$Na_V 1.4$ DI-S4 periodic paralysis mutation R222W enhances inactivation and promotes leak current to attenuate action potentials and depolarize muscle fibers

Landon Bayless-Edwards¹, Vern Winston¹, Frank Lehmann-Horn^{2,4}, Paula Arinze¹, James R Groome^{1*}, Karin Jurkat-Rott³

¹Department of Biological Sciences, Idaho State University, 83209 Pocatello ID, USA ²Department of Applied Physiology, Ulm University, 89081 Ulm, Germany ³Department of Neuroanesthesiology, Clinic for Neurosurgery, Ulm University, Guenzburg, Germany

⁴Deceased

Supplemental Information

Action potential modeling

A two-compartment model of an action potential in a skeletal muscle fiber was constructed using methods similar to Cannon *et al.*³⁹ The change in membrane potential over time was defined as in supplementary equation S1:

(S1)
$$dV/dt = g_{Na}^{*}(V_t - E_{Na}) + g_k^{*}(V_t - E_k) + g_i^{*}(V_t - E_i)$$

where g (conductance) is defined as $g_{Na} = \bar{g}_{Na}m^3h$, $g_K = \bar{g}_Kn^4$, and g_i is ionic leak conductance, \bar{g} is the maximum ionic conductance (Supplementary Table S2), V_t is the membrane potential in mV, and E is the equilibrium potential for each ion in mV. The *h* parameter was defined experimentally. A barrier model was constructed using inactivation kinetics by plotting the time constants of recovery, closed-state fast inactivation, and open-state fast inactivation, against voltage. Plots were fit with a Gaussian curve according to supplementary equation (S2):

(S2) τ (V_M) = 1 / (k_f+k_b)

where τ (V_M) is the time constant of fast inactivation, and k_f and k_b are the rate equations for forward and backward reactions, respectively. Reaction rates were determined according to supplementary equations (S3) and (S4):

(S3)
$$k_f = Aexp + (\{[z\delta(V_M - V_{0.5})]\} / kT)$$

(S4)
$$k_b = Aexp-(\{[z\{1-\delta\}(V_M - V_{0.5})]\} / kT)$$

where *A* is the half rate at V₀, *z* is the apparent valency of the reaction, δ is the fractional barrier distance, V_M is membrane potential and V_{0.5} is the midpoint in mV, *T* is the temperature in K, and *k* is the Boltzmann constant. These equations were used to define α_h and β_h , rates of entry into and exit from the inactivated state in the Hodgkin-Huxley system of equations³⁸. The *h* parameter of voltage-gated sodium channel inactivation in the Hodgkin-Huxley model was defined by α_h and β_h using supplementary equation (S5):

(S5)
$$h = \alpha_h / (\alpha_{h+}\beta_h)$$

The sarcolemma and t-tubules comprise the two compartments of the model. Supplementary equation (S6) was used to calculate the ionic current flowing per unit area of t-tubule:

(S6)
$$I_{\text{ionic}} = \eta_{\text{Na}} * g_{\text{Na}} * (V_t - E_{\text{Na}}) + \eta_k * g_k * (V_t - E_k) + \eta_i * g_i * (V_t - E_i)$$

where η is the ratio of t-tubule to surface channel densities. Values from Cannon *et al.*³⁹ were used to define sodium and potassium t-tubule to surface channel densities. We also modeled the accumulation of potassium in the t-tubules with supplementary equation (S7)³⁹:

(S7)
$$d[K]_t/dt = (\eta_k * g_k * (V_t - E_k) + 0.15 * \eta_i * g_i * (V_t - E_i))/(F * \zeta) - ([K]_t - [K]_o)/\tau_K$$

where [K]_t is the concentration of potassium in the t-tubules, F is Faraday's constant, ζ is the t-tubule surface area to volume ratio (10⁻⁶) and τ_K is the time constant of diffusion of K⁺ between the t-tubular space and the extracellular space (350 ms). An increase in the concentration of t-

tubule potassium of approximately 0.2 mM was observed for native fibers (similar to Cannon *et al.*³⁹), whereas an increase of approximately 0.1 mM was found in fibers containing R222W channels (Supplementary Fig. S1). This difference may be a consequence of action potential attenuation.

Parameter	Control	R222W	Citation
$\overline{\alpha}_m \ (\text{ms}^{-1})$	1	1	[40]
$\bar{\beta}_m (\mathrm{ms}^{-1})$	2	2	[40]
\overline{V}_{m} (mV)	-30.5	-30.5	This paper
$K_{\alpha m}$ (mV)	10	10	[39]
$K_{\beta m}$ (mV)	13	13	This paper
$\overline{\alpha}_n (\mathrm{ms}^{-1})$	7	7	[39]
$\bar{\beta}_n (\mathrm{ms}^{-1})$	40	40	[39]
$\overline{V}_{n}(\mathrm{mV})$	-40	-40	[39]
$K_{\alpha n}$ (mV)	0.01	0.013	[39]
$K_{\beta n} (\mathrm{mV})$	0.07	0.07	[39]
\overline{V}_{h} (mV)	-50.9	-80.9	This paper
$g_i (\mathrm{mS/cm}^2)$	0.75	0.75	[39]
$\bar{g}_{Na} \text{ (mS/cm}^2)$	150	150	[39]
$\bar{g}_K (\mathrm{mS/cm}^2)$	21.6	21.6	[39]
Resting potential (P ₁)	-80.0	-80.0	This paper

	· · · · ·	
Sunniementary Lanie SI+ La	ating narameters lised in ac	tion notential model
	aime Dalamitici 5 ustu m at	uvn pvieniai mvuei.

Supplementary Table S2: Values used in k_F and k_B calculations.

Parameter	Control	R222W
А	0.019	0.007
Z	4.54	4.01
δ	0.50	0.35

V _{1/2}	-55.1	-80.6
kT	25.3	25.3
χ^2	24.5	53.1

Supplementary Figure S1: Additional parameters modeled in action potential simulations. A phase diagram of the *h*-gate parameter, or the inverse probability of inactivation, is shown in (A). The *h*-gate parameter from the R222W fibers shows a higher inactivation probability, consistent with electrophysiological results. Potassium accumulation in the t-tubules in shown in (B). There is less potassium accumulation after one action potential in R222W fibers compared to wild type.

	VdW (kcal / mol)		Electrostatic (kcal/mol)		Distance (Å)	
	R222	W222	R222	W222	R222	W222
Y168	-3.1 ± 0.3	$-1,9 \pm 0.2$	-0.8 ± 1.3	2.1 ± 1.5	4.3 ± 0.2	6.8 ± 0.4
E171	4.1 ± 2.4	-0.1 ± 0.03	-99.6 ± 7.9	-0.5 ± 0.5	6.8 ± 0.6	9.9 ± 0.3
D197	-0.03 ± 0.01	-1.0 ± 0.4	0.1±0.1	1.2 ± 0.7	9.2 ± 1.2	7.2 ± 0.4

Supplementary Table S3: Parameters measured in molecular dynamics simulations.