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Materials and Methods 

 

Collection of Xenopus embryos  

Xenopus tropicalis embryos were collected as described in (46): mating pairs were 

injected with 200U of HCG per female and 50U HCG per male and allowed to mate 

naturally overnight at 22C. Embryos were dejellied in 2%wt/vol cysteine the next 

morning, ~6hrs after injection, and sorted into batches of staged clutches pre-mid-

blastula-transition (pre-MBT) and allowed to continue developing at 25C in 1X MMR. 

As the embryos reached the desired developmental stage, 5-10 embryos at a time were 

sampled from the clutch for dissociation and processing by InDrops. A single healthy 

clutch was used for the first InDrops time series; a further five independent clutches were 

used for the timepoints comprising the second replicate experiment.  

 

Development of a dissociation media for Xenopus embryos 

To identify the best possible dissociation conditions for Xenopus embryos prior to 

InDrops RNA sequencing, we initially performed a broad screen of known cell 

dissociation enzymes and buffers, including calcium magnesium free media (CMFM) 

(46), Newport dissociation media (2), trypsin-EDTA, TrypLE (ThermoFisher 12604-

013), Accutase (Innovative Cell Technologies AT104), papain and collagenase. Five 

devitellinized embryos were incubated in each buffer at 18°C in 12 well plates, with 

gentle swirling by hand every minute initially, and then every 10 minutes until 

dissociation was complete or 1 hour had passed. All enzymatic dissociation reagents were 

ineffective on early Xenopus embryos. CMFM and Newport buffers led to substantial 

cell dissociation, but CMFM completely failed to dissociate the pigmented outer layer of 

cells. Newport buffer was deemed the best condition among those screened, but was still 

slow, requiring up to 1hr for near complete dissociation, and it frequently failed to 

completely dissociate small clusters of cells in each embryo.  

Newport buffer had originally been formulated for the dissociation of pre-MBT 

Xenopus blastomeres. We attempted to optimize it further for post-MBT embryos. We 

systematically varied salt composition, pH, and buffering acid used. Newport buffer 

[0.1M sodium isethionate, 20mM sodium pyrophosphate, 20mM glucose, pH 9] could be 

made substantially more potent by raising the pH to 10.5 in the presence of 3-

(Cyclohexylamino)-1-propanesulfonic acid (CAPS; a Good’s buffer with pKa=10.4) 

(Sigma C2632). In this new buffer – which we term “Newport 2.0” [0.1M sodium 

isethionate, 20mM sodium pyrophosphate, 10mM CAPS, pH 10.5] – embryos completely 

dissociated in <30min nutating at 80rpm and 18C. Newport 2.0 effectively dissociated 

embryos from stage 8 (earlier stages not tried), through stage 22 (early organogenesis). 

After stage 22 certain tissues fail to dissociate completely, likely because of newly 

generated extracellular matrix. Dissociated cells were >95% viable for up to 2hrs at RT 

after washing with PBS-/- (Corning; 21-040-CV) as determined by staining with DAPI 

(wash protocol detailed below; DAPI added at 0.1ug/mL). We also tested the extent of 

cell lysis by measuring free floating RNA in solution after dissociation by fluorometry 

with RiboGreen dye (ThermoFisher). After dissociation with Newport 2.0, free RNA was 

<5% of total embryo RNA, as judged by measurements of RNA in solution following 

dissociation compared to dilution series of RNA from whole embryos. We did not 

systematically investigate why high pH improves dissociation; it is possible that the high 
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pH increases the dissociation constant of calcium ions bound to integrin receptors that 

hold embryonic cells together, or that it causes non-specific surface protein denaturation. 

 

Dissociation of Xenopus embryos into single cells for InDrops scRNA-seq 

Removal of vitelline membranes: Vitelline membranes were removed by treatment 

with 1mg/mL pronase (Calbiochem) in 1X MMR (2), nutating at 80rpm and 18C for 8-

10min. Forceps and inspection on a dissecting microscope were used to judge the earliest 

point at which the vitelline membrane had dissolved to minimize damage to the 

superficial layer cells of the embryos. Embryos were washed 2-3 times gently in 1X 

MMR immediately following pronase treatment to remove any vitelline membrane 

fragments stuck to the surface of the embryo, since carry over vitelline membrane 

interfered with dissociation. 

Dissociation: A 12 well plate was pre-treated with Bovine Serum Albumin (BSA), 

and then a single well was filled with 5 mL of Newport 2.0 dissociation buffer [0.1M 

sodium isethionate, 20mM sodium pyrophosphate, 10mM CAPS, pH to 10.5 using 

NaOH]. Washed, devitellinized embryos were then transferred into the well. BSA pre-

treatment was performed by air drying a film of 1mg/mL UltraPure BSA (Thermo Fisher) 

in ddH20 under a heat lamp. This treatment prevents dissociated cells from sticking to the 

tissue culture plastic surface. The 12 well plate well was filled to the top with Newport 

2.0 buffer, and sealed using a layer of parafilm and silicone well isolator (Sigma; S0810) 

after excluding all air bubbles. Sealing from air was essential to prevent cell lysis at the 

air-liquid interface during mechanical agitation. To mechanically accelerate dissociation, 

the sealed well plate containing fresh embryos was taped shut and attached to a benchtop 

Vortex genie using a plate adaptor. Embryos were agitated on speed setting 1-3 for 5 min, 

then accelerated to speed setting 7 for an additional 5-10 min or until dissociation was 

complete (typically <20 min). Embryos were entirely dissociated into monodisperse cells 

following this procedure. As soon as dissociation was complete, the plate was cooled on 

ice and single cells were allowed to settle to the bottom of the well by gravity for 5-10 

min.  

Washes and cell collection: Once settled, the single cell suspensions were washed 

by letting the cells settle by gravity through fresh buffer underlying the cells. Cells were 

first washed through a cold solution of 5%v/v Optiprep (Sigma; D1556) in 1X PBS-/- 

(Corning; 21-040-CV), then increasing to 10% v/v and 20% v/v. The buffers are added 

slowly against the bottom of the well, taking care to avoid cells and without agitating the 

cells so that they would not rise to the air-liquid interface. Each increasingly dense layer 

of Optiprep replaced the bottom liquid around the cells, allowing complete buffer 

exchange without the need for centrifugation. Cells require 1-2 minutes to settle after 

each wash. After the washes, 1mL of 30% v/v optiprep with 1mg/mL UltraPure BSA 

(Thermo Fisher) in PBS-/- was added as a loading solution for the cells. 30-35% v/v 

Optiprep is approximately neutral density for Xenopus cells, preventing them from 

settling during an InDrops run. To load the cells into a syringe for the inDrop platform 

(1), cells were floated off the bottom surface of the well by adding 0.5mL 40% Optiprep 

(denser than the cells) in PBS-/-, causing them to accumulate at the interface between the 

30% and 40% Optiprep phases. The cell layer was then aspirated directly into a 1mL 

syringe, which was backfilled with 0.1mL loading solution to avoid contact between cells 

and air, minimize cell handling, and block the plastic syringe surface. A wide bore needle 
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tip and tubing (0.86mm internal diameter; SCI; BB31695-PE/5), pre-coated with BSA, 

was then attached to the syringe and connected to the InDrops microfluidic setup for cell 

injection. InDrops droplet collection was initiated immediately. The viability of 

dissociated cells remains >95% over 2hrs in loading solution. 

 

InDrops single cell barcoding, library preparation, and sequencing 

Dissociated Xenopus cells were processed by InDrops as described by Klein et al (1) 

with the following changes: we minimized the distance between the cell injection syringe 

and the microfluidic chip; used a wider bore size tubing; and coated both the tubing and 

syringe with BSA prior to performing the experiment. These modifications minimize 

shear stress during microfluidic processing which can badly damage the large and fragile 

Xenopus blastomeres. After reverse transcription in droplets, barcoded emulsions were 

split into batches estimated to contain 2,500 cells, and chemically broken. Libraries were 

prepared as described previously (1). For the initial replicate of 42,385 cells, single cell 

libraries were pooled and sequenced together across seven NextSeq high runs, generating 

a total of ~3billion raw paired-end reads (Table S1). The second replicate of a further 

94,131 cells was sequenced across a total of ten NextSeq high runs achieving 

approximately half the sequencing depth per cell of replicate 1 (Table S1). Within each 

replicate pool concentrations were adjusted to ensure similar depth across all samples. 

Reads were demultiplexed using an updated version of the custom bioinformatics 

pipeline described in Klein et al (1) available at https://github.com/indrops/indrops, using a 

reference Xenopus transcriptome (XTr 9.0). The final output is an integer counts matrix 

of cells vs. genes.  

 

Expansion of gene symbol assignments in the XTr 9.0 reference transcriptome 

Over 15k genes in the XTr 9.0 reference transcriptome lack gene symbols, though in 

many cases an unambiguous protein identity can be identified by sequence homology. To 

fill holes in the gene symbol assignments we assigned protein gene symbols to each XTr 

9.0 transcript using a modified reciprocal best HMMER hit approach (47) based on a 

target reference set of curated human proteins. Specifically, as a reference set we used 

25,208 Human and 4,492 Xenopus tropicalis, and 6,430 Xenopus laevis 

curated sequences obtained from UniProt (48). Multiple matches with identical E value 

were resolved based on bit score. Additionally, sequences which did not fall into any 

bidirectional best match were assigned a symbol based on the unidirectional best 

HMMER match. Only matches with an E value better than 1e-5 were considered. The 

result of our pipeline matched a total of 22,599 Xenopus tropicalis genes to one of 16,016 

unique gene symbols, which provides 11,341 more Xenopus genes with a gene symbol 

than available in the original genome annotation, significantly enhancing data usability. 

We provide the enriched gene symbol assignments alongside the XTr 9.0 gene symbol 

assignments on our web-browser and in Additional Data Table S7. 

 

Data clean up: minimum expression threshold, doublet and background removal 

To remove background signal from putative empty droplets, only cells with >500-

1000 detected UMIs, depending on the library sequencing depth (see Table S1), were 

carried forward for analysis. After plotting cells in two dimensions using tSNE (details 

below), we observed some clusters that appeared to consist of cell doublets and others 

https://github.com/indrops/indrops
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that likely represented empty droplets. We classified doublet clusters using three criteria: 

i) lack of specific marker genes; ii) mixing of marker genes from other clusters; iii) a 

small size matching the experimental expectation of <2.5% double cell encapsulation 

during inDrops. Cells associated with doublet clusters were excluded. Background 

clusters were distinguished by i) lack of specific marker genes; ii) weak and uniform 

expression of all genes observed in the time-point. We noted that these background 

clusters form a characteristic ball-like shape in tSNE. All analyses presented in the paper 

represent cells passing these three filters (UMI>minCounts, not-doublet, not-

background). We provide unfiltered gene expression data online and indicate which cells 

were excluded.  

 

Visualization of data using PCA-tSNE and SPRING 

To visualize high-dimensional single cell data in Fig. 1 we implemented the PCA-

tSNE pipeline described in Klein et al (1), which follows these steps: i) normalize gene 

expression by the total transcript count per cell; ii) identify principally variable (PV) 

genes and non-trivial principal components compared to randomized data; iii) z-score 

normalize PV genes, perform principal component analysis (PCA) and retain the non-

trivial principal components; (iv) run tSNE (49) to generate a two-dimensional 

visualization. In addition to tSNE, we used SPRING as a complementary method to 

visualize single cell data (e.g. in Fig. S6), as described in (50). The tSNE perplexity 

parameter was set to 25 in all plots. SPRING builds a k-nearest neighbor (knn) graph 

from the high dimensional distances between cells and then embeds the graph in two 

dimensions using a force-directed layout, which emphasizes the continuous relationships 

between different cell clusters. For SPRING we used Euclidean distances computed from 

the same PCA coordinates used as inputs to tSNE.  

 

Clustering of cell states 

We first clustered cells from each time-point using local-density clustering 

(DBSCAN, as used in (33)) applied to tSNE coordinates. We then used two steps to 

refine our clustering. First, we performed an initial round of clustering on all cells that 

over fragmented the data and then recombined adjacent clusters that had less than 3 genes 

expressed at >0.5UMIs/cell on average that were >4-fold enriched in one state versus the 

other. Second, we isolated every cluster and performed a second round of dimensionality 

reduction and clustering on the cells for each cluster in isolation. The clustering approach 

can be summarized as follows: i) apply PCA-tSNE to the desired normalized counts 

matrix (see above); ii) use DBSCAN to generate an over-fragmented clustering; iii) 

manually merge adjacent clusters with insufficient differential gene expression – we refer 

to the clusters generated in steps (i-iii) as “level 1” clusters; iv) repeat steps (i-iii) for each 

level 1 cluster to generate sub-clusters, which we refer to as “level 2”. This process was 

performed on replicate 1 cells from stages 8 – 22 (all even stages), and on new timepoints 

from replicate 2 – stage 11 and 13. Other replicate 2 cells were clustered by a method that 

was informed by the initial clustering (see section below “Addition of replicate cells to 

cell state tree scaffold”). Three rare cell states were classified by manual inspection of 

marker genes as they were too few in number to form a distinct cluster recognizable by 

tSNE-DBSCAN: germ cells, neuroendocrine cells past S14, and hatching gland cells past 

S16.  
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Benchmarking against an alternative clustering method 

We tested the robustness of tSNE-DBSCAN clustering by comparing clusters of 

stage 22 (replicate 1) cells to those generated by an alternative method based on spectral 

clustering with a kNN-graph kernel. We used the graph generated by SPRING, described 

above. Notably, the spectral clustering approach depends directly on the high 

dimensional distances between cells as opposed to their 2D tSNE coordinates. We found 

good agreement between the spectral clusters and those generated through our semi-

manual tSNE-DBSCAN approach (Fig. S5). Using an equal number of spectral and 

tSNE-DBSCAN clusters, a median of 79% cells in each tSNE-DBSCAN cluster mapped 

to its most similar spectral cluster, while a median of 89% cells in each spectral cluster 

mapped to its most similar tSNE-DBSCAN cluster. Most of the disagreements involved a 

single tSNE-DBSCAN cluster mapping to multiple spectral clusters (or vice versa), rather 

than a violation of cluster boundaries.  

 

Annotation of cell state clusters  

To relate the scRNA-seq datasets to known embryonic cell types we initially 

manually matched each gene expression cluster to Xenopus Anatomy Ontology (XAO) 

(8, 9) terms based on top marker genes. The XAO includes thousands of curated in situ 

staining measurements of tissue specific gene expression. By identifying genes that were 

specific to each gene expression state, and that had clear tissue specific expression 

patterns on XAO, it was possible to associate each gene expression state to a particular 

cell type (also see main text). We then validated our annotations using a systematic 

approach as follows. (1) For each XAO term, we bioinformatically curated a set of 

literature-validated marker genes by parsing the gene expression database for Xenopus 

laevis and Xenopus tropicalis on Xenbase, found at the following locations:  

 
ftp.xenbase.org/pub/GenePageReports/GeneExpression_tropicalis.txt 
ftp.xenbase.org/pub/GenePageReports/GeneExpression_laevis.txt 

 

We filtered for genes measured by RNA in situ hybridization only. (2) For each 

annotated single cell cluster, we identified marker genes as described below in the section 

“Identification of marker genes for each cell state”. (3) For each XAO term, we 

intersected the marker gene list from (1) with the cluster-specific gene list from (2).  

From these automatic marker gene annotations, all but nine states had at least one 

Xenbase-shared marker gene, of which five (dorsal lateral plate region, intermediate 

mesoderm – ssg1, trigeminal and profundal placodes, small secretory cells, and epidermal 

progenitor – tp63/tll2) had matched anatomy terms with marker genes documented on 

Xenbase in the first place. 54% of annotations had at least three marker genes (compared 

to 5% when tissue annotations were randomized). The resulting list of literature-

supported marker genes for each cluster is provided in Additional Data Table S1, along 

with literature references.  

 

Connecting cell states across time from gene expression similarity  

We investigated the developmental transitions connecting clusters across time points 

by asking each cluster to ‘vote’ on its most likely ancestor cluster from the previous time-

point, using the following steps.  

ftp://ftp.xenbase.org/pub/GenePageReports/GeneExpression_tropicalis.txt
ftp://ftp.xenbase.org/pub/GenePageReports/GeneExpression_laevis.txt
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1. For each two adjacent time points, we embedded all cells from the two time-points 

in the PCA space learned from the second time point only, keeping non-trivial PCs 

as defined above. This embedding causes cell-cell distances to reflect gene 

expression variation between tissues, as opposed to global changes over time.  

2. In this embedding, for each cluster in the late time point, each constituent cell 

reported on the cluster identity of its 5 nearest neighbors from the previous time 

point using a Euclidean distance metric.  

3. The number of edges to each early time point cluster were aggregated across all 

cells in each cluster. Percentages of votes cast for each possible ancestor are 

shown in heat maps on Figure S7, and the cell state tree presented in the main text 

represents vote winners. The winner of each vote was usually unambiguous, with 

<5% of assignments sharing more than 30% of votes with non-ancestor states, and 

a median vote-winning share of 88%.  

We performed the ancestor voting process first for the “level 1” clusters (see section 

on clustering for a definition) and then, for level 1 clusters that had been sub-divided into 

level 2 clusters, we performed a second – private – voting process on the level 2 clusters 

– i.e. between only subpopulations contained within connected level 1 states. This two-

step procedure was necessary because the level 2 clusters are only distinguishable with 

PCA coordinates learned from each level 1 cluster separately, and therefore had to be 

bioinformatically isolated when computing inter-time point cell-cell distances. 

 

Addition of replicate cells to cell state tree scaffold 

Late during the preparation of this manuscript, we performed a large replicate 

experiment, that added a total of 94,131 additional single cell transcriptomes to the 

original time series. The replicate included all original timepoints except stage 10. It also 

included two new intermediate timepoints – S11 and S13. All cells were quality filtered 

by the same process as the original experiment. New timepoints (S11 and S13 only) were 

clustered and mapped into the cell state tree structure by the same methods as the original 

experiment.  

New data from existing timepoints (all but S11 and S13) were clustered by a distinct 

process that (i) first assigned every cell to a pre-existing annotated cluster; (ii) performed 

a batch correction of gene expression between the biological replicate experiments; and 

then (iii) examined the combined data set for novel sub-structure within the annotated 

clusters. The final annotations presented in this paper incorporate new sub-structure 

found through this process. The detailed steps are as follows: 

(i) Assign cells to a pre-existing annotated cluster:  

a. New data at each time point was fragmented into 4*N clusters, where N is the 

number of clusters in original experiment at the matched time point. 

Clustering was performed by k-means spectral clustering on the kNN graph, 

constructed using parameters described above (see SPRING visualization).  

b. Each cell in the new data was assigned a cluster label based on the original 

cluster annotations, by connecting the 4*N new clusters to the original N 

clusters within each time point. The assignment algorithm is as described for 

cross-timepoint mapping (See previous Methods section; median voting 

consensus of 80%). 
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(ii) Batch correct biological replicates: This method is a variation on the batch 

correction algorithm recently proposed by Marioni et al. in pre-print 

(https://doi.org/10.1101/165118). From step (i), each cell in both biological 

replicates is assigned to a unique cluster i. We defined the gene expression vector 

for cell j in cluster i from replicate 1 as xij, and respectively from replicate 2 as yij. 

The centroids of cluster i in the two replicates (average of all cells in the cluster) 

xi, yi respectively, were calculated in units of TPMs from raw counts. We further 

defined the arithmetic mean of both centroids zi = (xi+yi)/2, and a multiplicative 

correction factor ∆𝑖=
1+𝑥𝑖

1+𝑧𝑖
− 1. The corrected gene expression values for each cell 

j in cluster i were then calculated as 𝑥𝑖𝑗
′ =

1+𝑥𝑖𝑗

1+∆𝑖
− 1, and 𝑦𝑖𝑗

′ =
1+𝑦𝑖𝑗

1−∆𝑖
− 1. 

Corrected counts matrices x’ and y’ from both experiments were combined and 

carried forward for further analysis. This correction procedure centers the 

centroids of cells in each cluster from the two biological replicates through a 

multiplicative correction, ensuring non-negative and non-infinite values for gene 

expression. After correction, both replicates intermixed completely. 

(iii) Discover substructure within pre-annotated clusters: each new cluster, now 

composed of cells from both replicates, was sub-clustered in isolation by tSNE-

DBSCAN (see above). If only a single cluster was identified, then no sub-

structure was added to the annotation. If more than one cluster was identified, the 

new sub-clusters were examined for expression of marker genes of the original 

annotated cluster. If a sub-cluster lacks typical marker genes of the tissue, the 

cluster was excluded as outlier cells. All sub-clusters expressing marker genes of 

the original annotated cluster were assigned novel annotations and included in the 

final state tree.  

 

Benchmarking of cell state tree similarity relationships against XAO 

We manually inspected each of the 257 edges in the resulting cell state tree, using 

the XAO database and literature to determine the validity of each edge. Each edge in the 

tree links a parent cluster in time point t to a daughter cluster in time point t+1. We tested 

three criteria: (a) the daughter cell state is believed to arise from the parent cell state; and 

(b) if the daughter cell state differs in XAO annotation from the parent, then the daughter 

state should appear at the time specified in the XAO database indicated in the Start_Stage 

field; (c) if the daughter cell state differs in XAO annotation from the parent, then the 

parent state should end at the time specified in the XAO database indicated in the 

End_Stage field. For each edge, we provided at least one reference to XAO or to the 

literature supporting our verdict. We assigned each edge one of seven flags: “OK” 

indicating that all criteria are satisfied (203 edges); “Discovery: early” indicating that a 

state appears prior to its annotated first appearance in the XAO (18 edges); “Starts too 

late” indicating that a state only appears after its annotated first appearance in the XAO 

(9 edges); “Ends too early” indicating that the parent state terminates prematurely (1 

edges); “Ends too late” indicating that the parent state terminates after expected in the 

XAO (3 edges); and “Error” indicating that the daughter does not arise from the parent 

state (2 edges). In addition, 21 edges were assigned “N/A” as they related to the 

appearance of daughter states that did not correspond to XAO terms. The full table is 
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provided in Additional Data Table S2 and the difference in timing of appearance is 

plotted in Fig. 3A. 

 

Identification of marker genes for each cell state 

The 259 clusters in the data were mapped to 87 unique annotations in the Xenopus 

cell state tree, many appearing over multiple time points (also see above section 

“Annotation of cell state clusters”, and main text). We defined marker genes for each of 

the 87 unique annotations in the Xenopus cell state tree with the following criteria: i) 

average expression enriched >5-fold compared to the average for the rest of embryo, ii) 

expression detected in >15% of cells in the state, and iii) the state has the highest average 

expression for the gene. We identified 2,159 marker genes across all states, with a 

median of 6 marker genes per state. The mean enrichment for the most specific marker 

gene for each state was 93-fold, and the mean expression level across all identified 

marker genes was 2.2 UMIs (930 TPM), a value approximately half the average 

expression level of the ‘housekeeping gene’ beta-actin (5.65 UMIs/cell or 2,360 TPM). 

Marker gene lists are tabulated in Additional Data Table S4. 

 

Differential gene expression at cell fate choices 

Differentially expressed genes between two cell states were identified using two-

tailed Wilcoxon Rank Sum Tests, at a stringency of p<0.001 with multiple hypothesis 

testing correction and FDR of 5%. Before rank sum tests were performed data was total 

count normalized across states, and filtered for genes that were expressed in >=10 cells, 

had an average of >=1UMI/cell in at least one state, and were >=4-fold differentially 

expressed between states. Overall this procedure is highly conservative, requiring both 

high expression and high fold-change in expression; it identifies the most prominent 

differences between states efficiently and with a low false positive rate. Differentially 

expressed genes at each fate choice are tabulated in Additional Data Table S3. 

 

Cluster continuity analysis 

We used the kurtosis of the cell distance distribution as a metric of cell clustering 

(Fig. S4). Specifically, the metric ci is calculated for each cell i, at each timepoint, as the 

ln(kurtosis) of the distribution of Euclidean distances from cell i to every other cell at the 

same timepoint, in the principal component latent space defined above in section 

“Visualization of data using PCA-tSNE and SPRING”. The metric serves as a continuity 

index because the appearance of discrete clusters leads to a bimodal or multimodal 

distance distribution for each cell, which increases the kurtosis. This analysis was 

performed on replicate 1 data. 

 

Alignment of Xenopus and Zebrafish cell state trees 

Xenopus and Zebrafish cell states were matched manually to enable computational 

comparisons of gene expression across species. Many-to-many matches of cell states 

were allowed to avoid ambiguities in matching timepoints across species, and to allow 

groups of states showing greater substructure in one species that the other to nonetheless 

be compared (e.g. the zebrafish spinal cord was divided into several subpopulations 

compared to the single Xenopus state). The criteria to match states were that they should: 

i) share a common position within the developmental hierarchy of both species according 
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to Zfin and Xenbase anatomy ontologies, ii) share at least 3 validated marker genes, and 

iii) appear at approximately the same time across species. We sometimes encountered 

matchings where: 1) the name used by the frog community (Xenbase) differs slightly 

from that used by the zebrafish community (zfin); or 2) the time point at which we 

profiled the two species lead to one corresponding tissue having a less mature name as 

compared to the other (despite highly similar gene expression). To bioinformatically 

validate the manual matching we randomly permuted the cell state matchings and asked 

whether any changes could improve the mean gene expression correlation between 

species by >0.1, indicating a potential error. This revealed no errors in the manual 

matchings. 

 

Transcription factor (TF) re-use analysis 

To identify TFs that were activated multiple times during early development, we 

used a graph based approach to search for TFs with multiple non-overlapping expression 

domains on the cell state tree. The cell state tree represents a directed graph. The general 

approach is (1) to binarize the gene expression for each gene on the cell state tree; and 

(2), to count the number of connected components of the graph after discarding all nodes 

that are non-expressing. This simple approach is elaborated with additional steps in order 

to (a) merge connected components that are close on the cell state tree, to conservatively 

allow for noise-induced “Gene-off” events; (b) filter out connected components 

consisting of just a single state or collections of isolated states due to merging, as these 

may be due to noise. We analyzed the list of differentially expressed (DE) TFs (the 

intersection of a TF list from (51) and the DE gene list described above, filtered to 

exclude broadly expressed genes defined by a skewness over cluster averages less than 

2). Then, for each gene, the detailed steps are as follows: (1) Gene expression is binarized 

on the cell state tree, classifying a cell state as ‘gene-on’ for a given gene if: i) the 

average expression was >x UMI/cell; ii) >y% of cells had detectable expression. (2) 

Additional edges are added to the cell state tree, connecting each cell state to all other cell 

states within z fate splits apart, i.e. states that can be accessed by walking on the graph 

and crossing no more than z-1 nodes that have >2 outgoing edges. (3) All “gene-off” 

states and their associated edges are discarded from the tree, to generate a graph 

consisting of “gene-on” cell states only. (4) A connected component of the “gene-on” 

graph was defined as robust if more than 50% of nodes in the component had at least one 

neighbor on the original cell state tree that is ‘gene-on’. Connected components that were 

not robust were discarded. (5) The number of connected components is the number of 

times a gene is activated on the cell state tree. The parameters x,y,z determine the 

sensitivity at which a gene is considered expressed, and the resolution of domains of 

expression on the cell state graph. We chose values for these parameters that maximized 

the accuracy of calling a TF as single-use or re-used for a “ground truth” training set of 

20 TFs that were manually inspected to be expressed only once, or more than once. The 

values that achieved maximum accuracy (18/20 TFs called correctly) were x=0.1 

UMI/cell (~500 transcripts per million (TPM)); y=15% cells; z=3 fate splits. The re-used 

TF analysis was performed on replicate 1 cells embedded in version 1 cell state tree. 

Results were tabulated in Additional Data Table S5. 
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Multi-lineage priming analysis 

To systematically identify occurrences of multi-lineage priming (MLP), we searched 

for genes that were robustly co-expressed in the same cells at one point in time, and then 

still expressed but in disjoint sets of cells at a later point in time. Further, the latter cells 

are required to be descendants of the former cells in the cell state tree. To this end, we 

first classified pairs of differentially expressed genes in each of the fate splits on the tree 

as MLP+ or MLP-. Each individual gene was then deemed MLP+ with respect to a given 

fate split, if it contributed to at least one MLP+ pair at the fate split. Each gene pair was 

classified as MLP+ at a fate split as follows. For each sub-tree, we define a co-expression 

index for each time point, as the number of cells co-expressing both genes at the time 

point, divided by the number of cells expressing either gene. A gene pair was then 

classified as MLP+ for the fate split if: i) the maximum value of the co-expression index 

was x times higher than the minimum value for the subtree, with the max happening 

earlier in time than the min; ii) the maximum value was higher than y; iii) the minimum 

value was lower than z. For Xenopus, we used x=4, y=0.1, z=0.05. For Zebrafish, we used 

the same parameters except y=0.2, to account for higher depth of sequencing. Note that 

the co-expression index is highly sensitive to the sequencing depth of the scRNA-Seq 

data, through the expression drop-out rate. Therefore, the absolute %MLP+ genes is an 

underestimate of the true value, but the qualitative trend in the %MLP+ genes over time 

is reliable, given a constant sequencing depth. The main result reported in the main text – 

a global trend of decreasing MLP over time – was insensitive to 2-3 fold changes in each 

parameter. Results were tabulated in Additional Data Table S6. 

 

kNN-graph visualization of entire scRNA-seq timecourses 

Whole-embryo kNN-graphs were generated using the approach reported in Wagner 

at al (sister paper). In Fig. S9 we compare the Xenopus and Zebrafish cell state trees to 

this alternative representation.  

 

Gene expression correlation between species 

Gene expression conservation between species was measured using spearman 

correlation of the average normalized UMI counts for orthologous across 33 orthologous 

tissues. Each orthologous tissue contains one or more clusters from Xenopus and 

Zebrafish respectively, and the selection of clusters was performed manually with 

attention to marker gene expression, name, position in the embryo and inferred potential 

to produce downstream lineages. We created a list of orthologous genes and their percent 

sequence identities by selecting reciprocal best hits from a mutual amino acid BLAST 

search between all Zebrafish genes (assembly GRCz10) and all Xenopus genes (assembly 

XTr 9.0). Of these reciprocal best hits, only a subset consisted of genes that were robustly 

expressed in the single data. Reasoning that cross-species correlation of gene expression 

cannot be expected to exceed within-species correlation between different replicates, we 

computed a 'self-correlation’ score for each gene by performing 50 random splits of the 

data from each species and recording the correlation of cluster-averaged expression for 

each gene in one half to itself in the other half. Only orthologous gene pairs where both 

genes had a self-correlation >0.75 were carried forward for analysis.  
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Analysis of functional gene categories enrich for conserved genes 

Annotations of gene function, obtained from Gene Ontology (GO) term associations 

reported on Xenbase, were ranked by the proportion of constituent genes having a cross-

species correlation of >0.66, with this threshold chosen to establish an FDR of 1% 

against a null distribution generated from randomly matched (i.e. non-orthologous) 

genes. We restricted the analysis to orthologous gene pairs having a ‘self-correlation’ 

greater than 0.75, as explained above, and focused on GO terms with at least 20 genes 

among this set. P-values were assuming a binomial null distribution for the number of 

conserved genes among those associated with each GO term.  
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Fig. S1. Optimization of dissociation and inDrops procedures for Xenopus.  

(A) Representative dissociation outcomes using either calcium magnesium free medium 

(CMFM) as compared to Newport 2.0 dissociation buffer. While CMFM fails to 

dissociate pigmented animal cap tissue, Newport 2.0 leads to complete dissociation. (B) 

Representative micrographs of Xenopus blastomeres during microfluidic droplet capture 

(also see Supplementary movies 1-3). Without optimizing cell handling procedures, lysis 

of cells during device injection led to severe chip blockages. (C) Cells dissociated using 

Newport 2.0 are >95% viable for over 2hrs at 22C. Arrows indicate DAPI positive dead 

cells immediately after dissociation and buffer exchange, and two hours later. (D) Reads 

per cell barcode histograms; right peak indicates signal coming from cells while left peak 

indicates background signal from ‘empty’ droplets. With optimized dissociation and 

handling procedures scRNA-seq runs with <15% total back- ground signal, and <1.5% 

background signal per cell containing droplet were achieved.  

 

  



 

 

14 

 

 

Fig. S2. scRNA-seq sensitivity analysis.  

Cell type abundance (measured as proportion of cells in the embryo) that would allow the 

detection of N cells with 95% confidence, where N is indicated by line color, as 

determined by binomial sampling statistics. Values are given as a function of Xenopus 

stage, accounting for the different numbers of cells were profiled at each timepoint.  
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Fig. S3. Example of nested clustering.  

To classify cell states, each timepoint was clustered in two rounds, or levels. The top left 

panel shows a representative level 1 clustering. The three breakout panels show how a 

nested round of tSNE-DBSCAN clustering on each individual cluster can reveal 

additional substructure, by focusing on variable gene expression within each 

subpopulation. Level 1 clustering key: 1 = anterior pre-placodal ectoderm; 2 = somite; 3 

= ciliated epidermal progenitor; 4 = goblet cell; 5 = neural crest; 6 = lateral and 

intermediate mesoderm; 7 = neurons; 8 = lens progenitor; 9 = ventral mesoderm; 10 = 

neural plate; 11 = eye primordium; 12 = endoderm; 13 = posterior pre-placodal ectoderm; 

14 = cement gland primordium; 15 = presomitic mesoderm; 16 = epidermal; 17 = 

ionocyte; 18 = tail bud; 19 = forebrain progeneitor; 20 = intermediate mesoderm - ssg1; 

21 = blood; 22 = notochord; 23 = migrating myeloid progenitors; 24 = cranial neuron; 25 

= otic placode; 26 = small secretory cells. CNC = cranial neural crest; PNC = posterior 

(chordal) neural crest. 
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Fig. S4. Dynamics of discrete cell state appearance in Xenopus in scRNA-seq 

timecourse.  

(A) For each cell, a ‘discreteness score’ was calculated as the log-kurtosis of its distance 

distribution to all other cells in gene expression space (see Materials and Methods section 

“Cluster continuity analysis” for further details). The premise of the score is that high 

kurtosis can indicate bimodality, or discrete clustering of the distance distributions. (B) 

Discreteness scores plotted on the all-cell kNN-graph from Fig. 2B, showing that scores 

are high on relatively discrete cell state projections. (C) Dynamics of discrete cluster 

emergence. Grey dots indicate the average discreteness score of each cell state at each 

timepoint. Discrete states with scores > 2 (higher than the right tail of the stage 8 

distribution) first appear at stage 12 and accumulate over time. Continua are also apparent 

at each timepoint. The large black dots indicate the fraction of total cells at each 

timepoint with discreteness scores > 1.5. Scores shown are calculated on replicate 1 data. 
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Fig. S5. Computational cross-validation of stage 22 tSNE-DBSCAN clustering by 

comparison to SPRING-spectral clustering.  

To assess the robustness of the cell state classifications generated by tSNE-DBSCAN, we 

reclustered stage 22 scRNA-seq data (replicate 1) by an independent method – spectral 

clustering (see methods) – and compared the two results. Good qualitative agreement 

between the two approaches was observed: a median of 88.9% of cells in each spectral 

cluster mapped to its single most similar tSNE-DBSCAN cluster (top), while a median of 

79% of cells in each DBSCAN cluster mapped to its most similar spectral cluster 
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(bottom). Occasionally a single tSNE-DBSCAN cluster mapped to multiple spectral 

clusters (or vice versa), but these disagreements in general did not indicate gross 

misclassifications. Off-diagonal signal generally involves <20% of cells in a cluster, and 

reflects subtle differences in cluster boundaries between methods.    
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Fig. S6. Structure of tSNE-DBSCAN clusters is preserved on an independent 

visualization of the underlying scRNA-seq data.  

To demonstrate that the gene expression structure underlying our cell state classifications 

across all timepoints was robust to different data processing methods (and therefore 

robust), we examined the structure of the clustering summarized in Fig. 1B on data 

visualizations generated by an independent method – SPRING. The plots show that the 

main text cell state classifications, defined using tSNE-DBSCAN clustering, and 

indicated by coloring here, retain their clustered structure on independent SPRING 

visualization of each timepoint. An interactive version of the SPRING plot for each 

timepoint with full annotations is available online at: tinyurl.com/scXen2018. 
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Fig. S7. Voting outcomes during ancestor assignment across timepoints.  

(A) Voting outcomes during mappings between level 1 clusters. The median consensus 

was >88% across all assignments at all time-points. (B) Representative level 2 mapping 

of subpopulations within the S18 and S16 epidermis.  

 

  



 

 

21 

 

 
 

Fig. S8. Marker gene expression on the cell state tree.  

Plots show the average expression level per node of the indicated marker genes on the 

cell state tree from main text Fig. 2C. Examples illustrate representative patterns for 

broad germ layer markers such as sox2, t (brachyury), and sox17.  
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Fig. S9. Comparison of cell state tree structure to alternative cell state coarse 

graining algorithm.  

(A) All cell kNN-graph from Fig. 2B showing the full Xenopus scRNA-seq timeseries 

(replicate 1; see Table S1) colored by timepoint. kNN graph was built using the 

algorithm presented in our sister paper (Wagner et al.). (B) All cell kNN-graph indicating 

cell state cluster identities. (C-D) Edge assignments between states across timepoints 

generated by coarse graining of the underlying kNN-graph (C) closely resemble those 

generated by the cell state tree algorithm (D).  
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Fig. S10. Differentiation asynchrony in the somites.  

(A) Cell state tree from Fig. 2C, colored to indicate the presomitic mesoderm and somitic 

muscle, which form parallel branches due to differentiation asynchrony. (B) Visualization 

of single cells (replicate 1) belonging to both branches reveals the under- lying 

asynchronous differentiation process. Cells are colored either by timepoint (left), or by 

expression of key differentiation genes (right). Cells organize by differentiation progress 

with immature presomitic mesoderm states on the left (t, msgn1, hoxc10), which then 

differentiate into more mature somitic tissue (actc1). Mixing of early (S14) and late (S22) 

cells indicates asynchrony. (C) Real time versus psuedotime gene expression dynamics in 

somitic muscle differentiation. Asynchrony causes early, middle, and late waves of gene 

expression to blur compared to a psuedotemporal ordering, which respects a strictly 

ordered gene expression progression.  
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Fig. S11. The Xenopus cell state tree is a powerful gene expression resource.  

(A) Global visualization of differential gene expression detected at every cell fate choice, 

showing the number of cell state specific genes (>4-fold enriched) relative to sister fates 

at each split. Tens to hundreds of fate-correlated genes are detected at every split. Panels 

B-D provide a more granular view of some of the gene expression information encoded 

within the intermediate mesoderm subtree (boxed). (B) Heatmap showing differentially 

expressed genes at each cell fate choice in the intermediate mesoderm. (C) Visualization 

of single cells (replicate 1) in the intermediate mesoderm subtree, showcasing examples 

of lineage specific TFs (also shown in Fig. 2E,F). (D) Reconstruction of the gene 

expression dynamics occurring during pronephric mesenchyme development. Cascades 

of early, middle, and late gene expression can be detected. (E) scRNA-seq data allows 

interrogation of gene coexpression in single cells, revealing correlated and anti-correlated 

gene pairs during fate choices. Pm, Cd as defined in grey box (panel B).  
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Fig. S12. Proportion of cell states and total cells matched between Xenopus and 

Zebrafish cell state trees.  

Proportion of matched states (left) or matched cells (right) from the orthologous cell state 

mapping in Fig. 4A.  
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Fig. S13. Changes in germ layer proportions between Xenopus and Zebrafish.  

Of sequenced cells, zebrafish are 60% neuroectoderm by 24hpf, as compared to 31% in 

stage 22 Xenopus embryos. Xenopus embryos by contrast have >2-fold more non-neural 

ectoderm cells (23% compared to 9%) at the same stage.  
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Fig. S14. Conserved and species specific gene expression on matched epidermal 

subtrees from Xenopus and Zebrafish.  

This figure shows gene expression on the SPRING plots shown in Fig. 4B. The Xenopus 

and Zebrafish share conserved epidermal and ionocyte cell states, marked by conserved 

expression of gata2 and foxi1 respectively. By contrast, species specific states such as 

ciliated epidermal cells, small secretory cells (SSC), and goblet cells in Xenopus, are 

show species specific marker gene expression.  
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Fig. S15. scRNA-seq confirms alternative germ layer origins and conserved gene 

expression in the hatching gland of frog and fish.  

(A) Aligned Xenopus and Zebrafish cell state trees (Fig. 4A), indicating the hatching 

gland differentiation path in both species (red). The unsupervised tree building algorithm 

correctly identifies that the hatching gland emerges from non-neural ectoderm in frog but 

mesodermal organizer tissue in fish. (B-C) Comparison of gene expression in the 

hatching glands of both species. scRNA-seq detects conserved expression of the TF, 

klf17, which is necessary for hatching gland differentiation in both species (B), as well as 

conserved expression of the hatching enzyme, he1a (C). Novel conserved and species 

specific gene expression is also detected in both species.  
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Fig. S16. Global gene expression similarity of matched Xenopus and Zebrafish cell 

states.  

Heatmaps show the Pearson correlation between matched cell states (replicate 1) for the 

indicated species-comparison and pre-filtering stringency. Genes that are predictive of 

cell state within one species tend to be poorly predictive across species. Self-correlation 

is computed by jackknifing the data within a species (see Materials and Methods).  
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Fig. S17. MLP genes show enrichment of TF-associated GO terms com- pared to all 

DE genes.  

MLP genes were compared to all DE genes (dark grey bar) across embryonic fate choices 

in Xenopus. Enriched TF-associated terms include ‘Transcription factor activity’, 

‘Regulation of transcription’, ‘Nucleus’, and ‘DNA binding’. P-values indicate 

significance as determined by a binomial test with Bonferroni correction.  
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Fig. S18. Expression at stage 11 of individual genes proposed to constitute a retained 

blastula pluripotency circuit in neural crest cells.  

This figure shows the individual genes comprising the ‘pluri-circuit’ score plotted in 

main text Fig. 7E. Each gene is expressed broadly, including in non-pluripotent tissues. 

The red circled region indicates the boundary between neuroectoderm and non-neural 

ectoderm cells, that associates with neural plate border by S12, and neural crest by S13. 

This region shows no special enrichment of these factors. Foxd3 is lowly expressed by 

scRNA-seq but detected in mesoderm and dorsal endoderm as well as ectoderm by in situ 

(Xenbase), showing that it is not a special case. 
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Table S1. scRNA-seq data summary. 

Sample information for all scRNA-seq libraries. Libraries from replicate 2-3, which were 

sequenced to a lower average depth, are shaded in grey. # Libs indicates the number of 

separate droplet-emulsions per sample. Raw cells indicates the number of cells that 

passed the indicated min counts UMI threshold. Excluded cells were removed after 

identification as low count clusters, or as cell doublets (see methods section “Data clean 

up”). Final cells passed all filters and are incorporated into the cell state tree.  

 

Sample 

Biological 

replicate 

ID 

# Libs 
Min 

counts 

Avg. 

UMIs 

/ cell 

Raw 

cells 

Excluded 

cells (%) 

Final 

cells 

S8 1 2 1,000 3,661 875 0 (0%) 875 

S8 2 1 500 813 318 0 (0%) 318 

S10 1 3 1,000 4,517 6,507 580 (9%) 5,927 

S11 2 6 400 890 6,078 272 (4%) 5,806 

S11-NPB 3 4 400 756 9,348 512 (5%) 8,836 

S12 1 3 1,000 4,713 6,091 713 (12%) 5,378 

S12 2 3 400 881 7,722 1,282 (17%) 6,440 

S13 2 4 400 896 8,931 1,096 (12%) 7,835 

S14 1 4 1,000 5,948 4,910 451 (9%) 4,459 

S14 2 3 300 913 5,885 1,854 (32%) 4,031 

S16 1 4 1,000 5,023 5,173 302 (6%) 4,871 

S16 2 3 500 1,412 8,305 1,096 (13%) 7,209 

S18 1 4 1,000 5,839 5,130 251 (5%) 4,879 

S18 2 3 500 1,415 7,302 785 (11%) 6,517 

S20 1 5 1,000 5,744 6,036 515 (9%) 5,521 

S20 2 3 500 1,590 10,606 853 (8%) 9,753 

S22 1 6 1,000 5,674 8,113 541 (7%) 7,572 

S22 2 14 500 1,875 29,636 2,873 (10%) 26,763 

Total / 

avg: 
   2,920 136,966 

13,976 

(10%) 
122,990 
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Movie S1. Collection of dissociated Xenopus embryo cells by inDrop microfluidics – 

cell inlet. 

Slow motion recording of Xenopus cells entering the inDrop microfluidic device. Cells 

are round dark spheres, characteristic of good condition, and show significant variability 

in size as expected. 

Movie S2. Collection of dissociated Xenopus embryo cells by inDrop microfluidics – 

droplet junction. 

Slow motion recording of droplet-formation in the inDrop microfluidic device, showing 

co-encapsulation of Xenopus cells (dark spheres, entering from middle right) with 

barcoding hydrogels (larger transparent spheres, entering from bottom right) at ~4s and 

~7s. Reverse transcription reagents enter from the top right channel and mix with the 

aqueous buffer containing cells. Oil flows from the top- and bottom-middle and pinches 

the two aqueous phases to from droplets. Each drop is ~3nL. 

Movie S3. Collection of dissociated Xenopus embryo cells by inDrop microfluidics – 

collection outlet. 

Slow motion recording of droplets entering the collection outlet. 3 cells are visibly co-

encapsulated with hydrogel beads.  
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Additional Data Table S1 (separate file). Literature supported marker genes and 

XAO term associations for each Xenopus embryonic cell state. 

Table with 2,930 rows by 4 columns, provided as .txt file with tab-delimited values. First 

row is column headers. Column 1: Cell state name matching the 87 annotations in Figure 

2. Column 2: Best match Xenbase name for each cell state in column 1, referred to by 

XAO identifier, that is used to identify literature supported marker genes. Column 3: 

Marker gene name. Column 4: PubMed ID (PMID) for a published paper reporting that 

the gene in column 3 is a marker for the cell state in column 2. See Materials and 

Methods section “Annotation of cell states” for further details. 

Additional Data Table S2 (separate file). Benchmarking of each edge on Xenopus 

cell state tree against XAO developmental lineage relationships. 

Table with 258 rows by 9 columns (A-I), provided as a .txt file with tab separated values. 

First row is column headers. Overall the table assesses each of the 257 edges from state A 

(column A) to state B (column B) on the tree – shown in figure 2 of the main text – 

against the lineage relationships documented on Xenbase (referred to by XAO identifier) 

or the indicated paper (column C). The verdict for each edge is summarized in column D 

as either: ‘OK’, when the inferred edge agrees with Xenbase; ‘Discovery: early start’, 

when the generated state (column B) appears at least 2 stages earlier than reported on 

Xenbase; ‘Ends too late’, when the generated state (column B) exists at least 2 stages 

later than reported on Xenbase; ‘Ends too early’, when the ancestor state (column A) 

disappears at least 2 stages earlier than reported on Xenbase; or ‘Error in tree’, when the 

inferred edge is inconsistent with lineage relationships reported on Xenbase. Columns E 

and F record the start dates for each of the annotated states when they exist in both the 

tree in figure 2 and on Xenbase, respectively; these values were used to make Figure 3A 

of the main text. Columns H and I tally and summarize the validation results. See 

Materials and Methods section “Benchmarking of cell state tree similarity relationships 

against XAO” for further details. 

Additional Data Table S3 (separate file). Differentially expressed genes at every cell 

fate choice identified in early Xenopus development. 

Table with 1,514 rows by 5 columns, provided as .txt file with comma separated values. 

The table documents genes that are enriched in each state (column 1) compared to its 

sister states – i.e. those that have the same parent – at every fate choice, or splitting event, 

on the cell state tree shown in Figure 2. These genes are candidate regulators of the cell 

fate choice that promote differentiation into the indicated state (column 1). First row is 

column headers. Column 1: state name. Column 2: gene name. Column 3: fold-change 

compared to sister states (pooled if more than one). Column 4: average expression in 

state from column 1. Column 5: p-value for enriched expression. Only genes >2-fold 

enriched, average detected expression >1UMI/cell, and adjusted p-value <0.0001 are 

reported. See Materials and Methods section “Differential gene expression at cell fate 

chioces” for further details. 
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Additional Data Table S4 (separate file). Automatically identified top marker genes 

for each embryonic Xenopus cell state. 

Table with 2,159 rows by 6 columns, provided as .txt file with comma separated values. 

The table systematically documents genes that are highly-specific for each of the 72 cell 

state annotations shown in Figure 2. First row is column headers. Column 1: state name. 

Column 2: marker gene name. Column 3: local enrichment – i.e. average expression in 

state from column 1 divided by the average expression of the state with the next highest 

expression. Column 4: global enrichment – i.e. average expression in state from column 1 

divided by the average expression in the rest of the embryo. Column 5: average 

expression in UMIs/cell for the state in column 1. Column 6: fraction of cells in state 

indicated in column one with detected expression of the marker gene. Marker genes for 

each state are ranked by their local enrichment as this is a good measure of the desired 

attributes of a marker gene for methods such as in situ staining. See Materials and 

Methods section “Identification of marker genes for each cell state” for further details on 

the criteria used to define marker genes. 

Additional Data Table S5 (separate file). Catalog of re-used TFs and their tissue 

associations in early Xenopus development. 

Table with 74 rows and 8 columns. Row 1 gives column headers. Column 1 specifies 

each of the 74 reused TFs identified during the analysis presented in Fig. 5. Columns 2-8 

specify each tissue where an initiation event of each TF was identified. 

Additional Data Table S6 (separate file). Catalog of multi-lineage primed gene pairs 

at fate choices in early Xenopus development. 

Table with 1,386 rows and 5 columns. Overall the table describes 16 fate branch points 

with 412 MLP genes, in 1,385 MLP pairs. Row 1 gives column headers. Column 1 

defines fate branch point where MLP genes were searched for. Column 2-3 give the 

names of 2 genes that show MLP at the fate choice noted in column 1. Column 4 gives 

the maximum coexpression of the gene pair in the subtree. Column 5 gives the minimum 

coexpression of the gene pair in the subtree, which occurs a timepoint after the maximum 

coexpression. 

Additional Data Table S7 (separate file). Matching of X. Tr 9.0 transcripts to human 

gene symbols. 

Table with 26,551 rows by 4 columns, provided as .txt file with tab-delimited values. 

Table documents matching between X. Tr 9.0 genome assembly gene symbols (column 

1) with best match human gene symbols (column 2), as defined by a custom reciprocal 

protein blast pipeline (see Materials and Methods section “Expansion of gene symbol 

assignments in the XTr 9.0 reference transcriptome”). Columns 3 and 4 provide the 

forward and reverse blast e-values. 
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