

The Impact of IncRNA Dysregulation on Clinicopathology and Survival of Breast Cancer: A Systematic Review and Meta-analysis

Tian Tian,^{1,5} Meng Wang,^{1,5} Shuai Lin,^{1,5} Yan Guo,² Zhiming Dai,³ Kang Liu,¹ Pengtao Yang,¹ Cong Dai,¹ Yuyao Zhu,¹ Yi Zheng,¹ Peng Xu,¹ Wenge Zhu,⁴ and Zhijun Dai¹

¹Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China; ²School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China; ³Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China; ⁴Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC 20052, USA

Dysregulation of multiple long non-coding RNAs (lncRNAs) was reported to play major roles in breast cancer (BC). Here we aimed to collect most of the relevant literature to assess the prognostic value of lncRNAs in BC. To this end, we systematically searched PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wanfang to identify published articles on the associations of lncRNAs with clinicopathology and/or survival of BC. Via this searching, we identified 70 articles involving 9,307 BC patients and regarding 48 lncRNAs. The expression of 41 lncRNAs was related to one or more clinicopathological parameters of BC, including tumor size; lymph node metastasis; histological grade; TNM stage; and estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) statuses (p < 0.05). Dysregulation of 28 lncRNAs was associated with overall survival, and abnormal expression of 9 lncRNAs was linked to disease-free survival. Furthermore, the expression level of 3 lncRNAs was correlated with metastasis-free survival, 3 lncRNAs with relapse-free survival, and 3 lncRNAs with progression-free survival. Our analysis showed that multiple lncRNAs were significantly associated with BC clinicopathology and survival. A large-scale study is needed to verify the prognostic value of these lncRNAs in BC.

INTRODUCTION

Breast cancer (BC) is the most common type of cancer among women and the main cause of female cancer death in the world.¹ Although the survival rates of BC have been improved by early detection and progress in treatment, it remains to be a frequent malignancy with a poor prognosis, which seriously threatens the health of women.^{2,3}

Traditionally, we used clinicopathological features, including tumor size, lymph node status, TNM stage, histological grade, hormone receptor status, and human epidermal growth factor receptor 2 (HER-2) amplification, to predict the patient outcome.⁴ In addition, several biomarkers, such as tumor-associated macrophages (TAMs), microRNAs, matrix metalloproteinases (MMPs), retinoic acid receptor α (RARA), Ki-67, aromatase, osteopontin, etc., have also been identified.^{5–8}

In recent years, more and more BC studies have focused on long non-coding RNAs (lncRNAs) because of their key roles in human diseases, including cancer.⁹

lncRNAs are a class of RNA transcripts, with a length of >200 nt, that do not encode proteins. They were proven to be involved in diverse biological processes, such as chromosome remodeling, epigenetic modulation, and transcriptional and posttranscriptional modifications.^{10,11} Studies have revealed that lncRNAs play an important role in cancer biology, and the expression of specific lncRNAs is implicated in the development and progression of cancer.¹² For example, enforced expression of HOTAIR in epithelial cancer cells can induce genome-wide re-targeting of polycomb repressive complex 2 (PRC2), leading to altered histone H3 lysine 27 methylation and gene expression, and thus it promotes cancer invasiveness and metastasis in a manner dependent on PRC2.¹³ In BC, BCAR4 can bind to two transcription factors (SNIP1 and PNUTS) with extended regulatory consequences, and it relieves inhibition of RNA polymerase II (Pol II) via activation of the PP1 phosphatase. Thus, it activates a noncanonical Hedgehog/GLI2 pathway that promotes cell migration.¹⁴ Moreover, a large number of lncRNAs, such as MALAT1, MEG3, HOTAIR, CCAT2, H19, etc., are dysregulated in multiple tumors, including BC, hepatocellular carcinoma, and kidney cancer, possibly making them diagnostic or prognostic biomarkers or potential therapeutic targets for cancer.^{15–17}

Many studies on the role of lncRNAs in BC revealed that the expression level of lncRNAs was associated with BC clinical features and

Received 23 November 2017; accepted 20 May 2018; https://doi.org/10.1016/j.omtn.2018.05.018.

⁵These authors contributed equally to this work.

E-mail: wz6812@gwu.edu

Correspondence: Zhijun Dai, Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China E-mail: dzj0911@xjtu.edu.cn

Correspondence: Wenge Zhu, Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC 20052, USA

lncRNAs	Reference	Country	Race	Number of Patients	Expression in Tumor	Method	Sample Type	Cutoff	Survival	Follow-up (Month)	Quality Score
	26	China	Asian	43	upregulated	qRT-PCR	tissue	median	OS	60	7
	25	China	Asian	118	upregulated	qRT-PCR	tissue	NR	OS	50	7
	20	France	Caucasian	446	upregulated	qRT-PCR	tissue	3.02-fold	NR	NR	7
	24	China	Asian	139	upregulated	qRT-PCR	tissue	median	OS	55	7
MALAT1	22	China	Asian	204	upregulated	qRT-PCR	tissue	75% expression	RFS	65	8
	21	China	Asian	135	downregulated	qRT-PCR	tissue	NR	NR	NR	6
	23	China	Asian	78	upregulated	qRT-PCR	tissue	median	DFS	60	8
	27	China	Asian	86	upregulated	qRT-PCR	tissue and serum	median	OS	NR	5
	31	China	Asian	120	upregulated	qRT-PCR	tissue	NR	OS	90	6
	32	Iran	Caucasian	48	normal	qRT-PCR	tissue	median	NR	NR	6
CCAT2	81	Netherlands	Caucasian	747	upregulated	qRT-PCR	tissue	quartile	OS, MFS	>120	7
	80	China	Asian	67	upregulated	qRT-PCR	tissue	8-fold	OS	60	7
	82	Germany	Caucasian	129	NR	qRT-PCR	tissue	median	MFS	120	8
	13	America	Caucasian	132	upregulated	qRT-PCR	tissue	125-fold	OS, MFS	180	8
	83	Denmark	Caucasian	488	NR	microarray	tissue	median	MFS	217	7
HOTAIR	84	Italy	Caucasian	336	NR	qRT-PCR	tissue	mean	OS, RFS	86	8
	85	China	Asian	30	NR	qRT-PCR	tissue	median	OS	40	5
	44	America	Caucasian	94	NR	ISH	tissue	median	NR	NR	6
	43	China	Asian	112	upregulated	qRT-PCR	serum	median	DFS	48	7
	28	China	Asian	90	downregulated	qRT-PCR	tissue	NR	OS, DFS	80	6
MEG3	29	China	Asian	207	downregulated	qRT-PCR	tissue	median	OS, PFS	60	8
	30	China	Asian	257	downregulated	qRT-PCR	tissue	$\Delta Ct = 8.065$	OS, RFS	60	8
TH 1005	33	China	Asian	31	downregulated	qRT-PCR	tissue	mean	NR	NR	6
10807	34	China	Asian	42	downregulated	qRT-PCR	tissue	median	NR	NR	6
DCAD4	35	Germany	Caucasian	96	NR	qRT-PCR	tissue	NR	NR	NR	6
BCAR4	36	Netherlands	Caucasian	786	NR	qRT-PCR	tissue	detection limit	OS, PFS, MFS	97	8
TD72 AC1	37	China	Asian	86	upregulated	qRT-PCR	tissue	median	NR	NR	8
1P/3-A51	38	China	Asian	36	upregulated	qRT-PCR	tissue	median	OS	48	8
	40	China	Asian	118	upregulated	qRT-PCR	tissue	NR	OS	60	6
NEAT1	39	China	Asian	70	upregulated	qRT-PCR	tissue	NR	OS	60	6
	86	China	Asian	40	upregulated	qRT-PCR	tissue	2-fold	OS	24	6
TUCI	41	China	Asian	100	upregulated	qRT-PCR	tissue	mean	NR	NR	7
TUGI	42	China	Asian	58	downregulated	qRT-PCR	tissue	mean	NR	NR	6
ONIDE	46	China	Asian	103	upregulated	qRT-PCR	tissue	NR	OS	NR	6
CRNDE	45	China	Asian	76	upregulated	aRT-PCR	tissue& serum	$2^{-\Delta\Delta Ct} = 1$	NR	NR	6

Figure 1. Forest Plots of the Significant Associations between the Expression of Five IncRNAs and Clinical Features of Breast Cancer Each square indicates a study, and the area of squares is proportional to the weight of the study. The diamond represents the pooled OR and 95% Cl.

outcome.¹⁷⁻¹⁹ By far, however, no study has evaluated these associations systematically. Therefore, we conducted this systematic review to clarify the present state of knowledge about the correlations between lncRNAs and BC clinicopathology and survival.

RESULTS

Characteristics of Included Studies

A total of 991 articles was identified by mining databases and manual searching, and 732 articles were left after removing duplication. After screening titles and abstracts, 111 full-text articles remained for further assessment, and 41 articles were excluded according to the selection criteria. Finally, 70 articles involving 9,307 patients were included in the review. The main characteristics and quality score of studies included in the meta-analysis are presented in Table 1,

and the information on the rest of the studies is shown in Table S1. Most of these articles were published within the last 3 years. Among all these articles, 63 articles involving 48 lncRNAs described the clinicopathological features of BC, and 48 articles involving 32 lncRNAs investigated the survival of BC.

Association of IncRNA Expression with Clinicopathological Features of BC

Ten lncRNAs, *MALAT1*, *MEG3*, *CCAT2*, *BCAR*, *TUSC7*, *TP73-AS1*, *NEAT1*, *TUG1*, *HOTAIR*, and *CRNDE*, were included in metaanalyses for clinicopathological features.^{20–46} Pooled results are presented in Table S2, and the significant associations are shown in Figure 1. We observed that an upregulated *MALAT1* expression level was related to positive progesterone receptor (PR) status (odds ratio

Table 2. Summary	of IncRNAs	Related to	Clinicopathologica	I Features of
Breast Cancer				

Clinicopathological						
Feature	lncRNA					
Tumor size	SNHG12, HOTTIP, H19, CRNDE, SPRY4-IT1, FGF14-AS2, APOC1P1-3, EGOT, 91H, HOXA-AS2, PVT1, CRALA, SNHG15, SUMO1P3, ARA					
LN metastasis	NEAT1, SNHG12, HOTTIP, CCAT1, AFAP1-AS1, Z38, TUNAR, FGF14-AS2, HULC, EGOT, 91H, HIF1A-AS2, UCA1, linc-ROR, HOXA-AS2, GAS6-AS1, linc-ITGB1, DANCR, PVT1, OR3A4, CRALA, FENDRR, SNHG15, SUMO1P3					
Histological grade	MEG3, CCAT1, TUNAR, EPB41L4A-AS2, HULC, BC040587, GAS6-AS1, DANCR, OR3A4					
TNM stage	TP73-AS1, NEAT1, HOTTIP, CCAT1, AFAP1-AS1, ACTA2-AS1, Z38, SPRY4-IT1, FGF14-AS2, EPB41L4A-AS2, HULC, HOXA-AS2, linc-ITGB1, DANCR, PVT1, OR3A4, CRALA, HOXB-AS5, LINP1, SNHG15, SUMO1P3					
ER status	BCAR4, H19, LINC00978, EPB41L4A-AS2, CRALA					
PR status	MALAT1, H19, EPB41L4A-AS2, CRALA, FENDRR					
HER-2 status	TUSC7, 91H, ANRASSF1, OR3A4, FENDRR					
LN, lymph node; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 2.						

[OR] = 1.41, 95% confidence interval [CI]: 1.08–1.84, p = 0.01), and an elevated *TUSC7* level was related to positive HER-2 status (OR = 2.75, 95% CI: 1.06–7.14, p = 0.04). The expression level of *MEG3* was negatively correlated with tumor histological grade (OR = 0.61, 95% CI: 0.41–0.91, p = 0.01). Moreover, increased levels of *NEAT1* and *TP73-AS1* were associated with advanced TNM stage (OR = 3.52, 95% CI: 1.84–6.73 and OR = 5.76, 95% CI: 2.64–12.6, respectively; all p < 0.01).

Among the remaining 38 lncRNAs, 4 lncRNAs (*MVIH*, *SOX2OT*, *PTPRG-AS1*, and *ANRIL*) had no relationship with any clinicopathological features of BC.^{47,48} The expression of the other 34 lncRNAs (*HOTTIP*, *CCAT1*, *H19*, *HULC*, etc.) was related to one or more clinical parameters of BC, including tumor size; lymph node metastasis; histological grade; TNM stage; and estrogen receptor (ER), PR, and HER-2 statuses (p < 0.05).^{48–79,87} The p values of the correlations between these lncRNAs and BC clinicopathological features are shown in Table S3, and Table 2 summarizes all the lncRNAs that were related to clinicopathological features of BC.

Prognostic Value of IncRNA Expression for BC Survival

Five lncRNAs, including *MALAT1*, *MEG3*, *CCAT2*, *HOTAIR*, and *NEAT1*, were included in meta-analyses for survival.^{13,22–31,80–86} As shown in Figure 2, patients with high expression of *CCAT2*, *MALAT1*, or *NEAT1* had shorter overall survival (OS) (hazard ratio [HR] = 1.29, 95% CI: 1.03–1.63, p = 0.03; HR = 2.78, 95% CI: 1.95–3.97, p < 0.01; HR = 1.65, 95% CI: 1.08–2.54, p = 0.02, respectively), while an increased level of *MEG* was associated with better OS (HR = 0.47, 95% CI: 0.37–0.71, p < 0.01). In addition, elevated expression of *CCAT2* or *HOTAIR* was related to poor metastasis-free

survival (MFS) (HR = 1.18, 95% CI: 1.02–1.36, p = 0.03; HR = 1.90, 95% CI: 1.41–2.55, p < 0.01, respectively) (Figure 3).

Another 24 lncRNAs were also correlated with OS of BC. Among them, the elevated expression of 7 lncRNAs (*FGF14-AS2, AFAP1-AS1, EPB41L4A-AS2, BC040587, EGOT, GAS6-AS1,* and *FENDRR*) related to a better survival,^{56,59–62,66,87} while increased expression of the 17 other lncRNAs (*BCAR4, HOTTIP, CCAT1, Z38, TUNAR, CRNDE, HULC, MVIH, TP73-AS1, linc-ITGB1, PVT1, UCA1, OR3A4, DANCR, LINP1, SNHG15,* and *SUMO1P3*) related to a worse survival^{36,38,46,47,51–55,69,71–73,76–78,88} (Figure 4). The expression of 9 lncRNAs (*MALAT1, HOTTIP, MVIH, LINC00978, linc-ITGB1, MEG3, GAS6-AS1, HOTAIR,* and *LINP1*) had an impact on disease-free survival (DFS) of BC. Furthermore, *MALAT1, MEG3,* and *HOTAIR* levels had a relationship with relapse-free survival (RFS); *CCAT1, MEG3,* and *FENDRR* levels were associated with progression-free survival (PFS); and the expression of *BCAR4* was related to MFS. The detailed information is provided in Table 3.

DISCUSSION

Increasing evidence has demonstrated that lncRNAs are involved in the initiation and progression of cancer and participate in multiple biological behaviors of cancer, including cell proliferation, apoptosis, migration, and metastasis.^{12,89} Aberrant expression of lncRNAs has been observed in various types of cancer, including BC.^{17,18} Previous reviews and meta-analyses have reported the prognostic values of lncRNAs in multiple cancers, such as colorectal cancer, ovarian cancer, prostate cancer, lung cancer, etc.^{90–93} However, no one investigated BC specifically. Since many studies found that dysregulation of multiple lncRNAs may have an impact on the prognosis of BC, we conducted this systematic review to highlight the prognostic values of lncRNAs in BC. To our knowledge, this review is a thorough work that comprehensively clarifies the association of lncRNA

In the present study, we systematically reviewed all the published literature regarding the clinical and prognostic values of lncRNAs in BC. We identified a number of relevant lncRNAs, most of which have been studied only once. We found that the expression levels of these lncRNAs were most often linked to tumor size (n = 15), lymph node metastasis (n = 24), and TNM stage (n = 21), while fewer of them associated with histological grade (n = 9), hormone receptor status (n = 9), and HER-2 status (n = 6). Moreover, several lncRNAs were related to more than two clinical features of BC. However, all the lncRNA expression had no relationship with patient age. These results indicated the intrinsic role of lncRNAs in the pathogenesis and progression of BC, which suggested lncRNAs may be important biomarkers for BC. As for survival, most of the studies investigated the relationship between lncRNA expression and OS, and a majority of them (n = 28) had a statistically significant correlation with the OS of BC. Only a few studies evaluated the associations of lncRNA expression with other types of survival, including DFS, MFS, PFS, and RFS, and there was also a strong connection between them. These results revealed the significant prognostic value of lncRNAs

Figure 2. Forest Plots of the Associations between the Expression of Five IncRNAs and Breast Cancer Overall Survival Each square indicates a study and the area of squares is proportional to the weight of the study. The diamond represents the pooled HR and 95% CI.

in BC. Hence, these lncRNAs may be independent predictors of prognosis in BC.

The most frequently evaluated lncRNAs in BC included *MALAT1*, *MEG3*, *CCAT2*, and *HOTAIR*. All of them are statistically significant predictors of BC prognosis. The expression of *MALAT1*, *CCAT2*, and *HOTAIR* was increased in BC, and the upregulation was associated with shorter survival. The expression of MEG3 was downregulated in BC. Tumor with a lower MEG3 expression tended to be poorly differentiated, and the survival of patients was worse. This indicated the oncogenic role of *MALAT1*, *CCAT2*, and *HOTAIR* in BC, whereas *MEG3* may be a tumor suppressor of

BC. In terms of mechanism, *MALAT1* was reported to mainly act as a competing endogenous RNA (ceRNA) to sponge microRNAs, thus regulating cell progression, invasion, and metastasis in BC through their targets.^{24–26} *CCAT2* can promote BC tumor growth and metastasis by regulating Wnt- and transforming growth factor β (TGF- β)- signaling pathways.^{80,94} *HOTAIR* was proven to promote BC metastasis through inducing or repressing critical genes in cell proliferation and migration as well as modulating the cancer epigenome.^{13,95} As for *MEG3*, it can inhibit cell proliferation, invasion, and angiogenesis both by sponging microRNAs and through regulating signaling transduction, such as the AKT and TGF- β pathways.^{28,96,97}

Figure 3. Forest Plots of the Associations between the Expression of Two IncRNAs and Breast Cancer Metastasis-free Survival

Each square indicates a study and the area of squares is proportional to the weight of the study. The diamond represents the pooled HR and 95% CI.

Overall, the results are comprehensive and credible because the quality of included articles is relatively high. However, there are still limitations in our analysis. First, heterogeneity exists between studies regarding the same lncRNA, and the heterogeneity is stubborn owing to the differences in methodology, such as sample selection, tissue preservation, determination of cutoff value, and statistical analysis. Second, almost all the studies in our review reported a statistically significant result. Although the Begg's

funnel plot suggested there is no publication bias on OS (Figure S1), we still suspect that selective reporting bias is prominent in the literature regarding lncRNA and BC prognosis. Third, about half of the included studies had a small sample size (<100), and small studies are considered associating with inflated estimates of effect size and higher heterogeneity.^{98,99} Lastly, language bias may exist since only two languages were used in the literature review.

Study or Subgroup log[Risk Ratio] SE IV, Fixed, 95% CI IV, Fixed, 95% CI Zhang 2015 CCAT1 1.0613 0.3414 2.89 [1.48, 5.64] + Yao 2017 TP73-A81 1.206 0.6002 3.34 [1.03, 10.83] + Yang 2016 FGF14-A82 -2.5257 0.1912 0.08 [0.05, 0.12] + Xu 2016 EPB41L4A-AS2 -0.2877 0.1311 0.75 [0.58, 0.97] + Xu 2015 EGOT -0.6162 0.2999 0.54 [0.30, 0.97] +
Zhang 2015 CCAT1 1.0613 0.3414 2.89 [1.48, 5.64] Yao 2017 TP73-AS1 1.206 0.6002 3.34 [1.03, 10.83] Yang 2017 HOTTIP 1.9629 0.9171 7.12 [1.18, 42.96] Yang 2016 FGF14-AS2 -2.5257 0.1912 0.08 [0.05, 0.12] Xu 2016 EPB41L4A-AS2 -0.2877 0.1311 0.75 [0.58, 0.97] Xu 2015 EGOT -0.6162 0.2999 0.54 [0.30, 0.97]
Yao 2017 TP73-AS1 1.206 0.6002 3.34 [1.03, 10.83] Yang 2017 HOTTIP 1.9629 0.9171 7.12 [1.18, 42.96] Yang 2016 FGF14-AS2 -2.5257 0.1912 0.08 [0.05, 0.12] Xu 2016 EPB41L4A-AS2 -0.2877 0.1311 0.75 [0.58, 0.97] Xu 2015 EGOT -0.6162 0.2999 0.54 [0.30, 0.97]
Yang 2017 HOTTIP 1.9629 0.9171 7.12 [1.18, 42.96] Yang 2016 FGF14-AS2 -2.5257 0.1912 0.08 [0.05, 0.12] Xu 2016 EPB41L4A-AS2 -0.2877 0.1311 0.75 [0.58, 0.97] Xu 2015 EGOT -0.6162 0.2999 0.54 [0.30, 0.97]
Yang 2016 FGF14-AS2 -2.5257 0.1912 0.08 [0.05, 0.12] + Xu 2016 EPB41L4A-AS2 -0.2877 0.1311 0.75 [0.58, 0.97] + Xu 2015 EGOT -0.6162 0.2999 0.54 [0.30, 0.97] +
Xu 2016 EPB41L4A-AS2 -0.2877 0.1311 0.75 [0.58, 0.97]
Xu 2015 EGOT -0.6162 0.2999 0.54 [0.30, 0.97]
Xie 2016 AFAP1-AS1 -1.3441 0.6029 0.26 (0.08, 0.85)
Wang Y 2017 PVT1 0.6206 0.2966 1.86 [1.04, 3.33]
Shi 2016 HULC 1.0438 0.3223 2.84 [1.51, 5.34]
Sha 2017 DANCR 0.5188 0.2546 1.68 [1.02, 2.77]
Nie 2017 Z38 1.556 0.3451 4.74 [2.41, 9.32]
Liu J 2017 SUM01P3 0.571 0.2156 1.77 [1.16, 2.70]
Liu HY 2016 UCA1 0.6881 0.346 1.99 [1.01, 3.92]
Liu GX 2017 OR3A4 1.0784 0.3971 2.94 [1.35, 6.40]
Liang 2018 LINP1 2.1448 0.8088 8.54 [1.75, 41.68]
LiY2018 FENDRR -3.6504 1.6619 0.03 [0.00, 0.67]
Li WX 2017 linc-ITGB1 1.0613 0.2798 2.89 [1.67, 5.00]
Li 2017 TUNAR 0.8671 0.4208 2.38 [1.04, 5.43]
Li 2016 GAS6-AS1 -1.273 0.542 0.28 [0.10, 0.81]
Lei 2016 MVIH 1.1569 0.5102 3.18 [1.17, 8.64]
Kong 2018 SNHG15 0.9203 0.3476 2.51 [1.27, 4.96]
Huan 2017 CRNDE 0.7747 0.3867 2.17 [1.02, 4.63]
Godinho 2010 BCAR4 0.571 0.1654 1.77 [1.28, 2.45]
Chi 2014 BC040587 -1.3863 0.6495 0.25 [0.07, 0.89]
Favours [high expression] Favours [low expression]

Figure 4. Forest Plots of the Associations between the Expression of IncRNAs and Breast Cancer Overall Survival in Single Studies Each square indicates a study.

Survival	lncRNA	HR and 95% CI	Analysis	Reference
	MALAT1	2.36 (1.04-5.38)	univariate	23
	HOTTIP	4.08 (1.13-14.71)	multivariate	51
	MVIH	2.55 (1.06-6.12)	multivariate	47
	LINC00978	2.27 (1.24-4.16)	multivariate	63
DFS	linc-ITGB1	3.13 (1.89-6.14)	multivariate	69
	MEG3	0.59 (0.36-0.96)	univariate	28
	GAS6-AS1	0.28 (0.13-0.60)	multivariate	66
	HOTAIR	1.89 (1.15-3.11)	univariate	43
	LINP1	8.40 (1.72-41.06)	univariate	76
	MALAT1	2.02 (1.02-3.98)	multivariate	22
RFS	MEG3	0.37 (0.15-0.87)	multivariate	30
	HOTAIR	0.47 (0.26-0.87)	multivariate	84
	CCAT1	3.59 (2.00-7.84)	multivariate	52
PFS	MEG3	0.37 (0.13-0.88)	multivariate	29
	FENDRR	0.578 (0.454-0.735)	multivariate	87
MFS	BCAR4	1.41 (1.03-1.94)	univariate	36

Table 3. Summary of Other Significant Associations of IncRNAs with Breast Cancer Survival

DFS, disease-free survival; MFS, metastasis-free survival; RFS, relapse-free survival; PFS, progression-free survival.

Our analysis demonstrated the prognostic value of lncRNAs in BC, and it highlighted the important biological function of lncRNAs in BC progression. These lncRNAs may exert their effects by directly binding to functional protein, modulation of DNA methylation, or post-transcriptional regulation of target genes.^{89,100,101} These genes and proteins include those that are involved in tumorgenesis and metastasis, such as *Wnt*, *P53*, *PI3K*, *MYC*, etc. Therefore, dysregulation of certain lncRNAs may have an effect on the development of BC, thus influencing the outcome of BC. Though the exact mechanisms are not yet fully clarified, we believe they will be better understood in the future with more studies in this field.

In conclusion, this systematic review identified a number of lncRNAs that were correlated with BC clinicopathological features and survival, and almost all the lncRNAs are statistically significant predictors of BC prognosis. The weightiness of these correlations is difficult to ascertain due to a lot of uncontrollable factors. Hence, a large-scale study with a standardized process of detection, analysis, and report is needed to further verify the prognostic value of these lncRNAs in BC.

MATERIALS AND METHODS

This review has been performed based on preferred reporting items for systematic reviews and meta-analyses (PRISMA).¹⁰²

Search Strategy

The databases of PubMed, Embase, Web of Science, as well as Chinese National Knowledge Infrastructure (CNKI) and Wanfang were systematically searched to identify all the eligible literature up to April 13, 2018. The following keywords and search terms were used: long noncoding RNA or long ncRNA or lncRNA or lincRNA or long intergenic non-coding RNA or long untranslated RNA, BC or breast carcinoma or breast tumor or breast neoplasm, and clinical or clinicopathological or clinicopathology or survival or odds ratio or OR or hazard ratio or HR. Additionally, references in relevant articles were also screened manually. The languages of the retrieved literature were confined to English and Chinese.

Inclusion and Exclusion Criteria

Studies were included if they fulfilled the following criteria: (1) original study focus on human beings, (2) investigated the relationship between lncRNA expression and clinicopathological features or survival of BC, (3) reported an OR or HR with 95% CI or there were sufficient data to calculate them, (4) full text was available. Exclusion criteria were as follows: (1) lacked key information, such as clinical parameters and survival curves, or lacked usable data; (2) reprocessed data from public databases; (3) HRs were for a combination of multiple lncRNAs; and (4) reviews, letters, single case reports, and conference abstracts. If multiple articles published by the same author reporting overlapped data, only the most complete one was included. The details about the selection process are shown in Figure 5.

Quality Assessment and Data Extraction

Two authors (T.T. and M.W.) reviewed potentially eligible articles independently. The Newcastle-Ottawa Scale was used to assess the quality of each study.¹⁰³ The following information was extracted from each included study: (1) basic information including first author's name, publication year, country of origin, names of lncRNAs, sample size, expression levels of lncRNAs in BC, detection methods, sample type, outcome measurements, follow-up duration, cutoff value, and analysis method for survival; (2) p values of the correlation between lncRNA expression and clinicopathological features of BC and the original data for calculating ORs and their 95% CIs; and (3) HRs and their 95% CIs for survival analysis. If HRs were not directly accessible in the text, Kaplan-Meier survival curves were read using Engauge Digitizer (version 4.1) to obtain data. Different datasets for one lncRNA or one dataset concerning several lncRNAs in the same article was considered to be separate studies and the HR was extracted respectively; but, if multiple datasets were combined into a single dataset, we only extracted the pooled HR. Any discrepancy was discussed by all authors to reach a consensus.

Statistical Analysis

ORs and their 95% CIs were used to estimate the association of lncRNAs with clinical features of BC. Patients were divided into two groups for comparison (for instance, histological grade III versus I and II, TNM stages III and IV versus I and II, and ER/PR status positive versus negative). As for survival rates, HRs with corresponding 95% CIs were used. All the ORs and HRs were calculated for high expression of lncRNAs. When two or more different studies investigated the same lncRNA, a meta-analysis was carried out to combine the effect size. The Z test was used to determine the significance of ORs or HRs. Heterogeneity between studies was tested using

Q statistic and I² test. When I² value was more than 50%, which indicated a significant heterogeneity, the random-effects model was utilized. Otherwise, the fixed-effects model was used. All statistical analyses were done with the software Review Manager 5.3 (Cochrane Collaboration, London, UK). A p value less than 0.05 was considered statistically significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure and three tables and can be found with this article online at https://doi.org/10.1016/j. omtn.2018.05.018.

AUTHOR CONTRIBUTIONS

T.T. and Zhijun Dai conceived and designed the study. T.T. and M.W. searched and reviewed literature. S.L., Y.G., Zhiming Dai, K.L., and C.D. contributed to data collection, analysis, and interpretation. P.Y., Y. Zhu, Y. Zheng, and P.X. prepared tables and figures. T.T. drafted the manuscript. Zhijun Dai and W.Z. revised the manuscript. All authors approved the final manuscript.

CONFLICTS OF INTEREST

The authors declare that they have no competing interest.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation, People's Republic of China (81471670); the International Cooperative Project of Shaanxi province, China (2016KW-008); and the Key Research and Development Plan, Shaanxi Province, People's Republic of China (2017ZDXM-SF-066). The sponsors had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

REFERENCES

- Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108.
- Smith, R.A., Andrews, K., Brooks, D., DeSantis, C.E., Fedewa, S.A., Lortet-Tieulent, J., Manassaram-Baptiste, D., Brawley, O.W., and Wender, R.C. (2016). Cancer screening in the United States, 2016: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 66, 96–114.
- Shi, J.F., Huang, H.Y., Guo, L.W., Shi, D., Gu, X.Y., Liang, H., Wang, L., Ren, J.S., Bai, Y.N., Mao, A.Y., et al. (2016). Quality-of-life and health utility scores for common cancers in China: a multicentre cross-sectional survey. Lancet 388 (Suppl 1), S29.
- 4. Hayes, D.F. (2005). Prognostic and predictive factors revisited. Breast 14, 493-499.
- 5. Tang, X. (2013). Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett. 332, 3–10.
- Bahrami, A., Aledavood, A., Anvari, K., Hassanian, S.M., Maftouh, M., Yaghobzade, A., Salarzaee, O., ShahidSales, S., and Avan, A. (2018). The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J. Cell. Physiol. 233, 774–786.
- Ren, F., Tang, R., Zhang, X., Madushi, W.M., Luo, D., Dang, Y., Li, Z., Wei, K., and Chen, G. (2015). Overexpression of MMP Family Members Functions as Prognostic Biomarker for Breast Cancer Patients: A Systematic Review and Meta-Analysis. PLoS ONE 10, e0135544.
- 8. Kutomi, G., Mizuguchi, T., Satomi, F., Maeda, H., Shima, H., Kimura, Y., and Hirata, K. (2017). Current status of the prognostic molecular biomarkers in breast cancer: A systematic review. Oncol. Lett. *13*, 1491–1498.

- 9. Wapinski, O., and Chang, H.Y. (2011). Long noncoding RNAs and human disease. Trends Cell Biol. 21, 354–361.
- Quinn, J.J., and Chang, H.Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62.
- Beermann, J., Piccoli, M.T., Viereck, J., and Thum, T. (2016). Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol. Rev. 96, 1297–1325.
- Prensner, J.R., and Chinnaiyan, A.M. (2011). The emergence of lncRNAs in cancer biology. Cancer Discov. 1, 391–407.
- Gupta, R.A., Shah, N., Wang, K.C., Kim, J., Horlings, H.M., Wong, D.J., Tsai, M.C., Hung, T., Argani, P., Rinn, J.L., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076.
- 14. Xing, Z., Lin, A., Li, C., Liang, K., Wang, S., Liu, Y., Park, P.K., Qin, L., Wei, Y., Hawke, D.H., et al. (2014). lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 159, 1110–1125.
- Klingenberg, M., Matsuda, A., Diederichs, S., and Patel, T. (2017). Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J. Hepatol. 67, 603–618.
- Martens-Uzunova, E.S., Böttcher, R., Croce, C.M., Jenster, G., Visakorpi, T., and Calin, G.A. (2014). Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol. 65, 1140–1151.
- Wang, J., Ye, C., Xiong, H., Shen, Y., Lu, Y., Zhou, J., and Wang, L. (2017). Dysregulation of long non-coding RNA in breast cancer: an overview of mechanism and clinical implication. Oncotarget *8*, 5508–5522.
- Cerk, S., Schwarzenbacher, D., Adiprasito, J.B., Stotz, M., Hutterer, G.C., Gerger, A., Ling, H., Calin, G.A., and Pichler, M. (2016). Current Status of Long Non-Coding RNAs in Human Breast Cancer. Int. J. Mol. Sci. 17, E1485.
- Serghiou, S., Kyriakopoulou, A., and Ioannidis, J.P. (2016). Long noncoding RNAs as novel predictors of survival in human cancer: a systematic review and meta-analysis. Mol. Cancer 15, 50.
- 20. Meseure, D., Vacher, S., Lallemand, F., Alsibai, K.D., Hatem, R., Chemlali, W., Nicolas, A., De Koning, L., Pasmant, E., Callens, C., et al. (2016). Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br. J. Cancer 114, 1395–1404.
- 21. Xu, S., Sui, S., Zhang, J., Bai, N., Shi, Q., Zhang, G., Gao, S., You, Z., Zhan, C., Liu, F., and Pang, D. (2015). Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. Int. J. Clin. Exp. Pathol. 8, 4881–4891.
- 22. Huang, N.S., Chi, Y.Y., Xue, J.Y., Liu, M.Y., Huang, S., Mo, M., Zhou, S.L., and Wu, J. (2016). Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) interacts with estrogen receptor and predicted poor survival in breast cancer. Oncotarget 7, 37957–37965.
- 23. Miao, Y., Fan, R., Chen, L., and Qian, H. (2016). Clinical Significance of Long Non-coding RNA MALAT1 Expression in Tissue and Serum of Breast Cancer. Ann. Clin. Lab. Sci. 46, 418–424.
- 24. Jin, C., Yan, B., Lu, Q., Lin, Y., and Ma, L. (2016). Reciprocal regulation of HsamiR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumour Biol. *37*, 7383–7394.
- 25. Wang, Y., Zhou, Y., Yang, Z., Chen, B., Huang, W., Liu, Y., and Zhang, Y. (2017). MiR-204/ZEB2 axis functions as key mediator for MALAT1-induced epithelialmesenchymal transition in breast cancer. Tumour Biol. 39, 1010428317690998.
- 26. Zuo, Y., Li, Y., Zhou, Z., Ma, M., and Fu, K. (2017). Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed. Pharmacother. 95, 922–928.
- Zhang, P., Zhou, H., Lu, K., Lu, Y., Wang, Y., and Feng, T. (2018). Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. OncoTargets Ther. 11, 291–299.
- 28. Zhang, W., Shi, S., Jiang, J., Li, X., Lu, H., and Ren, F. (2017). LncRNA MEG3 inhibits cell epithelial-mesenchymal transition by sponging miR-421 targeting E-cadherin in breast cancer. Biomed. Pharmacother. *91*, 312–319.

- 29. Zhang, J.J., Guo, S.H., and Jia, B.Q. (2016). Down-regulation of long non-coding RNA MEG3 serves as an unfavorable risk factor for survival of patients with breast cancer. Eur. Rev. Med. Pharmacol. Sci. 20, 5143–5147.
- Shi, W., Xia, S., Yin, Y., Qi, X., and Xing, C. (2016). Decreased expression of lncRNA MEG3 in breast cancer is associated with poor prognosis. Int. J. Clin. Exp. Pathol. 9, 5327–5333.
- Deng, X., Zhao, Y., Wu, X., and Song, G. (2017). Upregulation of CCAT2 promotes cell proliferation by repressing the P15 in breast cancer. Biomed. Pharmacother. 91, 1160–1166.
- 32. Sarrafzadeh, Sh., Geranpayeh, L., Tasharrofi, B., Soudyab, M., Nikpayam, E., Iranpour, M., Mirfakhraie, R., Gharesouran, J., Ghafouri-Fard, S., and Ghafouri-Fard, S. (2017). Expression Study and Clinical Correlations of MYC and CCAT2 in Breast Cancer Patients. Iran. Biomed. J. 21, 303–311.
- Chang, L.J. (2016). The Expression of Long Non-coding RNA-Loc285194 in Breast Cancer and Its Association with Clinicopathological Characteristics (Inner Mongolia Medical University).
- 34. Huang, Q.X., Chen, G., Feng, Z.B., Wei, K.L., and Chen, H. (2017). Expression and clinical significance of long chain non-coding RNA LOC285194 in human breast cancer tissue. Chongqing Med. 46, 1223–1225.
- 35. van Agthoven, T., Dorssers, L.C., Lehmann, U., Kreipe, H., Looijenga, L.H., and Christgen, M. (2015). Breast Cancer Anti-Estrogen Resistance 4 (BCAR4) Drives Proliferation of IPH-926 lobular Carcinoma Cells. PLoS ONE 10, e0136845.
- 36. Godinho, M.F., Sieuwerts, A.M., Look, M.P., Meijer, D., Foekens, J.A., Dorssers, L.C., and van Agthoven, T. (2010). Relevance of BCAR4 in tamoxifen resistance and tumour aggressiveness of human breast cancer. Br. J. Cancer 103, 1284–1291.
- Zou, Q., Zhou, E., Xu, F., Zhang, D., Yi, W., and Yao, J. (2018). A TP73-AS1/miR-200a/ZEB1 regulating loop promotes breast cancer cell invasion and migration. J. Cell. Biochem. *119*, 2189–2199.
- Yao, J., Xu, F., Zhang, D., Yi, W., Chen, X., Chen, G., and Zhou, E. (2018). TP73-AS1 promotes breast cancer cell proliferation through miR-200a-mediated TFAM inhibition. J. Cell. Biochem. 119, 680–690.
- 39. Zhao, D., Zhang, Y., Wang, N., and Yu, N. (2017). NEAT1 negatively regulates miR-218 expression and promotes breast cancer progression. Cancer Biomark. 20, 247–254.
- 40. Li, X., Wang, S., Li, Z., Long, X., Guo, Z., Zhang, G., Zu, J., Chen, Y., and Wen, L. (2017). The lncRNA NEAT1 facilitates cell growth and invasion via the miR-211/ HMGA2 axis in breast cancer. Int. J. Biol. Macromol. 105, 346–353.
- Li, T., Liu, Y., Xiao, H., and Xu, G. (2017). Long non-coding RNA TUG1 promotes cell proliferation and metastasis in human breast cancer. Breast Cancer 24, 535–543.
- 42. Fan, S., Yang, Z., Ke, Z., Huang, K., Liu, N., Fang, X., and Wang, K. (2017). Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation, migration, and invasion in breast cancer. Biomed. Pharmacother. 95, 1636– 1643.
- 43. Lv, R., Zhang, J., Zhang, W., Huang, Y., Wang, N., Zhang, Q., and Qu, S. (2018). Circulating HOTAIR expression predicts the clinical response to neoadjuvant chemotherapy in patients with breast cancer. Cancer Biomark. Published online March 30, 2018, https://doi.org/10.3233/CBM-170874.
- 44. Gökmen-Polar, Y., Vladislav, I.T., Neelamraju, Y., Janga, S.C., and Badve, S. (2015). Prognostic impact of HOTAIR expression is restricted to ER-negative breast cancers. Sci. Rep. 5, 8765.
- 45. Li, Z.B., Zhou, J., Zhou, L., and Yang, F.H. (2018). Value of detection of long noncoding RNA CRNDE in the diagnosis of breast cancer. Pract. Prev. Med. 25, 276–279.
- 46. Huan, J., Xing, L., Lin, Q., Xui, H., and Qin, X. (2017). Long noncoding RNA CRNDE activates Wnt/β-catenin signaling pathway through acting as a molecular sponge of microRNA-136 in human breast cancer. Am. J. Transl. Res. 9, 1977–1989.
- 47. Lei, B., Xu, S.P., Liang, X.S., Li, Y.W., Zhang, J.F., Zhang, G.Q., and Pang, D. (2016). Long non-coding RNA MVIH is associated with poor prognosis and malignant biological behavior in breast cancer. Tumour Biol. 37, 5257–5264.
- 48. Iranpour, M., Soudyab, M., Geranpayeh, L., Mirfakhraie, R., Azargashb, E., Movafagh, A., and Ghafouri-Fard, S. (2016). Expression analysis of four long noncoding RNAs in breast cancer. Tumour Biol. 37, 2933–2940.

- 49. Wang, O., Yang, F., Liu, Y., Lv, L., Ma, R., Chen, C., Wang, J., Tan, Q., Cheng, Y., Xia, E., et al. (2017). C-MYC-induced upregulation of lncRNA SNHG12 regulates cell proliferation, apoptosis and migration in triple-negative breast cancer. Am. J. Transl. Res. 9, 533–545.
- 50. Adriaenssens, E., Dumont, L., Lottin, S., Bolle, D., Leprêtre, A., Delobelle, A., Bouali, F., Dugimont, T., Coll, J., and Curgy, J.J. (1998). H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am. J. Pathol. 153, 1597–1607.
- Yang, Y., Qian, J., Xiang, Y., Chen, Y., and Qu, J. (2017). The prognostic value of long noncoding RNA HOTTIP on clinical outcomes in breast cancer. Oncotarget 8, 6833–6844.
- 52. Zhang, X.F., Liu, T., Li, Y., and Li, S. (2015). Overexpression of long non-coding RNA CCAT1 is a novel biomarker of poor prognosis in patients with breast cancer. Int. J. Clin. Exp. Pathol. 8, 9440–9445.
- 53. Nie, Z.L., Wang, Y.S., Mei, Y.P., Lin, X., Zhang, G.X., Sun, H.L., Wang, Y.L., Xia, Y.X., and Wang, S.K. (2018). Prognostic significance of long noncoding RNA Z38 as a candidate biomarker in breast cancer. J. Clin. Lab. Anal. 32. Published online March 1, 2017, https://doi.org/10.1002/jcla.22193.
- 54. Li, H., Zhu, L., Xu, L., Qin, K., Liu, C., Yu, Y., Su, D., Wu, K., and Sheng, Y. (2017). Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer. Mol. Carcinog. 56, 3–17.
- 55. Shi, F., Xiao, F., Ding, P., Qin, H., and Huang, R. (2016). Long Noncoding RNA Highly Up-regulated in Liver Cancer Predicts Unfavorable Outcome and Regulates Metastasis by MMPs in Triple-negative Breast Cancer. Arch. Med. Res. 47, 446–453.
- **56.** Xie, B. (2016). The expression and clinical significance of a long non-coding RNA AFAP1-AS1 in breast cancer. Mod. Oncol. *24*, 3739–3742.
- Huang, Q.X., Chen, G., Feng, Z.B., Wei, K.L., and Chen, H. (2015). The expression and significance of long non-coding RNA UC001kfo in human breast cancer. J. Clin. Pathol. Res. 35, 1992–1998.
- 58. Shi, Y., Li, J., Liu, Y., Ding, J., Fan, Y., Tian, Y., Wang, L., Lian, Y., Wang, K., and Shu, Y. (2015). The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression. Mol. Cancer 14, 51.
- 59. Yang, F., Liu, Y.H., Dong, S.Y., Ma, R.M., Bhandari, A., Zhang, X.H., and Wang, O.C. (2016). A novel long non-coding RNA FGF14-AS2 is correlated with progression and prognosis in breast cancer. Biochem. Biophys. Res. Commun. 470, 479–483.
- 60. Xu, S., Wang, P., You, Z., Meng, H., Mu, G., Bai, X., Zhang, G., Zhang, J., and Pang, D. (2016). The long non-coding RNA EPB41L4A-AS2 inhibits tumor proliferation and is associated with favorable prognoses in breast cancer and other solid tumors. Oncotarget 7, 20704–20717.
- Chi, Y., Huang, S., Yuan, L., Liu, M., Huang, N., Zhou, S., Zhou, B., and Wu, J. (2014). Role of BC040587 as a predictor of poor outcome in breast cancer. Cancer Cell Int. 14, 123.
- 62. Xu, S.P., Zhang, J.F., Sui, S.Y., Bai, N.X., Gao, S., Zhang, G.W., Shi, Q.Y., You, Z.L., Zhan, C., and Pang, D. (2015). Downregulation of the long noncoding RNA EGOT correlates with malignant status and poor prognosis in breast cancer. Tumour Biol. 36, 9807–9812.
- Deng, L.L., Chi, Y.Y., Liu, L., Huang, N.S., Wang, L., and Wu, J. (2016). LINC00978 predicts poor prognosis in breast cancer patients. Sci. Rep. 6, 37936.
- 64. Liao, X.H., Wang, J.G., Li, L.Y., Zhou, D.M., Ren, K.H., Jin, Y.T., Lv, L., Yu, J.G., Yang, J.Y., Lu, Q., et al. (2016). Long intergenic non-coding RNA APOC1P1-3 inhibits apoptosis by decreasing α-tubulin acetylation in breast cancer. Cell Death Dis. 7, e2236.
- 65. Vennin, C., Spruyt, N., Robin, Y.M., Chassat, T., Le Bourhis, X., and Adriaenssens, E. (2017). The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett. 385, 198–206.
- 66. Li, X., Zhang, R., Liu, Z., Li, C., and Xu, H. (2016). Low expression of long noncoding RNA GAS6-AS1 as a novel biomarker of poor prognosis for breast cancer. Int. J. Clin. Exp. Med. 9, 15820–15827.

- 67. Liu, M., Xing, L.Q., and Liu, Y.J. (2017). A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triplenegative breast cancers. Medicine (Baltimore) 96, e6222.
- 68. Chen, Y.M., Liu, Y., Wei, H.Y., Lv, K.Z., and Fu, P. (2016). Linc-ROR induces epithelial-mesenchymal transition and contributes to drug resistance and invasion of breast cancer cells. Tumour Biol. 37, 10861–10870.
- 69. Li, W.X., Sha, R.L., Bao, J.Q., Luan, W., Su, R.L., and Sun, S.R. (2017). Expression of long non-coding RNA linc-ITGB1 in breast cancer and its influence on prognosis and survival. Eur. Rev. Med. Pharmacol. Sci. 21, 3397–3401.
- 70. Fang, Y., Wang, J., Wu, F., Song, Y., Zhao, S., and Zhang, Q. (2017). Long non-coding RNA HOXA-AS2 promotes proliferation and invasion of breast cancer by acting as a miR-520c-3p sponge. Oncotarget 8, 46090–46103.
- Sha, S., Yuan, D., Liu, Y., Han, B., and Zhong, N. (2017). Targeting long noncoding RNA DANCR inhibits triple negative breast cancer progression. Biol. Open 6, 1310–1316.
- 72. Wang, Y., Zhou, J., Wang, Z., Wang, P., and Li, S. (2017). Upregulation of SOX2 activated lncRNA PVT1 expression promotes breast cancer cell growth and invasion. Biochem. Biophys. Res. Commun. 493, 429–436.
- Liu, G., Hu, X., and Zhou, G. (2017). Long non-coding RNA OR3A4 promotes proliferation and migration in breast cancer. Biomed. Pharmacother. 96, 426–433.
- 74. Li, Y., Wang, B., Lai, H., Li, S., You, Q., Fang, Y., Li, Q., and Liu, Y. (2017). Long noncoding RNA CRALA is associated with poor response to chemotherapy in primary breast cancer. Thorac. Cancer 8, 582–591.
- Rui, J., Chunming, Z., Binbin, G., Na, S., Shengxi, W., and Wei, S. (2017). IL-22 promotes the progression of breast cancer through regulating HOXB-AS5. Oncotarget 8, 103601–103612.
- 76. Liang, Y., Li, Y., Song, X., Zhang, N., Sang, Y., Zhang, H., Liu, Y., Chen, B., Zhao, W., Wang, L., et al. (2018). Long noncoding RNA LINP1 acts as an oncogene and promotes chemoresistance in breast cancer. Cancer Biol. Ther. 19, 120–131.
- Kong, Q., and Qiu, M. (2018). Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem. Biophys. Res. Commun. 495, 1594–1600.
- 78. Liu, J., Song, Z., Feng, C., Lu, Y., Zhou, Y., Lin, Y., and Dong, C. (2017). The long non-coding RNA SUMO1P3 facilitates breast cancer progression by negatively regulating miR-320a. Am. J. Transl. Res. 9, 5594–5602.
- 79. Jiang, M., and Guan, H.G. (2017). Long noncoding RNA adriamycin resistance associated is overexpressed in triple negative breast cancer and contributes to shorter survival. Chin. J. Exp. Surg. 34, 1757–1759.
- Cai, Y., He, J., and Zhang, D. (2015). Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway. OncoTargets Ther. 8, 2657– 2664.
- 81. Redis, R.S., Sieuwerts, A.M., Look, M.P., Tudoran, O., Ivan, C., Spizzo, R., Zhang, X., de Weerd, V., Shimizu, M., Ling, H., et al. (2013). CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget 4, 1748–1762.
- 82. Ling, H., Spizzo, R., Atlasi, Y., Nicoloso, M., Shimizu, M., Redis, R.S., Nishida, N., Gafa, R., Song, J., Guo, Z., et al. (2013). CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 23, 1446–1461.
- 83. Sørensen, K.P., Thomassen, M., Tan, Q., Bak, M., Cold, S., Burton, M., Larsen, M.J., and Kruse, T.A. (2013). Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res. Treat. 142, 529–536.
- 84. Lu, L., Zhu, G., Zhang, C., Deng, Q., Katsaros, D., Mayne, S.T., Risch, H.A., Mu, L., Canuto, E.M., Gregori, G., et al. (2012). Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res. Treat. *136*, 875–883.
- 85. Li, J.T., Wang, L.F., Zhao, Y.L., Yang, T., Li, W., Zhao, J., Yu, F., Wang, L., Meng, Y.L., Liu, N.N., et al. (2014). Nuclear factor of activated T cells 5 maintained by Hotair suppression of miR-568 upregulates S100 calcium binding protein A4 to promote breast cancer metastasis. Breast Cancer Res. 16, 454.

- 86. Zhang, M., Wu, W.B., Wang, Z.W., and Wang, X.H. (2017). IncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT. Eur. Rev. Med. Pharmacol. Sci. 21, 1020–1026.
- 87. Li, Y., Zhang, W., Liu, P., Xu, Y., Tang, L., Chen, W., and Guan, X. (2018). Long non-coding RNA FENDRR inhibits cell proliferation and is associated with good prognosis in breast cancer. OncoTargets Ther. 11, 1403–1412.
- 88. Liu, H., Wang, G., Yang, L., Qu, J., Yang, Z., and Zhou, X. (2016). Knockdown of Long Non-Coding RNA UCA1 Increases the Tamoxifen Sensitivity of Breast Cancer Cells through Inhibition of Wnt/β-Catenin Pathway. PLoS ONE 11, e0168406.
- 89. Tehrani, S.S., Karimian, A., Parsian, H., Majidinia, M., and Yousefi, B. (2018). Multiple Functions of Long Non-Coding RNAs in Oxidative Stress, DNA Damage Response and Cancer Progression. J. Cell. Biochem. 119, 223–236.
- 90. Wang, J., Du, S., Wang, J., Fan, W., Wang, P., Zhang, Z., Xu, P., Tang, S., Deng, Q., Yang, W., and Yu, M. (2017). The prognostic value of abnormally expressed lncRNAs in colorectal cancer: A meta-analysis. PLoS ONE 12, e0179670.
- Luo, P., Liu, X.F., Wang, Y.C., Li, N.D., Liao, S.J., Yu, M.X., Liang, C.Z., and Tu, J.C. (2017). Prognostic value of abnormally expressed lncRNAs in ovarian carcinoma: a systematic review and meta-analysis. Oncotarget 8, 23927–23936.
- 92. Ma, W., Chen, X., Ding, L., Ma, J., Jing, W., Lan, T., Sattar, H., Wei, Y., Zhou, F., and Yuan, Y. (2017). The prognostic value of long noncoding RNAs in prostate cancer: a systematic review and meta-analysis. Oncotarget 8, 57755–57765.
- 93. Jing, W., Li, N., Wang, Y., Liu, X., Liao, S., Chai, H., and Tu, J. (2017). The prognostic significance of long noncoding RNAs in non-small cell lung cancer: a meta-analysis. Oncotarget 8, 3957–3968.
- 94. Wu, Z.J., Li, Y., Wu, Y.Z., Wang, Y., Nian, W.Q., Wang, L.L., Li, L.C., Luo, H.L., and Wang, D.L. (2017). Long non-coding RNA CCAT2 promotes the breast cancer

growth and metastasis by regulating TGF- β signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 21, 706–714.

- 95. Yu, X., and Li, Z. (2015). Long non-coding RNA HOTAIR: A novel oncogene (Review). Mol. Med. Rep. 12, 5611–5618.
- 96. Zhang, C.Y., Yu, M.S., Li, X., Zhang, Z., Han, C.R., and Yan, B. (2017). Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through AKT pathway. Tumour Biol. 39, 1010428317701311.
- 97. Mondal, T., Subhash, S., Vaid, R., Enroth, S., Uday, S., Reinius, B., Mitra, S., Mohammed, A., James, A.R., Hoberg, E., et al. (2015). MEG3 long noncoding RNA regulates the TGF- β pathway genes through formation of RNA-DNA triplex structures. Nat. Commun. 6, 7743.
- 98. Ioannidis, J.P. (2008). Why most discovered true associations are inflated. Epidemiology 19, 640-648.
- IntHout, J., Ioannidis, J.P., Borm, G.F., and Goeman, J.J. (2015). Small studies are more heterogeneous than large ones: a meta-meta-analysis. J. Clin. Epidemiol. 68, 860–869.
- 100. Nagano, T., and Fraser, P. (2011). No-nonsense functions for long noncoding RNAs. Cell 145, 178–181.
- 101. Forrest, M.E., and Khalil, A.M. (2017). Review: Regulation of the cancer epigenome by long non-coding RNAs. Cancer Lett. 407, 106–112.
- 102. Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G.; PRISMA Group (2010). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8, 336–341.
- 103. Zeng, X.T., Liu, H., Chen, X., and Leng, W.D. (2012). Meta Analysis series four: quality assessment tools for observational studies. Chin. J. Evid. Based. Cardiovasc Med. 4, 297–299.

OMTN, Volume 12

Supplemental Information

The Impact of IncRNA Dysregulation on

Clinicopathology and Survival of Breast Cancer:

A Systematic Review and Meta-analysis

Tian Tian, Meng Wang, Shuai Lin, Yan Guo, Zhiming Dai, Kang Liu, Pengtao Yang, Cong Dai, Yuyao Zhu, Yi Zheng, Peng Xu, Wenge Zhu, and Zhijun Dai

Author & Publication year	Country	LncRNAs	Number of patients	Expression in tumor	Method	Sample	Survival	Follow-up	Quality
Wang OC 2017	China	SNHG12	102	up-regulated	aRT-PCR	tissue	NR	(month) NR	7
Yang 2017	China	HOTTIP	102	NR	qRT-PCR	tissue	OS, DFS	125	8
Zhang 2015	China	CCAT1	92	up-regulated	qRT-PCR	tissue	OS, PFS	60	8
Xie 2016	China	AFAP1-AS1	76	down-regulated	qRT-PCR	tissue	OS	55	6
Huang QX 2015	China	ACTA2-AS1	47	down-regulated	qRT-PCR	tissue	NR	NR	6
Adriansens 1998	France	H19	102	up-regulated	ISH	tissue	NR	NR	6
Nie 2017	China	Z38	110	up-regulated	qRT-PCR	tissue	OS	51	9
Li 2017	China	TUNAR	63	up-regulated	qRT-PCR	tissue	OS	60	8
Shi 2015	China	SPRY4-IT1	48	up-regulated	qRT-PCR	tissue	NR	NR	6
Yang 2016	China	FGF14-AS2	64	down-regulated	qRT-PCR	tissue	OS	16.7	6
Xu 2016	China	EPB41L4A-AS2	250	down-regulated	qRT-PCR	tissue	OS	60	7
Shi 2016	China	HULC	96	up-regulated	qRT-PCR	tissue	OS	60	8
Liao 2016	China	APOC1P1-3	90	up-regulated	qRT-PCR	tissue	NR	NR	7
Lei 2016	China	MVIH	250	up-regulated	qRT-PCR	tissue	OS, DFS	60	8
Deng 2016	China	LINC00978	195	up-regulated	qRT-PCR	tissue	DFS	47.6	8
Chi 2014	China	BC040587	151	down-regulated	qRT-PCR	tissue	OS	60	8
Xu 2015	China	EGOT	250	down-regulated	qRT-PCR	tissue	OS	60	8
Vennin 2017	France	91H	41	up-regulated	qRT-PCR	tissue	NR	NR	6
Iranpour 2016	Iran	ANRASSF, SOX2OT, PTPRG-AS1, ANRIL	38	up-regulated	qRT-PCR	tissue	NR	NR	6
Liu M 2017	China	HIF1A-AS2, UCA1, ANRIL	60	up-regulated	qRT-PCR	serum	NR	NR	6

Supplementary table 1. Characteristics of single studies included in the systematic review.

Chen 2016	China	Linc-ROR	142	up-regulated	qRT-PCR	tissue	NR	NR	7
Fang 2017	China	HOXA-AS2	38	up-regulated	qRT-PCR	tissue	NR	NR	6
Li X 2016	China	GAS6-AS1	90	down-regulated	qRT-PCR	tissue	OS, DFS	60	8
Liu 2016	China	UCA1	54	up-regulated	qRT-PCR	tissue	OS	60	6
Li WX 2017	China	linc-ITGB1	224	up-regulated	qRT-PCR	tissue	OS, DFS	60	8
Sha 2017	China	DANCR	63	up-regulated	qRT-PCR	tissue	OS	60	7
Wang Y 2017	China	PVT1	110	up-regulated	qRT-PCR	tissue	OS	60	6
Liu GX 2017	China	OR3A4	65	up-regulated	qRT-PCR	tissue	OS	60	6
Li YD 2018	China	CRALA	176	NR	qRT-PCR	tissue	NR	NR	8
Rui 2017	China	HOXB-AS5	66	up-regulated	qRT-PCR	tissue& serum	NR	NR	6
Li Y 2018	China	FENDRR	52	down-regulated	qRT-PCR	tissue	OS, PFS	60	8
Liang 2018	China	LINP1	67	NR	qRT-PCR	tissue	OS, DFS	43	7
Kong 2018	China	SNHG15	58	up-regulated	qRT-PCR	tissue	OS	60	6
Liu J 2017	China	SUMO1P3	74	up-regulated	qRT-PCR	tissue	OS	150	7
Jiang 2017	China	ARA	55	up-regulated	qRT-PCR	tissue	NR	NR	7

OS: overall survival; DFS: disease-free survival; MFS: metastasis-free survival; RFS: relapse- free survival; PFS: progression-free survival; NR: not report;

qRT-PCR: quantitative real-time polymerase chain reaction; ISH: in situ hybridization.

IncRNAs		Age	Tumor size	LN metastasis	Histological grade	TNM stage	ER status	PR status	Her2 status
	OR (95%CI)	0.98 (0.75, 1.28)	0.88 (0.67, 1.16)	1.40 (0.64, 3.06)	1.18 (0.63, 2.20)	1.64 (0.63, 4.23)	1.13 (0.66, 1.94)	1.41 (1.08, 1.84)	1.01 (0.75, 1.37)
MALAT1	Р	0.86	0.35	0.39	0.61	0.31	0.65	0.01	0.92
	I^2 & model	0% (fixed)	0% (fixed)	79% (random)	59% (random)	80% (random)	70% (random)	6% (fixed)	0% (fixed)
	OR (95%CI)	0.79 (0.56, 1.12)	1.12 (0.78, 1.61)	0.75 (0.22, 2.52)	0.61 (0.41, 0.91)	0.77 (0.20, 2.94)	0.97 (0.60, 1.58)	0.99 (0.62, 1.56)	0.83 (0.32, 2.18)
MEG3	Р	0.19	0.53	0.64	0.01	0.70	0.91	0.95	0.71
	I^2 & model	0% (fixed)	0% (fixed)	89% (random)	36% (fixed)	91% (random)	46% (fixed)	0% (fixed)	71% (random)
	OR (95%CI)	0.53 (0.27, 1.07)	0.93 (0.44, 1.96)	0.91 (0.05, 17.0)	1.22 (0.60, 2.48)	0.42 (0.01, 27.73)	1.38 (0.72, 2.67)	1.40 (0.72, 2.72)	0.53 (0.28, 1.03)
CCAT2	Р	0.08	0.85	0.95	0.58	0.68	0.33	0.32	0.06
	I^2 & model	0% (fixed)	0% (fixed)	93% (random)	0% (fixed)	93% (random)	0% (fixed)	0% (fixed)	0% (fixed)
	OR (95%CI)	0.97 (0.71, 1.32)	1.04 (0.75, 1.44)	1.03 (0.62, 1.70)	1.52 (0.60, 3.86)	/	0.2 (0.05, 0.82)	1.08 (0.58, 2.01)	0.44 (0.02, 8.19)
BCAR4	Р	0.83	0.83	0.91	0.38	/	0.03	0.81	0.58
	I^2 & model	0% (fixed)	0% (fixed)	0% (fixed)	72% (random)	/	/	0% (fixed)	/
	OR (95%CI)	1.61 (0.57, 4.51)	0.34 (0.02, 4.96)	0.97 (0.38, 2.45)	3.80 (0.67, 21.6)	1.00 (0.29, 3.39)	0.72 (0.25, 2.08)	0.64 (0.06, 7.33)	2.75 (1.06, 7.14)
TUSC7	Р	0.36	0.43	0.95	0.13	1.00	0.55	0.72	0.04
	I^2 & model	0% (fixed)	83% (random)	0% (fixed)	/	/	0% (fixed)	70% (random)	47% (fixed)
	OR (95%CI)	2.16 (0.85, 5.50)	2.79 (0.68, 11.53)	0.53 (0.03, 10.66)	/	5.76 (2.64, 12.6)	0.82 (0.40, 1.67)	0.59 (0.29, 1.21)	1.33 (0.57, 3.13)
TP73-AS1	Р	0.11	0.16	0.68	/	<0.01	0.59	0.15	0.51
	I^2 & model	/	68% (random)	91%(random)	/	0% (fixed)	0% (fixed)	0% (fixed)	/
NEAT1	OR (95%CI)	0.85 (0.47, 1.55)	1.24 (0.67, 2.32)	3.00 (1.09, 8.24)	0.95 (0.34, 2.63)	3.52 (1.84, 6.73)	0.74 (0.41, 1.35)	1.53 (0.84, 2.79)	4.49 (0.24, 84.81)
	Р	0.60	0.49	0.03	0.92	<0.01	0.32	0.16	0.32

Supplementary Table 2. Meta-analysis results of the associations between the expression of eight lncRNAs and clinicopathological features of BC.

	I^2 & model	0% (fixed)	0% (fixed)	/	/	0% (fixed)	14% (fixed)	0% (fixed)	85% (random)
	OR (95%CI)	1.18 (0.60, 2.32)	1.53 (0.20, 11.98)	0.27 (0.02, 3.17)	/	1.82 (0.11, 28.83)	1.03 (0.51, 2.10)	0.77 (0.40, 1.50)	1.44 (0.33, 6.29)
TUG1	Р	0.63	0.68	0.29	/	0.67	0.93	0.45	0.63
	I^2 & model	42% (fixed)	82% (random)	91% (random)	/	93% (random)	0% (fixed)	13% (fixed)	76% (random)
	OR (95%CI)	1.28 (0.73, 2.26)	1.22 (0.23, 6.36)	1.07(0.30, 3.88)	1.75 (0.58, 5.26)	/	0.72 (0.39, 1.32)	/	1.46 (0.72, 2.93)
HOTAIR	Р	0.39	0.82	0.91	0.32	/	0.28	/	0.29
	I^2 & model	0% (fixed)	88% (random)	76% (random)	70% (random)	/	0% (fixed)	/	0% (fixed)
	OR (95%CI)	0.86 (0.47, 1.58)	2.71 (1.20, 6.12)	2.19 (0.86, 5.57)	2.08 (0.79, 5.50)	1.89 (0.74, 4.85)	1.14 (0.62, 2.11)	2.06 (1.12, 3.77)	0.98 (0.52, 1.83)
CRNDE	Р	0.63	0.02	0.10	0.14	0.19	0.67	0.02	0.94
-	I^2 & model	0% (fixed)	/	/	/	53% (random)	0% (fixed)	0% (fixed)	0% (fixed)

LN: lymph node; ER: estrogen receptor; PR: progesterone receptor; Her2: human epidermal growth factor receptor 2; OR: odds ratio; CI: confidence interval; /: no pooling result.

IncDNAg	Age	Tumor	LN	Histological	TNM stogo	ED status	DD status	Hor? status	Doforonao
IIICKINAS	Age	size	metastasis	grade	TINIM stage	EK status	r K status	ner2 status	Kelerence
SNHG12	0.692	0.012	0.041	0.739	0.053	NR	NR	NR	49
HOTTIP	0.161	0.025	0.009	0.685	<0.001	0.161	0.422	0.135	51
CCAT1	0.919	0.510	0.004	0.003	<0.001	0.492	0.537	0.224	52
AFAP1-AS1	0.435	0.694	0.002	0.231	0.013	NR	NR	NR	56
ACTA2-AS1	0.454	0.665	0.172	0.943	0.029	0.543	0.665	0.891	57
H19	0.430	0.005	0.231	0.39	NR	0.005	0.016	NR	50
Z38	0.182	NR	0.013	0. 795	0.002	0.972	0. 455	0.807	53
TUNAR	0.732	NR	0.004	0.004	0.071	0.436	0.785	0.061	54
SPRY4-IT1	0.241	0.015	NR	0.272	0.017	0.005	NR	NR	58
FGF14-AS2	0.071	0.005	0.047	NR	0.036	0.491	0.684	NR	59
APOC1P1-3	NR	0.014	0.205	0.592	NR	0.827	0.832	0.516	64
EPB41L4A-AS2	0.357	0.026	NR	0.034	0.016	0.013	0.021	0.871	60
HULC	0.127	0.059	<0.001	0.020	<0.001	NR	NR	NR	55
MVIH	0.206	0.236	0.054	0.233	NR	0.699	0.612	0.897	47
LINC00978	0.240	1.000	0.623	NR	0.145	0.0)33	0.489	63
BC040587	0.675	0.356	0.489	0.035	0.964	0.828	0.900	0.559	61
EGOT	0.368	0.022	0.020	NR	NR	0.240	0.199	0.625	62
91H	0.174	<0.001	0.038	0.104	NR	0.983	0.273	0.027	65
ANRASSF1	0.346	0.109	0.496	0.517	0.472	0.193	0.635	0.004	48
SOX2OT	0.092	0.977	0.437	0.981	0.932	0.437	0.495	0.332	48
PTPRG-AS1	0.631	0.687	0.217	0.603	0.993	0.067	0.403	0.252	48

Supplementary Table 3. *P* values of the correlations between lncRNAs expression and BC clinicopathological features in single studies.

ANRIL	0.085	0.766	0.381	0.422	0.981	0.619	0.305	0.209	48 67
HIF1A-AS2	0.190	0.304	0.012	0.301	NR	NR	NR	NR	67
UCA1	0.331	0.172	0.037	0.105	NR	NR	NR	NR	67
Linc-ROR	0.701	0.649	<0.001	NR	0.209	NR	NR	NR	68
HOXA-AS2	0.885	<0.001	<0.001	NR	<0.001	NR	NR	NR	70
GAS6-AS1	0.209	0.180	0.030	0.010	0.109	0.527	0.509	0.576	66
linc-ITGB1	0.375	0.600	0.002	NR	0.013	0.342	0.301	NR	69
DANCR	0.378	0.433	0.021	0.014	0.017	NR	NR	NR	71
PVT1	0.578	0.02	0.023	NR	0.002	NR	NR	NR	72
OR3A4	0.620	0.801	0.026	0.048	0.013	0.213	0.218	0.013	73
CRALA	0.063	<0.001	<0.001	NR	0.001	0.005	<0.001	0.098	74
HOXB-AS5	0.760	NR	0.730	NR	0.048	NR	NR	NR	75
FENDRR	0.794	0.071	0.006	0.064	NR	0.179	0.016	0.008	87
LINP1	0.396	0.494	0.901	NR	0.035	0.111	0.590	0.537	76
SNHG15	0.592	0.007	0.038	NR	0.028	NR	NR	NR	77
SUMO1P3	0.746	0.014	0.032	NR	0.037	0.103	0.242	0.330	78
ARA	0.624	0.034	0.180	0.786	0.278	NR	NR	NR	79

LN: lymph node; ER: estrogen receptor; PR: progesterone receptor; Her2: human epidermal growth factor receptor 2; NR: not report.

Figure S1 Begg's funnel plot for publication bias on the associations between the expression of lncRNAs and breast cancer overall survival. Each point represents a single study for the indicated association.

Begg's funnel plot with pseudo 95% confidence limits