*	334 ±88 (s)	2.26 ±0.70* (s)	381 ±138	19.7 ±3.8	611 ±170	99.5 ±12.2	89.7 ±13.7	21.9 ±2.6	n.d.	n.d.	n.d.
RN 03At	n.d.	1.73 ±0.78	2.27 ± 1.17	n.d.	n.d.	177 ±51	144 ±37	241 ±45	19.6 ±2.8	16.7 ±2.6	n.d.	n.d.
RN 04Bt	5.41 ±0.92*	6.61 ±1.23*	6.53 ± 1.09 * (s)	22.3 ±4.3	78.5 ± 23.3	253 ±60	99.3 ±13.2	119 ±17	6.75 ±0.76	109 ±15	5.18 ± 0.54	n.d.
RN 06Ct	4.42 ±0.57*	1.11 ±0.06*	2.34 ±0.29* (s)	320 ± 52.5	205 ±22	304 ±110	49.3 ±20.5	53.9 ± 15.8	n.d.	43.1 ±18.4	n.d.	n.d.
RN 06Dt	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
RN 07At	718 ±227	595 ±167	148 ±50	11.2 ±1.5	n.d.	406 ±75	144 ±5	181 ±44	n.d.	9.09 ± 1.80	n.d.	n.d.
RN 07Bt	6.81 ±1.01*	3.64 ±1.03* (s)	2.54 ±0.77* (s)	388 ± 119	n.d.	578 ±120	199 ±45	203 ±72	14.1 ±2.8	7.33 ±1.36	n.d.	n.d.
RN 08Bt	5.93 ±0.47	1.06 ±0.07	4.34 ±0.40	0.550 ± 0.046	0.110 ± 0.024	0.459 ± 0.151	0.131 ± 0.040	0.176 ± 0.028	n.d.	0.126 ± 0.028	n.d.	n.d.
RN 08Dt	3.26 ± 0.71	0.405 ± 0.098	2.28 ± 0.71	0.254 ± 0.091	n.d.	0.113 ± 0.036	0.0781 ± 0.0217	0.0963 ± 0.0357	n.d.	n.d.	n.d.	n.d.
RN 09At	6.84±1.87	2.21 ±0.55	8.44 ±0.73	1.26 ±0.18	0.158 ± 0.060	0.786 ± 0.214	0.133 ± 0.049	0.182 ± 0.047	n.d.	0.0100 ± 0.002	n.d.	n.d.
RN 09Bt	19.5#	n.d.	n.d.	n.d.	n.d.	2.21#	1.51#	1.38#	n.d.	0.298#	n.d.	n.d.
RN 09Ct	7.55 ± 2.33	6.78 ±0.80	5.65 ±1.07	0.751 ± 0.182	0.282 ± 0.114	0.774 ± 0.019	0.0778 ± 0.0198	0.0871 ± 0.0200	n.d.	0.342 ±0.169	0.0604 ± 0.0174	n.d.
RN 10At	9.77 ±3.36*	1.04 ±0.32*	889 ±233	95.8 ±28.8	n.d.	469 ±30	306 ± 59	443 ±117	n.d.	12.6 ±1.5	n.d.	n.d.
RN 10Bt	9.91 ±3.63*	14.8 ±5.8* (s)	4.78 ±1.02* (s)	1.07 ±0.34* (s)	238 ±76	304 ±84	116 ±3	155 ±24	n.d.	14.6 ±5.4	165 ± 73	n.d.

Table-S4	TeA	АОН	AME	ATL	sum(iso)ALT	ATX-I	ATX-II	STTX-III	ALP	TEN	AA-III	INF
mean content in g/kg (marked with *) ± SD in g/kg or mean content in mg/kg ± SD in mg/kg												12.12
Alternaria infe	ectoria isolates				, , , , , , , , , , , , , , , , , , , ,		g	<u> </u>				
CSB 210.86	4.01 ±0.89	4.20 ±0.19	4.34 ±0.98	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	d.
GH 04i	n.d.	n.d.	n.d.	n.d.	n.d.	0.403 ±0.157	n.d.	n.d.	48.9 ±4.4	n.d.	n.d.	d.
GH 09i	n.d.	n.d.	n.d.	n.d.	n.d.	2.24 ±0.02	n.d.	n.d.	107 ±10	n.d.	n.d.	d.
GH 10i	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
GH 12i	n.d.	n.d.	n.d.	n.d.	n.d.	11.2 ±1.6	n.d.	1.30 ± 0.39	315 ±68	n.d.	n.d.	d.
GH 13i	n.d.	n.d.	n.d.	n.d.	n.d.	1.56 ±0.60	n.d.	n.d.	94.6 ±34.8	n.d.	n.d.	d.
GH 19i	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
GH 28i	1.03 ±0.15*	173 ±20 (s)	202 ±64 (s)	8.75 ± 0.58	15.4 ±0.2	39.3 ±6	12.8 ±0.4	21.5 ± 1.5	n.d.	30.2 ±9.3	n.d.	n.d.
GH 33i	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
GH 34i	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	9.39 ±8.44	n.d.	n.d.	d.
GH 38i	n.d.	n.d.	n.d.	n.d.	n.d.	24.5#	n.d.	n.d.	44.5 ±21.3	n.d.	n.d.	d.
GH 40i	n.d.	n.d.	n.d.	n.d.	n.d.	14.8 ±1.9	n.d.	n.d.	151 ±15	n.d.	n.d.	d.
GH 41i	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	20.4 ±5.9	n.d.	n.d.	d.
GH 45i	n.d.	n.d.	n.d.	n.d.	n.d.	3.86 ± 0.48	n.d.	0.0533#	122 ±14	n.d.	n.d.	d.
GH 47i	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	33.6 ±24.1	n.d.	n.d.	d.
GH 48i	n.d.	n.d.	n.d.	n.d.	n.d.	8.01 ±1.45	n.d.	2.24#	215 ±37	n.d.	n.d.	d.
GH 53i	n.d.	n.d.	n.d.	n.d.	n.d.	8.20 ±3.16	n.d.	n.d.	160 ±46	n.d.	n.d.	d.
GH 55i	n.d.	n.d.	n.d.	n.d.	n.d.	4.90#	n.d.	n.d.	16.8 ±4.2	n.d.	n.d.	d.
GH 56i	n.d.	n.d.	n.d.	n.d.	n.d.	2.25 ±0.99	n.d.	n.d.	43.1 ±17.8	n.d.	n.d.	d.
GST 01i	n.d.	n.d.	n.d.	n.d.	n.d.	4.35 ±1.30	n.d.	n.d.	98.4 ±25.1	n.d.	n.d.	d.
GST 25i	3.15 ±0.62	0.885 ± 0.198	0.206#	n.d.	n.d.	24.8 ±2.5	n.d.	0.913#	52.4 ±33.0	n.d.	n.d.	d.
GST 34i	1.19 ±0.17	n.d.	n.d.	n.d.	n.d.	13.5#	n.d.	0.355 ± 0.065	4.64 ±1.86	n.d.	n.d.	d.
GST 46i	n.d.	0.291 ± 0.036	7.40#	n.d.	n.d.	n.d.	n.d.	n.d.	3.44 ±0.76	n.d.	n.d.	d.
GST 51i	n.d.	0.383 ± 0.045	0.315#	n.d.	n.d.	0.993#	n.d.	n.d.	4.28#	n.d.	n.d.	d.
RN 04Ai	n.d.	2.01 ±0.31* (s)	1.57 ± 0.05 * (s)	479 ±21 (s)	268 ±71	124 ±58	18.7 ±4.7	28.5 ± 8.4	4.00 ±0.21	3.74 ±0.68	21.4 ±3.8	n.d.
RN 07Ci	n.d.	0.819 ± 0.246	1.17 ±0.20	10.7 ± 1.2	n.d.	n.d.	n.d.	n.d.	1.05 ±0.01	n.d.	n.d.	d.