Na_{V} 1.4 DI-S4 periodic paralysis mutation R222W enhances inactivation and promotes leak current to attenuate action potentials and depolarize muscle fibers

Landon Bayless-Edwards¹, Vern Winston¹, Frank Lehmann-Horn^{2,4}, Paula Arinze¹, James R Groome^{1*}, Karin Jurkat-Rott³

¹Department of Biological Sciences, Idaho State University, 83209 Pocatello ID, USA ²Department of Applied Physiology, Ulm University, 89081 Ulm, Germany ³Department of Neuroanesthesiology, Clinic for Neurosurgery, Ulm University, Guenzburg, Germany

4 Deceased

Supplemental Information

Action potential modeling

A two-compartment model of an action potential in a skeletal muscle fiber was constructed using methods similar to Cannon *et al.*³⁹ The change in membrane potential over time was defined as in supplementary equation S1:

$$
(S1) \ dV/dt = g_{Na} * (V_t - E_{Na}) + g_k * (V_t - E_k) + g_i * (V_t - E_i)
$$

where g (conductance) is defined as $g_{Na} = \bar{g}_{Na}m^3h$, $g_K = \bar{g}_{K}n^4$, and g_i is ionic leak conductance, \bar{g} is the maximum ionic conductance (Supplementary Table S2), V_t is the membrane potential in mV, and E is the equilibrium potential for each ion in mV. The *h* parameter was defined experimentally. A barrier model was constructed using inactivation kinetics by plotting the time constants of recovery, closed-state fast inactivation, and open-state fast inactivation, against voltage. Plots were fit with a Gaussian curve according to supplementary equation (S2):

(S2) τ (V_M) = 1 / (k_f +k_b)

where τ (V_M) is the time constant of fast inactivation, and k_f and k_b are the rate equations for forward and backward reactions, respectively. Reaction rates were determined according to supplementary equations (S3) and (S4):

(S3)
$$
k_f = A \exp + (\{ [z\delta(V_M - V_{0.5})] \} / kT)
$$

(S4)
$$
k_b = A \exp\left\{ \left[z \{1-\delta\} (V_M - V_{0.5}) \right] \right\} / kT
$$

where *A* is the half rate at V_0 , *z* is the apparent valency of the reaction, δ is the fractional barrier distance, V_M is membrane potential and $V_{0.5}$ is the midpoint in mV, *T* is the temperature in K, and *k* is the Boltzmann constant. These equations were used to define α_h and β_h , rates of entry into and exit from the inactivated state in the Hodgkin-Huxley system of equations³⁸. The *h* parameter of voltage-gated sodium channel inactivation in the Hodgkin-Huxley model was defined by α_h and β_h using supplementary equation (S5):

$$
(S5) \quad h = \alpha_h / (\alpha_h + \beta_h)
$$

The sarcolemma and t-tubules comprise the two compartments of the model. Supplementary equation (S6) was used to calculate the ionic current flowing per unit area of t-tubule:

(S6)
$$
I_{ionic} = \eta_{Na} * g_{Na} * (V_t - E_{Na}) + \eta_k * g_k * (V_t - E_k) + \eta_i * g_i * (V_t - E_i)
$$

where η is the ratio of t-tubule to surface channel densities. Values from Cannon *et al.*³⁹ were used to define sodium and potassium t-tubule to surface channel densities. We also modeled the accumulation of potassium in the t-tubules with supplementary equation $(S7)^{39}$.

$$
(S7) \quad d[K]_{t}/dt = (\eta_{k} * g_{k} * (V_{t} - E_{k}) + 0.15 * \eta_{i} * g_{i} * (V_{t} - E_{i}))/(F * \zeta) - ([K]_{t} - [K]_{o})/\tau_{K}
$$

where $[K]_t$ is the concentration of potassium in the t-tubules, F is Faraday's constant, ζ is the ttubule surface area to volume ratio (10⁻⁶) and τ_K is the time constant of diffusion of K⁺ between the t-tubular space and the extracellular space (350 ms). An increase in the concentration of ttubule potassium of approximately 0.2 mM was observed for native fibers (similar to Cannon *et al.*39), whereas an increase of approximately 0.1 mM was found in fibers containing R222W channels (Supplementary Fig. S1). This difference may be a consequence of action potential attenuation.

Supplementary Table S2: Values used in k_F and k_B calculations.

Supplementary Figure S1: Additional parameters modeled in action potential simulations. A phase diagram of the *h*-gate parameter, or the inverse probability of inactivation, is shown in (A). The *h*-gate parameter from the R222W fibers shows a higher inactivation probability, consistent with electrophysiological results. Potassium accumulation in the t-tubules in shown in (B). There is less potassium accumulation after one action potential in R222W fibers compared to wild type.

	VdW (kcal / mol)		Electrostatic (kcal/mol)		Distance (Å)	
	R222	W222	R222	W222	R222	W ₂₂₂
Y168	-3.1 ± 0.3	-1.9 ± 0.2	-0.8 ± 1.3	2.1 ± 1.5	4.3 ± 0.2	6.8 ± 0.4
E171	4.1 ± 2.4	-0.1 ± 0.03	-99.6 ± 7.9	-0.5 ± 0.5	6.8 ± 0.6	9.9 ± 0.3
D ₁₉₇	-0.03 ± 0.01	-1.0 ± 0.4	0.1 ± 0.1	1.2 ± 0.7	9.2 ± 1.2	7.2 ± 0.4

Supplementary Table S3: Parameters measured in molecular dynamics simulations.