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That version also includes expandable code chunks. The repository also
contains all code used for analysis, and instructions to obtain the raw
data required to reproduce the results shown below.

Supplementary Note 1: Introduction
With the rapid increase in throughput of next-generation sequencing
technologies, an individual run of a typical sequencing machine (such as those
produced by Illumina) generates many more reads than is necessary for
interrogating single libraries generated by most functional genomic assays. To
make efficient use of these machines, DNA libraries are typically pooled
together prior to sequencing, in a process known as “multiplexing”. Briefly,
unique barcodes are ligated onto the ends of the DNA molecules within each
library before pooling. This incorporates a known sequence into each read,
allowing the assignment of reads to their libraries of origin after sequencing.
Multiplexing also ensures that technical effects are consistent across samples,
avoiding batch effects between sequencing lanes or flow cells; and can
provide robustness against the failure of sequencing lanes, which would
otherwise result in the loss of entire samples. As such, multiplexing is widely
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considered to be standard practice for many sequencing experiments, and is
essential for cost-effective analysis of small libraries such as those in single-
cell RNA sequencing (scRNA-seq) studies.

The most recent DNA sequencing machines released by Illumina (HiSeq
3000/4000/X, X-Ten, and NovaSeq) use patterned flow cells to improve
throughput and cost efficiency. On these new flow cells, the process of
“seeding” DNA molecules into the patterned wells and amplification of the
seeded DNA occur simultaneously. These machines have been in use for
several years in a diverse range of genomic fields. However, it has been
recently reported that the use of these machines can lead to the mislabelling
of DNA molecules with the incorrect library barcode (Sinha et al. 2017). The
mislabelling is likely driven by the extension of free barcode molecules using
other DNA molecules as a template (Supplementary Figure 1). The
phenomenon has been acknowledged by Illumina (Illumina 2017), although
estimates of swapping fractions vary between reports (Costello et al. 2017). It
is unclear whether a permanent solution to the problem will be forthcoming as
rapid amplification after seeding is critical to the operation of the patterned flow
cell machines (Sinha et al. 2017).

Supplementary Figure 1: Schematic of the mechanism of barcode swapping on the HiSeq
4000, as proposed by Sinha et al (2017).

This “swapping” of barcode labels (also called “hopping” or “switching”) is
problematic for analyses of sequencing data. Reads labelled with a barcode
specific to a given sample may have originated from any other multiplexed
sample in the same pool, compromising the interpretation of the sample labels
and their use in downstream analyses. This phenomenon is particularly
relevant for single-cell -omics assays, where a large number of samples (i.e.,



cells) are necessarily multiplexed together for efficient use of sequencing
resources. Our manuscript (“Detection and removal of barcode swapping in
single-cell RNA-seq data”) quantifies the effect of barcode swapping in a
variety of single-cell RNA-seq datasets. We show that swapping can create
artefactual cell libraries in droplet-based scRNA-seq experiments. Finally, we
have implemented a strategy to eliminate the effects of barcode swapping in
droplet-based datasets without excessive loss of data.

Supplementary Note 2: Definition of terms
Before continuing, we define a few terms:

Swapping occurs between a donor library, from which the transcript
originated, and recipient libraries, in which the swapped read is
detected after sequencing.

The swapping fraction is defined as the fraction of reads that have
been mislabelled, from the set of all cDNA-derived reads in a pool of
multiplexed libraries sequenced on a single flow cell lane.

Supplementary Note 3: Plate-based analysis of
the Richard data

Description of the experimental design
We consider two 96-well plates of single-cell RNA-seq libraries for mouse T-
cells. We used dual indices for cell labelling, i.e., a different barcode was used
at each end of the molecule. The barcodes used for each plate are from
mutually exclusive sets - any barcode from one plate was never used on the
other (Supplementary Figure 2). For sequencing, all cell libraries from the two
plates were multiplexed.

Supplementary Figure 2: Overview of the experimental design in the Richard dataset. Each
position of the plot represents a barcode combination. Each of the blue blocks represents at
96-well plate. One barcode combination (N729,S522) in one of the plates did not contain a
cell, but did contain barcodes and spike-in transcripts. Barcode combinations in the grey
positions were not used, and thus should not contain sequencing reads.



Details of data generation
Cells were prepared for single-cell RNA-seq using the SmartSeq2 protocol
(Picelli et al. 2014), adapted as described in (Richard et al. 2018). Briefly, cells
were sorted into 96-well plates with 4 L of lysis buffer: 0.11 % (v/v) Triton X-
100 (Sigma), 12.5 mM DTT (Thermo Fisher Scientific), 2.5 mM dNTP mix
(Thermo Fisher Scientific), and 2.3 U SUPERase In RNase inhibitor (Thermo
Fisher Scientific). Annealing mix, composed of diluted ERCC RNA Spike-In
Mix (Thermo Fisher Scientific) and 10 M oligo-dT30VN (Sigma), was added 1 

L per well, and reverse transcription was performed using SuperScript II
(Invitrogen). cDNA was amplified (23 PCR cycles) and purified with Ampure
XP Beads (Agencourt) at 0.7 beads / 1 DNA (v/v). Library preparation was
performed with the Nextera XT DNA Sample Preparation Kit using indexes
from the Nextera XT Index Kit v2 Set A and Set D (Illumina). Libraries from
each plate were pooled and purified with Ampure XP beads before
quantification with the KAPA Library Quantification Kit (Roche). Library pools
from each plate were combined in equimolar quantities. Library sequencing
was performed both on an Illumina HiSeq4000 and an Illumina HiSeq2500.

Reads were demultiplexed allowing for any of the barcode combinations
shown in Supplementary Figure 2 (including the impossible combinations).
Read mapping was performed using the Subread aligner (v1.5.1) (Liao,
Smyth, and Shi 2013) to the mm10 build of the mouse genome with additional
ERCC sequences
(http://www.thermofisher.com/order/catalog/product/4456739
(http://www.thermofisher.com/order/catalog/product/4456739)). We used a
Phred offset of 33 and only considered uniquely mapped reads, with default
values for all other parameters. We counted the number of reads mapped to
each gene in each cell using the featureCounts  function (Liao, Smyth, and
Shi 2014) in the Rsubread (http://bioconductor.org/packages/Rsubread)
package with default options (except for minMQS=10 , to retain only high-
quality alignments). This function assigned reads to exonic regions of each
gene in the Ensembl mm10 annotation (version 82) or to ERCC spike-in
transcripts.

Examination of the library sizes
In the absence of barcode swapping, it should be impossible to observe
mapped reads with barcodes from each of the two different plates, i.e., there
should be no mapped reads in the grey areas of Supplementary Figure 2. We
will refer to these barcode combinations as “impossible” combinations, in
comparison to the expected combinations in orange. For the expected
combinations where cells have been loaded, there are many mapped reads
(Supplementary Figure 3) as expected. In the impossible barcode
combinations, we observe a lower but non-zero number of mapped reads,
consistent with the presence of barcode swapping.
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Supplementary Figure 3: Number of mapped reads per barcode combination, coloured on a
log  scale.

The distribution of total number of mapped reads (i.e., library sizes) for all
combinations are shown in Supplementary Figure 4 and Supplementary
Figure 5. The impossible combinations have a median mapped-read library
size that is 1.5% of the median size of the expected combinations. The total
number of mapped reads assigned to impossible combinations is 1.1% of that
assigned to expected combinations. Note that the empty well is still considered
as an expected barcode combination due to the presence of ERCC spike-in
transcripts.

Supplementary Figure 4: Boxplots of the total number of reads for the impossible and
expected barcode combinations. Dots represent barcode combinations that have totals more
than 1.5 interquartile ranges from the edge of the box.
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Supplementary Figure 5: Distribution of library sizes for all expected and impossible barcode
combinations.

We focused on mapped reads as these are most relevant to downstream
analyses. Nonetheless, we observe similar results for all reads, consistent with
the ability of barcode swapping to affect all molecules on the flow cell. The
median number of all reads assigned to an impossible combination is 1.8% of
that assigned to an expected combination, while the total number of reads
assigned to impossible combinations is 1.6% of the total number of reads
assigned to expected combinations.

We emphasize that our results are highly robust to contamination from
ambient RNA or human/bacterial sources. Regardless of the amount of
contamination, the impossible barcode combinations should not contain any
reads, because these pairs of barcodes were never mixed in library
preparation. Barcode swapping is the only possible mechanism for obtaining a
substantial number of non-zero reads for these combinations. (We ignore the
possibility of barcode sequencing errors causing misassignment of reads,
which would be extremely unlikely for 8 bp barcodes that are well separated in
base space.) This provides a point of difference for our experimental design
compared to that of Sinha et al. (2017), who estimated the swapping rate
based on empty wells that still contained barcodes. In their design,
contamination would result in mapped reads in the empty wells and the
appearance of an elevated rate of swapping.

Swapping fraction estimation on the HiSeq 4000
Denote each barcode combination as  where barcode 
represents a row in Supplementary Figure 2 (with 

) and barcode  represents a
column ( ). Let  denote the number of
seeded cDNA molecules that truly originate from this combination, and let 
denote the number of mapped reads.  therefore represents the true
source of reads, while  represents the reported source after swapping.
Impossible barcode combinations are those with  or 

, and have  by definition.

We assume that barcode swapping is rare, so it is unlikely that one molecule
will undergo more than one round of swapping. This means that reads will only
be transferred between combinations that already share a single barcode. This

(i, j) i ∈ 1, … , 16

i = 1 ⇒ S522, i = 16 ⇒ S502 j ∈ 1, … , 24
j = 1 ⇒ N701, j = 24 ⇒ N729 Mi,j

Xi,j
Mi,j

Xi,j
1 ≤i ≤8, 1 ≤j ≤12

9 ≤i ≤16, 13 ≤j ≤24 = 0Mi,j



is illustrated in Supplementary Figure 6. For that example, the combination
N719  and S505  (red position) would receive swapping contributions from the

cells in the blue positions.

Supplementary Figure 6: A schematic of the expected barcode combinations that are
potential donor libraries (orange) for swapping into a recipient library (red), an impossible
combination (S505/N719). Only a single barcode needs to be swapped for transcripts in the
blue combinations to appear as reads in the red combintion. Used barcode pairs are shown
in grey, and unused barcode pairs are shown in black.

Let  be the conversion rate of seeded cDNA molecules to mapped reads in
the same cell library. This is probably less than 1 due to the presence of
unmappable sequences (e.g., transcribed repeats). Moreover, a seeded PCR
duplicate of a cDNA molecule (formed on the flow cell) would normally count
as a new read for the gene in the original cell. However, if the duplicate
molecule has swapped its barcode, the cell has effectively “lost” this additional
read. This will further decrease the value of .

We further assume that the number of observed swapped reads is proportional
to the number of molecules that are available for swapping. Define  as the
rate of swapping from any single donor library to any single recipient library,
i.e., the proportion of molecules in the donor library that appear as mislabelled
reads in the recipient. For each barcode combination, the number of reads can
be modelled as

As barcode swapping is rare,  should be very low such that  for
the expected barcode combinations where . We further approximate 

 for these expected combinations by replacing it with the observed .
This means that, for each impossible combination , we have

This represents a linear relationship between the library size for each
impossible combination and the sum of the library sizes for all expected
combinations with which it shares a single barcode. We estimate the
parameters of this relationship by fitting a line to each  against the
corresponding sum using ordinary least squares, as shown in Supplementary
Figure 7.

τ

τ

ρ
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Supplementary Figure 7: Relationship between the library size for each impossible
combination and the sum of library sizes for all expected combinations sharing a single
barcode in the HiSeq 4000 data. Each point represents an impossible barcode combination.
The line of best fit is shown along with the coefficient of determination.

We estimate the total number of mislabelled reads across all combinations to
be

where  is a set of all expected combinations. The multiplication by 38 is due
to the fact that there are 38 available destinations for a single-barcode-
swapped read from any single expected combination (Supplementary Figure
8). In other words, we sum each  38 times in the first line of the above
expression. This includes the impossible barcode combinations as well as the
real cell combinations.
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Supplementary Figure 8: Schematic illustrating the contribution of a donor library (red) to
each of 38 recipient libraries that share a single barcode (blue). Cell-loaded combinations
are shown in grey, and unloaded combinations are shown in black.

To obtain the swapping fraction in this experiment, we divide by the total
number of mapped reads:

This yields an estimated swapping fraction of 2.180  0.0765%. Notably, this
is higher than the median-to-median fraction of 1.5%. This is because the
median-to-median fraction only considered swapped reads in the impossible
barcode combinations, whereas this slope-estimated value considers reads
that swap across the entire set of barcode combinations.

Note that we fitted the line in Supplementary Figure 7 with an intercept term.
The value of the intercept is -427.5  170.0. This is close to zero compared to
a median library size of 4123 for the impossible combinations, consistent with
our model for .

Swapping fraction estimation on the HiSeq 2500
The exact same pool of multiplexed libraries was also sequenced on a HiSeq
2500. This provides a negative control dataset where barcode swapping
should not be present (or, at least, present at a lower rate than encountered in
the HiSeq 4000). We see strong correlation between library sizes from the two
machines, as shown in Supplementary Figure 9.

Supplementary Figure 9: Library sizes for all expected (red) and impossible (blue) barcode
combinations in the HiSeq 2500 and 4000 data. The expected combination with the small
library size corresponds to the empty well.

In the HiSeq 2500 data, many fewer reads are present in the impossible
barcode combinations. The impossible combinations have a median library
size of 0.11% the median size of the expected combinations (compared to
1.5% from the HiSeq 4000). Considering all mapped reads on the plate, there
are 0.082% as many in the impossible combinations as in the expected ones
(compared to 1.1% from the HiSeq 4000).

We applied the same model to the HiSeq 2500 data as described above for
the HiSeq 4000 data. Results are shown in Supplementary Figure 10.
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Supplementary Figure 10: Relationship between the library size for each impossible
combination and the sum of library sizes for all expected combinations sharing a single
barcode in the HiSeq 2500 data. The line of best fit is shown along with the coefficient of
determination.

Interestingly, we still observe the swapping pattern in the HiSeq 2500 data.
However, the estimated swapping fraction is approximately an order of
magnitude lower: 0.223  0.00955% on the HiSeq 2500, compared to 2.180 

 0.0765% on the HiSeq 4000.

Supplementary Note 4: Plate-based analysis of
the Nestorowa data

Dataset overview
To confirm the existance of barcode swapping, we used data from another
published study (Nestorowa et al. 2016), which we refer to as the Nestorowa
data. 16 sets of single-cell RNA-seq libraries were each generated on a 96-
well plate, pooled together and sequenced on a single lane on a HiSeq 2500
machine. At a later date, each of the same pooled libraries were sequenced
on a HiSeq 4000. For each plate, exactly the same pool of libraries was used
in both sequencing runs, so the only differences between the results should be
caused by the sequencing machines and Poisson sampling noise (J. C.
Marioni et al. 2008). This is important, because repooling of libraries may
reduce the precision of our swapping fraction estimate, or introduce systematic
confounding.

Examination of crosshair swapping patterns
We identified the gene with the largest read count in a single cell in the first
plate of cells - Igkc. This gene is almost uniquely expressed in one cell in the
plate. On both the HiSeq 2500 and 4000 machines, we observe a “crosshair”
pattern of expression for this gene (i.e., along the row and column of the most
highly-expressing cell), as shown in Supplementary Figures 11 and 12. This is
the same pattern that was reported by Sinha et al. (2017) and is attributable to
barcode swapping from a single donor cell library to all recipient libraries
sharing a single barcode.
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Supplementary Figure 11: Expression of the gene with the highest read count in any cell,
across all cells on the first plate after sequencing on the HiSeq 2500.

Supplementary Figure 12: Expression of the gene with the highest read count in any cell,
across all cells on the first plate after sequencing on the HiSeq 4000.

While the crosshair pattern is present with both machines, it is clearly stronger
on the HiSeq 4000. There are 1.93% as many Igkc reads in the crosshair as in
the central highly-expressing cell in the HiSeq 4000 data, compared to 0.257%
for the HiSeq 2500. This is consistent with the order-of-magnitude difference in
the swapping fraction between the two technologies estimated from the
Richard data. The increase in Igkc coverage in the crosshair with the HiSeq
4000 is clearly shown by visualizing the log -fold change in coverage for each
cell (Supplementary Figure 13).
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Supplementary Figure 13: Log -fold change of the read count of the Igkc gene in the HiSeq
4000 data over the HiSeq 2500 in every cell of the first plate. A pseudo-count of 1 was added
to avoid undefined log-fold changes.

These crosshair patterns demonstrate that swapping along rows and columns
is the primary mode of read transfer between libraries. This supports our
assumption that swapping is a rare event. In the vast majority of cases,
swapping will occur no more than once to the same molecule, restricting the
transfer of reads to libraries that already share a single barcode.

Quantifying the swapping fraction
To quantify the swapping fraction, we assume that the HiSeq 2500 data
contains negligible amounts of barcode swapping compared to the HiSeq
4000. This is motivated by the order-of-magnitude difference between the two
sequencing machines observed in the Richard data. Our assumption allows us
to treat the HiSeq 2500 data as an unbiased representation of the true
expression profile for each cell, unaffected by swapping.

We applied a model that identifies contributions of different cells in the HiSeq
2500 data to the swapping-affected transcriptomes of the HiSeq 4000 data.
Let  denote the  read count matrix for the HiSeq 4000 libraries,
where rows are genes (for  total genes) and columns are cells (for  total
cells). Let  denote the equivalent count matrix for the HiSeq 2500
libraries. Let  denote a  matrix representing the contribution of the
HiSeq 2500 counts to the HiSeq 4000 counts. Each entry of  defines the
proportion of one HiSeq 2500 library that makes up one HiSeq 4000 library. To
illustrate, take the value at  in , and multiply it by the number of reads
for cell  in the HiSeq 2500 data. This represents the number of reads from a
cell  in the HiSeq 2500 data that contributes to a cell  in the HiSeq 4000
data.

For a cell with a given pair of barcodes, we need to discriminate between the
contribution of other cells with exactly one shared barcode and other cells with
no shared barcodes. To do this, let  where each of , 
and  is a matrix of the same dimensions as . The element  of
each matrix is defined as

2

Y4000 G × C
G C

Y2500
R C × C

R

( , )c1 c2 R
c1

c1 c2

R = + +R0 R1 R2 R0 R1
R2 R ( , )c1 c2

= {



The value of  represents the contribution of each cell in the HiSeq 2500 data
to the corresponding cell in the HiSeq 4000 data. This includes the “loss” of
potential reads, i.e., PCR duplicates unaffected barcode swapping, as
previously discussed for  in the Richard analysis. The value of  captures the
rate of row-column swapping from a donor cell  to a recipient cell , while 

 captures swapping between barcode combinations that do not share any
barcodes. In the terminology of the framework used for the Richard analysis,
we are using the HiSeq 2500 read counts for each donor cell as a proxy for
the number of molecules available for swapping in the HiSeq 4000 data.
Finally, note that all terms can be globally scaled to capture differences in
sequencing depth between the HiSeq 2500 and 4000 data.

We define the relationship between the two count matrices as:

where  represents the residual error. The aim is to obtain estimates of , ,
and  for each plate, using information across many genes to stabilise the
estimates.

Gene selection is important for the fitting of this model. We examine the
expression of two genes on the first HiSeq 2500 plate in the dataset in
Supplementary Figures 14 and 15.

Supplementary Figure 14: Gene expression pattern of gene A, shown in log-counts for all
cells on the first plate.
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Supplementary Figure 15: Gene expression pattern of gene B, shown in log-counts for all
cells on the first plate.

Both genes are expressed in only a subset of the cells on the plate, but gene
B is expressed much more broadly than gene A. For gene B, it is harder for
the model to distinguish between contributions from other cells on the row and
column of a certain cell ( ) or from all the other cells on the plate ( ), because
many cells in both of these sets express the gene at high levels. By contrast,
gene A is expressed at a high level in only very few cells, making it easier for
the model to distinguish between large values of  and . Genes expressed
broadly in the manner of gene B are therefore less informative for model fitting
than those expressed like gene A.

To identify the most informative genes on a single plate, we define the
“information score” for each gene as the ratio of the maximum expression
value to its 90th percentile. This value will be highest when only a very few
cells on the plate are highly expressing the gene. We only calculate this score
for genes that are present at a minimum level of 500 counts in at least one cell
in the HiSeq 2500 data. It is important to have a large number of transcripts
present, otherwise swapping may be too rare to detect. The information scores
are plotted in Supplementary Figure 16 for a few randomly chosen plates.

Supplementary Figure 16: Top 1000 genes by the highest information scores, ranked in
descending order. Genes with infinite scores are shown as points at the top of the plots.
Information scores are computed separately for each gene in each plate.
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We identify the top 500 genes with the highest information scores and use only
the corresponding rows in  and  for downstream model fitting. The
informative gene set is selected separately for each plate. We consider 500
genes to ensure that we include the infinite scores (i.e., where the 90th
percentile is 0) and to ensure that we do not exclude informative genes for
other plates, which may have longer tails than the distributions shown above.
We have also repeated the fits using the top 250 or 1000 genes, which yield
similar estimates of the ,  and  parameters (see below, Supplementary
Figure 19). Note that the chosen subset of genes will differ between plates, but
this does not affect the comparability of the parameter estimates between
plates.

We emphasize that the maximum expression value on a plate does not
substantially drive selection of genes (Supplementary Figure 17). This means
that we are not simply selecting for genes with high maximum expression.
Rather, we are identifying genes where the maximum expression value is a
clear outlier relative to expression in other cells on the plate.

Supplementary Figure 17: Relationship between the maximum expression and the
information score for each gene, using the first two plates in the dataset.

We used Poisson precision weights in our model to account for the mean-
variance relationship of count data. Counts were weighted by the reciprocal of
the square-root of their gene’s mean expression, to ensure that the most
highly-expressed genes do not dominate the least-squares fit. We fitted a
constrained linear inverse model using the limSolve (https://CRAN.R-
project.org/package=limSolve) package, to avoid obtaining negative values of 

, , and . Gene subsetting and fitting of the model was performed
separately for each plate of cells, so each plate had its own informative gene
set.

Across the 16 plates assayed, we acquired a distribution of estimates for each
parameter in . For example, we observe values between 0 and 0.00279 for
the single shared barcode contribution term .

To calculate the swapping fraction for each plate, we estimated the number of
reads in the HiSeq 4000 libraries that were contributed from the HiSeq 2500
libraries via swapping. We include both single barcode swaps ( ) and double
barcode swaps ( ) in this estimate. For simplicity, let us denote the
summation of all elements  of the matrix  as

Y2500 Y4000

α β γ

α β γ

R
β

R1
R0

xi,j X

σ (X) = ∑ ∑ i,j

https://cran.r-project.org/package=limSolve


The total number of swapped reads is

We divided this by the total number of reads in the fitted model (i.e., 
) to obtain an estimate of the swapping fraction for each plate.

Across plates, the mean swapping fraction is 2.653  0.444% (Supplementary
Figure 18).

Supplementary Figure 18: Estimates of the swapping fraction for all plates, using the top 500
most informative genes for each plate.

We obtained similar results with the top 250 (2.581  0.4%) or 1000 (2.707 
0.503%) most informative genes per plate. We also repeated the analysis with
a random selection of 500 genes from the top 1000 most informative genes
per plate, which yielded similar estimates (2.977  0.539%). The variance of
the swapping fraction estimates for different numbers of informative genes on
the same plate is smaller than the variance across plates (Supplementary
Figure 19), indicating that the number of informative genes used in the model
fit is not the major contributor to differences in the estimates between plates.

Supplementary Figure 19: Swapping fraction estimates for all plates, using different numbers
of informative genes in the model fit. ‘500 Sampled’ refers to 500 genes selected at random
from the top 1000 genes.
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In the Richard dataset, we considered swapping along rows and columns
exclusively. We use a similar approach here by considering the fraction

This yields an estimated row-column swapping fraction of 2.068  0.326%.
These row-column swapping fractions are well-correlated with the total
swapping fractions (Supplementary Figure 20).

Supplementary Figure 20: Relationship between the total swapping fraction and the row-
column swapping fraction. The identity line is shown for comparison.

The mean value of the information score for the top 500 genes (excluding
Inf ) is not associated with the estimated swapping fraction (Supplementary

Figure 21). This indicates that differences in the availability of genes with high
information score do not drive differences in the swapping fraction estimates.

Supplementary Figure 21: Relationship between the swapping fraction estimate from each
plate and the mean information score for the top 500 genes.

Finally, recall our initial assumption that the swapping fraction on the HiSeq
2500 is negligible compared to that on the HiSeq 4000. However, some
swapping does occur on the HiSeq 2500, at approximately one tenth the rate
as the HiSeq 4000 (as shown in the Richard data). Thus, our estimate of the
swapping fraction actually represents the relative increase in swapping in the
HiSeq 4000 compared to the HiSeq 2500. We can approximate the absolute
swapping fraction in the HiSeq 4000 by multiplying our estimate by 1.1. This

σ( )Y2500R1
σ( R)Y2500
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yields an swapping fraction estimate of 2.275  0.359% along rows and
columns, which is very similar to the value calculated in the Richard data
(2.180  0.0765%).

Linking swapping fraction to library characteristics
In an attempt to understand the variance of our swapping fraction estimates,
we examined the concentration of free barcodes on each plate. Using the
Bioanalyzer Expert software (Supplementary Figure 22), we quantified the
barcode concentration in each multiplexed pool based on the area under the
peak at 40-75 bp. By comparison, sequenced cDNA should fall within the peak
at 400-800 bp.

Supplementary Figure 22: Screenshot of an analysis of molecule lengths from a single plate,
using the Bioanalyzer Expert software. Region 1 (40-75 bp) corresponds to free DNA
barcode, while region 2 (400-800 bp) corresponds to cDNA that can be sequenced on the
HiSeq 4000.

The barcode and cDNA molarities for all samples are shown in Supplementary
Figure 23, overlaid with the calculated swapping fractions.

Supplementary Figure 23: Molarities of cDNA and free barcode for each plate, quantified
using the Bioanalyzer software. The size and colour of the point corresponding to each plate
is determined based on its estimate of the swapping fraction.
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We did not observe any obvious association between these measures. This is
demonstrated more clearly in Supplementary Figure 24, where the swapping
fractions are plotted directly against the molarity of free barcode.

Supplementary Figure 24: Estimated swapping fraction for each plate, plotted against the
molarity of free barcode.

The gradient in a linear model fitted to the swapping fraction against the
barcode molarity is not significantly different from 0 (p=0.427). Similarly, we do
not observe any correlation between the swapping fraction and the ratio of free
barcode to captured cDNA (Supplementary Figure 25).

Supplementary Figure 25: Estimated swapping fraction for each plate, plotted against the
ratio of free barcode concentration to cDNA concentration.

Again, the slope in the fitted linear model is not significantly different from 0
(p=0.129, p=0.466 after removing the high-ratio outlier at the right).

The molarity calculations for the sequenced cDNA may contain barcode
concatamers, which do not align to the mouse genome and are irrelevant to
our swapping fraction estimation. These concatemers may distort the estimate
for the concentration of cDNA on each plate. To overcome this, we used the
total number of mapped reads per plate as a proxy for the amount of
sequenced cDNA (Supplementary Figure 26), and examined its relationship
with the swapping fraction.



Supplementary Figure 26: Estimated swapping fraction for each plate, plotted against the
ratio of free barcode concentration to the total number of mapped reads.

However, we still did not see a slope significantly different from 0 (p=0.452).

In summary, our calculated swapping fractions are not associated with the
amount of free barcode in libraries, nor the ratio of free barcode to cDNA
concentration. This contrasts with Sinha et al. (2017), who showed that
titrations of increasing amounts of additional free primer (from 1 to 100 nM)
increased the rate of barcode swapping. We note that their clearest result
used 100nM of free barcode, which is far in excess of standard experimental
quantities. Our analysis suggests that the concentration of free barcode has
little bearing on the rate of swapping at typical experimental levels (2-6 nM in
this data).

Testing for transcriptome-wide swapping
In Supplementary Figures 11 and 12, we showed a crosshair swapping pattern
for a single gene for a single plate. We now apply a model to each gene
across all plates to determine whether swapping is happening consistently
across genes. This differs from the previous model, which used information
from many genes simultaneously to obtain a global estimate of the swapping
fraction for each plate.

Let  denote the row index for a cell on a single 96 well plate ( ) and
let  denote a cell’s column index ( ). Let  denote the read
count of gene  in cell  when profiled using sequencing technology ,
where  refers to the HiSeq 2500 and  refers to the HiSeq
4000. Additionally, let

represent the total read count of gene  in technology  across all other cells
on this plate sharing an index with .

We first consider a null model without swapping where, for cell , the
number of reads mapped to each gene  in the HiSeq 4000 dataset is only
dependent on the number of reads mapped to the same cell in the HiSeq 2500
data. This means that
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 captures both read depth differences as well as any gene specific biases
(e.g., GC content) that may change between the two sequencing machines. 

 represents the residual error.

We also consider an alternative model with a swapping term, where each cell
in the HiSeq 4000 data receives swapped reads from (or transfers swapped
reads to) cells that share exactly one barcode:

 allows the strength of the swapping term to vary between genes, so that
we can determine whether all genes are consistently affected by swapping. 

 represents the pool of available reads from donor libraries that can be
transferred into the recipient library for cell  due to swapping of one
barcode.  represents the pool of reads that can be transferred from the
donor cell  to other recipient libraries. (This represents the “loss” of PCR
duplicate reads due to barcode swapping.)  represents the residual error.

Models  and  are fitted by least squares to high-abundance genes, i.e.,
mean counts greater than 50 across all plates. This focuses on genes that
have sufficient reads for swapping to clearly manifest itself. In contrast, genes
with low or zero counts provide no information about the presence or absence
of swapping. The use of least squares assumes a normal distribution for the
errors, which is reasonable for large Poisson-distributed counts.

For each gene, evidence against  in favour of  is established by
performing an F-test (as the models are nested). The use of the swapping
term significantly improves the model fit to the data when  is favoured over 

. In addition, we expect that , i.e., swapping transfers reads from
donor libraries to recipient libraries. If , the behaviour of swapping is
inverted compared to the other work presented above.

When the model was applied to the Nestorowa dataset, the vast majority of
genes favoured  with , as shown in Supplementary Figure 27.

Supplementary Figure 27: Number of genes where the alternative swapping model ( )
offers a significantly improved fit over the null model ( ) with a positive (blue) or negative
estimate of  (red).

Of all tested genes, 90.5% exhibited a significant improvement in the model fit
with the swapping term (adj. ). Of these significant genes, 97.9%
have a positive value of , supporting the expected barcode swapping model.
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This strongly suggests that barcode swapping is more prevalent on the HiSeq
4000 compared to the HiSeq 2500, and that it affects nearly all tested genes.

As a negative control, we also fitted these models to an experiment
sequenced only on the HiSeq 2500. Specifically, we considered the same
model as described above, but replacing the HiSeq 4000 counts with a
replicate sequencing run of the same multiplexed pool that was also
sequenced on the HiSeq 2500. Here, only 0.099% of genes have a
significantly improved fit with the  term, as there is no increased incidence of
swapping between the two lanes, supporting the robustness of the model
used.

Supplementary Note 5: Droplet-based analyses

Introduction
Recently developed single-cell RNAseq protocols use microfluidic systems to
automate stages of library preparation by capturing individual cells in droplets.
Each run of the microfluidic system generates a sample that typically contains
thousands of cells. These droplet-based protocols label their cells in a different
manner to plate-based assays, as a cell barcode unique to each droplet is
incorporated into the transcript alongside an additional Illumina barcode that
labels different sets of cells (i.e., each set of cells is a single sample in droplet-
based experiments). Swapping of Illumina barcodes will move transcripts
between samples while retaining the same cell identifier (Supplementary
Figure 28).

Supplementary Figure 28: Schematic of the barcoding strategy used in 10X Genomics
experiments. Each captured cDNA contains multiple barcodes, including a 10X-supplied cell-
labelling barcode, a randomly generated unique molecular identifier (UMI), and an Illumina-
supplied sample index. Only the sample index is expected to swap, leaving the cell barcode
and UMI unchanged.

As discussed in the main text, swapping of the sample barcode can have two
effects depending on whether the same cell barcodes are present in both the
donor and recipient samples. If they are, the expression profile for each
shared cell barcode in the recipient sample will become a mixture with the
corresponding profile in the donor sample. This is equivalent to the effect in
plate-based assays, as discussed above for the Richard and Nestorowa
datasets. Otherwise, artefactual cells may appear in the recipient sample,
corresponding to the swapped-in cell barcodes from the donor sample. This
manifests as an increase in the number of shared cell barcodes between
samples.

Barcode swapping is additionally problematic with UMI data where multiple
reads for the same captured cDNA molecule are collapsed into a single UMI
count. Even a very small number of swapped reads for a molecule will
constitute a single count in the recipient sample. This means that the
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contribution of a few swapped reads will be the same as the contribution of a
molecule that is sequenced hundreds or thousands of times in its sample of
origin. In this manner, the effect of barcode swapping on the recipient
expression profile is effectively inflated in UMI data compared to read count
data.

Shared cell barcodes between multiplexed samples

Description of the null model
Here, we investigate whether swapping of the sample barcode causes an
excess of cell barcode sharing between multiplexed droplet-based scRNA-seq
samples. Assuming that cell barcodes are drawn at random for each sample,
we can formulate a null model for the proportion of shared cell barcodes
between two samples.

We used data generated from the 10X Chromium system, where there are
“approximately 750,000” unique cell barcodes (Zheng et al. 2017). Specifically,
utilisation of CellRanger returns a raw count matrix of 737,280 columns as
output for each sample. This does not include any cell filtering. We therefore
consider this value as the total number of cell barcodes . For samples 1 and
2, we have  and  cell barcodes, respectively, that have been called as
cells. We further denote the number of shared cell barcodes observed
between samples 1 and 2 as .

Under the null hypothesis (i.e., no barcode swapping between samples), cell
barcodes are drawn independently in each sample. In this case, the number of
shared cell barcodes between samples should follow a hypergeometric
distribution. This is based on randomly drawing  cell barcodes from the total
set of  cell barcodes without replacement. The number of successes is
defined as the number of drawn cell barcodes that are also in the set of  cell
barcodes called in sample 1.

We use this distribution to compute a -value for the observed , i.e., how
often would we expect to see a result as or more extreme ( ) given random
drawing of cell barcodes from the pool? This is repeated for every pair of
samples to examine all possible swapping relationships.

Dataset 1 on the HiSeq 2500
Here, droplet data was generated from mouse embryonic cells using the 10X
Genomics Chromium system and sequenced using a HiSeq 2500 machine. 11
samples were multiplexed, varying in size between 3776 and 313 called cells.
CellRanger 1.3.1 was used for sample processing with default arguments.
Supplementary Figure 29 shows p-values from the hypergeometric tests
between every pair of samples.
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Supplementary Figure 29: Histogram of p-values for cell barcode sharing between all pairs of
10X samples in dataset 1, sequenced on the HiSeq 2500.

None of the p-values for any comparison were significant after FDR correction
at any significance level (all adj. p-values equal to 1). Thus, we do not observe
any excess of sharing in this data, consistent with the low swapping fraction on
the HiSeq 2500.

Dataset 2 on the HiSeq 2500
We repeated our analysis on another dataset involving mouse epithelial cells,
processed using the 10X Chromium system and sequenced on a HiSeq 2500.
CellRanger 1.2.1 was used for data processing with default arguments. The
six samples range in size between 1102 and 135 called cells. Two samples
were excluded from analysis here due to failed library preparation. Only 2 cell
barcodes were shared between samples, so p-values are almost universally 1
(Supplementary Figure 30). Again, there is no excess of barcode sharing.

Supplementary Figure 30: Histogram of p-values for cell barcode sharing between all pairs of
10X samples in dataset 2, sequenced on the HiSeq 2500.

Dataset 2 on the HiSeq 4000
The same mouse epithelial cell dataset (Dataset 2, above) was also
sequenced on the HiSeq 4000. In this data, the six samples range in size
between 1111 and 151 called cells. Two samples were again excluded from
analysis here due to failed library preparation. Here we observe low p-values
in all pairwise comparisons (Supplementary Figure 31), consistent with
increased barcode swapping on the HiSeq 4000.



Supplementary Figure 31: Histogram of p-values for cell barcode sharing between all pairs of
10X samples in dataset 2, sequenced on the HiSeq 4000. Note that the x-axis scale differs
from the previous histograms.

Despite this, the absolute rate of cell barcode sharing is still low. Of 2950
barcodes, only 10 cell barcodes occur more than once across all samples in
this dataset.

Dataset 3 on the HiSeq 4000
This dataset contains four samples of human xenograft cells, generated using
the 10X Genomics Chromium system. Libraries were sequenced on a HiSeq
4000, and data was processed using CellRanger 1.3.1 using default
arguments. Samples varied in size between 4608 and 1462 called cells. Of the
9621 cell barcodes, 16 were observed twice, with none observed three times
or more.

Supplementary Figure 32 shows p-values from the hypergeometric tests
between every pair of samples. One pairwise comparison contains a
significant excess of sharing after FDR correction (adj. p-value of 0.0594). In
this comparison, 9 cell barcodes were shared compared to an expected value
of 3.45 for samples of size 1771 and 1462.

Supplementary Figure 32: Histogram of p-values for cell barcode sharing between all pairs of
10X samples in dataset 3, sequenced on the HiSeq 4000.

In both HiSeq 4000 datasets, we observe excess sharing of cell barcodes
between samples. However, the actual number of shared cell barcodes
remains low. We hypothesise that, due to the low rate of barcode swapping,



swapped-in cell libraries (i.e., the potentially artefactual libraries) in the
recipient samples are very small compared to the libraries of real cells. As a
result, the swapped-in libraries are mostly discarded by cell-calling algorithms
that distinguish cell-containing and empty droplets based on their library sizes.
This suggests that droplet data has an intrinsic robustness to the generation of
artefactual cells, at least when samples are of high quality and contain cells of
comparable size.

Artefactual cells appear due to barcode swapping in
compromised samples
In one experiment, we sequenced the transcriptomes of cells from four
different experimental conditions (A-D), using two biological replicates for each
condition (1-2).

Supplementary Figure 33 shows a t-SNE plot for the cell transcriptomes after
application of a typical scRNA-seq analysis pipeline. Clusters were identified
using the Louvain clustering algorithm on a shared nearest neighbour graph
(Xu and Su 2015) considering the 10 nearest neighbours per cell.

Supplementary Figure 33: t-SNE of cell transcriptomes in a 10X experiment sequenced on
the HiSeq 4000. Each point represents a cell and is coloured by sample (top) or cluster
(bottom).



This appears to show unique populations of cells for each experimental
condition. Upon closer inspection, we found that samples B1 and B2 contained
cells with considerably smaller library sizes (Supplementary Figure 34).
Importantly, we observed that B1 and B2 shared almost all of their cell
barcodes with each other and with other samples that were multiplexed with
them (Supplementary Figure 35). This behaviour is clearly unusual.
(Accordingly, samples B1 and B2 were excluded from the earlier analyses in
Supplementary Figures 30 and 31.)

Supplementary Figure 34: Distribution of UMI count across all cell barcodes in each 10X
sample. Only cell barcodes that were detected by CellRanger as cell-containing droplets are
shown.

Supplementary Figure 35: Number of cell barcodes in each sample that are also present in
both samples B1 and B2. The number of cell barcodes in each sample that are not present in
both B1 and B2 is also shown.

We hypothesized that the cells in samples B1 and B2 were damaged prior to
or during library preparation in the 10X Chromium system. This resulted in the
very small library sizes observed for cells in these samples, as the actual
amount of input RNA in each droplet was very low. Because the real cell
libraries in the B samples were very small, barcode swapping from other
samples generated artefactual libraries that were large relative to the real
cells. These swapped libraries were subsequently called as cells by the
CellRanger software, despite being derived purely from other samples. This is
supported by the excessive sharing of barcodes between the two B samples
and with the other high-quality samples.



Why have these small libraries been called as cells? This is due to
CellRanger’s cell calling algorithm, which defines cells as all barcodes with a
total UMI count greater than or equal to 10% of the 99th percentile of the
expected number of recovered cells (Zheng et al. 2017) (this is the case as of
Cellranger 2.1.0, the latest version at time of writing). If the 99th percentile is
low, many barcodes with low library sizes will be called as cells, regardless of
whether the corresponding libraries are noisy, of poor quality, or derived from
swapping. This is illustrated in Supplementary Figure 36, where the rapid
drop-off in library size for sample B1 results in a smaller value for the 99th
percentile (assuming that we expect to obtain around 2000 cells) compared to
another sample.

Supplementary Figure 36: Total number of UMIs in each cell barcode for samples B1 and
C2, in decreasing order for the top 500 barcodes.

Finally, not all barcodes from high-quality samples are observed in the poor
quality B samples. What may drive a barcode’s presence or absence?
Consider differences in library size: a large barcode library has more total
cDNA in the sequencer, and will therefore contribute more swapped reads to
other samples. Conversely, a smaller library will contribute fewer swapped
reads. Therefore, when calling cells based on size, we would be more likely to
call an artefactual cell generated by swapping from a large library.

Based on this reasoning, barcodes from high-quality samples that are also
called as cells in the B samples should have larger libraries than other
barcodes that are present in only the high-quality samples. Indeed,
Supplementary Figure 37 demonstrates that shared-barcode libraries do have
significantly more molecules (p = 9.96e-259, with a ratio of 2.2 between the
medians). This confirms that the cells called in B are largely derived from
swapping artefacts.



Supplementary Figure 37: Library sizes of cell barcodes in high-quality samples that are
shared with B1/B2 (“Shared cell barcode”) or not (“Unique cell barcode”). Dots represent cell
barcodes that are more than 1.5 interquartile ranges from the edges of each box.

Given this, one might expect the swapped libraries to cluster with the cell
populations from which these libraries truly derived. However, this is clearly
not the case. We hypothesise that this is due to the presence of cell types
specific to samples B1 and B2 that are lysed during sample preparation. Their
RNA is subsequently released into solution and captured in cell-free droplets
that share a cell barcode with the swapped artefactual cells from other
samples. The expression of one such gene is shown in Supplementary Figure
38.

Supplementary Figure 38: Violin plot of gene expression in the called cells from each
sample.

To confirm that barcode swapping was driving this behaviour, we resequenced
the libraries on HiSeq 2500. This resulted in the loss of many called cells from
samples B1 and B2 (Supplementary Figure 39), consistent with the generation
of artefactual cells due to swapping on the HiSeq 4000. By comparison, cell
numbers for the other samples are largely unaffected.



Supplementary Figure 39: Number of called cells in each sample in the HiSeq 4000 dataset
and in the resequenced HiSeq 2500 dataset.

A t-SNE of the transcriptomes in the HiSeq 2500 dataset is shown in
Supplementary Figure 40. We note that the number of cells remaining in
samples B1 and B2 is comparable to that in the other samples. This is likely
due to the previously described problems with the 99th percentile calling
strategy.

Supplementary Figure 40: t-SNE of cell transcriptomes in a 10X experiment resequenced on
the HiSeq 2500. Each point represents a cell and is coloured by sample.

This dataset is a particularly egregious example of the misleading effects of
barcode swapping. Without an inspection of barcode sharing between
samples, we might have concluded that a separate cell population was
present in samples B1 and B2 (Supplementary Figure 33). This would be
incorrect as there are, in fact, very few genuine cells in those samples. Even in
more typical datasets, similar problems may arise due to differences in capture
efficiency or RNA content between cells. Swapping from a high-cDNA library in
a donor sample will generate an artefactual library in a recipient sample that is
indistinguishable from a low-cDNA library generated from a real cell. This
makes it difficult to be certain that cells actually exist in their labelled sample.

Supplementary Note 6: Removing barcode-



swapped artefacts from droplet data

Cell exclusion
We recommend testing for the degree of cell barcode sharing between
samples as a standard quality control step in droplet-based single-cell
experiments. The method we have presented above (a hypergeometric test on
pairwise comparisons) is quick and easy to apply.

If problems with barcode swapping are observed, the easiest solution is to
remove any cells labelled with a barcode that exists in more than one
sample in each multiplexed sequencing run. This procedure will remove
the artefacts, regardless of whether the cells truly exist in both samples (which
will cause transcriptome mixing) or whether artefactual cells are being created.
The cost of such a procedure will be the loss of some genuine cells for
downstream analysis, even in the absence of swapping.

We have run simulations to understand how much data are discarded by
excluding shared cell barcodes, even in a perfect experiment (i.e., without any
swapping). We consider a simulated experiment where 8 samples are
multiplexed together. Each sample consists of an equal number of cells ,
whose barcodes are drawn at random with replacement from 10X’s set of
737,280. Barcodes are drawn with replacement, as the pool of 10X gel beads
does not contain exactly one of each barcode. Drawing of barcodes is
independent between samples, assuming no creation of artefactual cells due
to swapping. Barcodes are then marked for exclusion if they are observed in
more than one of the eight samples. For each , we consider the mean of 100
simulations.

Supplementary Figure 41 shows the rate of cell removal for different values of 
, and different numbers of multiplexed samples. The expected rate of

removal is low (< 5%) at low  with few samples, corresponding to a small
experiment. In such cases, cell exclusion is a simple and effective strategy for
removing swapping artifacts without discarding much data. However, it is not
suitable for datasets with many ( ) cells per sample, where the
expected rate of removal rapidly increases. Similarly, it should not be used in
cases where many samples are multiplexed for sequencing, which will also
increase the exclusion rate and lead to unnecessary loss of data.
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Supplementary Figure 41: Percentage of cell barcodes that are incorrectly discarded by a
cell exclusion approach, irrespective of barcode swapping. This is based on simulated data
for an experiment containing either 5, 15, or 30 multiplexed 10X samples each containing the
same number of cells. The real exclusion rate is likely to be larger than these values, as
artefactual cells due to barcode swapping are not considered here.

Molecule exclusion

Background
A more precise solution for removing swapping effects focuses on the cDNA
molecules themselves. In a 10X Genomics single-cell experiment, transcripts
are generated that contain:

An Illumina sample barcode
A cell barcode, drawn from a pool of 737,280
A unique molecular identifier (UMI): a 10 bp random sequence, providing
1,048,576 combinations
Gene sequence from the captured mRNA

The chance of observing a read in two different samples with the combination
of same cell barcode, UMI, and gene alignment is extremely low, due to the
large amount of combinatorial complexity. We therefore assume that all reads
with the same combination are derived from a single original molecule.

We first considered the mouse epithelial cells sequenced on the HiSeq 4000
(i.e., dataset 2). We identified reads with the same combination of UMI, cell
barcode and gene across all samples. For each combination, we calculated
the fraction of all reads that were observed in each sample, and obtained the
largest read fraction across all samples. Supplementary Figure 42 shows the
distribution of largest read fractions for all combinations that contain reads in
multiple samples.

Supplementary Figure 42: Distribution of the largest read fractions for all combinations that
are present in multiple samples in dataset 2, sequenced on the HiSeq 4000. Combinations
where all reads existed in one sample are not considered here.

The periodic spikes in density at particular values are driven by the
discreteness of count data. Three of these are annotated - a largest read
fraction of 0.5 may indicate molecules with one read in each of two samples; a
value of 0.66 indicates molecules with two reads in one sample, and one in



another, and so on. The greatest density is observed at values close to 1. This
represents combinations where the vast majority of reads are allocated to a
single sample, presumably the sample of origin.

We can visualize the high density at large values with a cumulative distribution
function (Supplementary Figure 43). Over 80% of swapped molecules have a
largest read fraction of above 0.8, and over 60% above 0.9.

Supplementary Figure 43: Cumulative distribution of the largest read fraction for all
combinations that are present in multiple samples in dataset 2, sequenced on the HiSeq
4000.

As a negative control, the same libraries were re-sequenced on the HiSeq
2500. Supplementary Table 1 presents summary values for the two sets of
data. Note that many fewer molecules are swapped on the HiSeq 2500.

Supplementary Table 1: Library summary statistics. The swapped fraction is defined as the fraction of
molecules (identical UMI, cell barcode, aligned gene) observed in more than one sample.

Reads Molecules Swapped fraction

Hiseq4000 626,168,518 53,636,695 0.071033

HiSeq2500 268,768,037 44,062,616 0.000487

Supplementary Figures 44 and 45 overlay the HiSeq 2500 data over the
HiSeq 4000 data.



Supplementary Figure 44: Distribution of the largest read fractions for all combinations that
are present in multiple samples in dataset 2, sequenced on the HiSeq 4000 (black) or HiSeq
2500 (red).

Supplementary Figure 45: Cumulative distribution of the largest read fraction for all
combinations that are present in multiple samples in dataset 2, sequenced on the HiSeq
4000 (black) or HiSeq 2500 (red).

Description of the method
We have implemented an algorithm to exclude molecules that were swapped
between single-cell 10X Genomics libraries in the DropletUtils
(http://bioconductor.org/packages/DropletUtils) package. We perform the
following steps:

1. Identify reads that are present in two or more different samples, yet
contain the same combination of cell barcode, UMI, and aligned gene.

2. For each combination, calculate the fraction of all reads that was
observed in each sample.

3. If the reads derive mostly from a single sample (largest read fraction 
0.8), this sample is assumed to be the sample of origin, and reads in all
other samples are assumed to be generated by swapping. Thus, we
exclude this combination from the UMI count in all samples other than
the sample of origin.

4. If the reads are relatively evenly spread across samples (largest read
fraction  0.8), we cannot reliably identify the sample of origin. We
therefore remove the combination from the UMI count in all samples.

Using this method, we excluded 0.715% of molecules in the HiSeq 4000 data.

Testing the method on real data
To test the effect of molecule exclusion on the data, we called cells from the
processed and raw count matrices. If we successfully removed swapped
reads, we should eliminate the artefactual cells that we identified in Samples
B1 and B2 above (see section 4.4, Artefactual cells due to barcode
swapping in compromised samples). We used the emptyDrops  function
from the DropletUtils (https://github.com/MarioniLab/DropletUtils) package to
detect cells, specifiying an FDR threshold of 1% and a minimum library size of
1000 molecules. This method tests whether the expression profile for a cell
barcode is significantly different from the pool of background RNA, to
distinguish cell-containing and empty droplets. Importantly, this method will not
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be affected by the 99th percentile effects described in Supplementary Figure
36. The results of cell calling are shown in Supplementary Table 2 and
visualized in Supplementary Figure 46.

Supplementary Table 2: Number of cells called before and after swapped molecule processing.

Sample Cells called (all molecules) Cells called (unswapped molecules)

C1 644 638

A2 473 458

D2 161 143

A1 347 336

B2 283 13

B1 312 11

C2 1229 1212

D1 555 536

Supplementary Figure 46: Number of cells called in each sample of dataset 2 (sequenced on
the HiSeq 4000) before and after swapped molecule removal. Note that the number of called
cells is different to those shown earlier in this document, as this figure uses emptyDrops
while the earlier figures use the CellRanger algorithm.

Our molecule exclusion method successfully removes the artefactual cells in
B1 and B2. This suggests that, once swapped molecules are removed, the
barcode libraries return to their background-like appearance and are correctly
discarded by emptyDrops .

Molecule-based exclusion is preferable to cell-based exclusion, which would
have resulted in the loss of all barcodes shared between B1/B2 and the other
samples. However, our method still resulted in the loss of 86 cells from the
other samples (2.52% of pre-correction cells). This is due to the removal of
swapping contributions that inflate the total UMI count and encourage
detection of potentially spurious cells. (Remember that, regardless of the
number of reads, each combination will still contribute a single UMI count to a
sample.)



As previously mentioned, CellRanger will always call some barcodes as cells,
regardless of whether they are derived from swapping (again, as of at least
version 2.1.0). As such, CellRanger fails to eliminate the artefactual cells in
samples B1 and B2, even after we have removed the swapped transcripts
(Supplementary Figure 47). We therefore recommend emptyDrops  for cell
calling, as it is more suitable for use with our molecule exclusion approach.

Supplementary Figure 47: Number of cells called in each sample of dataset 2 (sequenced on
the HiSeq 4000) before and after swapped molecule removal, using the CellRanger
algorithm for cell calling.

Testing the method on independent experiments
Finally, we applied our molecule exclusion method on two different datasets
that were processed and sequenced separately. We do this as a test on the
precision as the method: with two completely separate experiments there is no
swapping, and therefore we should observe no or very few molecules sharing
UMI, aligned gene, and cell barcode between the two datasets. We used the
HiSeq 2500 dataset described previously in the section Artefactual cells
appear due to barcode swapping in compromised samples, termed
Experiment A, and a complete replicate of the same experiment that was
processed and sequenced (again on the HiSeq 2500) at a later date, termed
Experiment B. Dataset B is the same data that was analysed in Bach et al.
(2017). A summary of the two experiments is shown in Supplementary Table 3,
highlighting the number of reads generated in each experiment and the
fraction of molecules within each experiment that were deemed to have
swapped (according to our method).

Supplementary Table 3: Summary of the two different experiments.

Metric Experiment.A Experiment.B

Number of molecules 44062616 241978544

Number of swapped molecules 26105 46211

Swapped fraction 0.0592% 0.0191%

We then applied our molecule exclusion method to identity the UMI-gene-cell
barcode combinations that were present in both of these two experiments, as
if they were each a single sample in a multiplexed experiment. Only 688
combinations were observed in both datasets (0.000241% of all observed
combinations), which is considerably fewer than the number of swapped



molecules observed within the truly multiplexed samples in each experiment
(Supplementary Table 3). This demonstrates the specificity of our molecule
exclusion method for removing swapping artefacts in 10X data.

Using this framework, we can estimate a swapping fraction for this 10X data
by considering the fraction of all reads that we deem to have swapped. Our
swap-identification method provides a swapping fraction of 0.978% on the
HiSeq 4000, and 0.0139% on the HiSeq 2500. This is comparable to the
swapping fraction we estimated for Smart-seq2 data, with a modest
discrepency attributable to differences between the assays (Costello et al.
2017). Consistent with our previous results, we observe an order of magnitude
difference between swapping fractions on each technology.

Note that this swapped fraction is harder to interpret than the fractions for plate
based data for a number of reasons:

As previously mentioned, a swapped read does not necessarily find
itself in the library of another cell. Instead, it may result in the generation
of a new artefactual cell library. This complicates interpretation of the
effects of a given swapping fraction.

The 10X swapped fraction estimate relies on our sample-of-origin
identification procedure (i.e. fraction of reads  80%). Molecules without
a clear sample-of-origin are all considered to be swapped, which yields
inaccurate estimates of the swapped fraction.

Each 10X sample is actually labelled by a mixture of four sample
barcodes. We have only considered swapping between samples, not the
swapping of individual barcodes. This is therefore not an estimate of the
molecular swapping rate

Supplementary Note 7: Experimental solutions
for barcode swapping
One proposed solution for the swapping problem are unique-at-both-ends
indices. In these experiments, a cDNA molecule in a given cell’s library is
indexed with a unique barcode at each end. These barcodes are never reused
for any other cell library in the same multiplexed set. A single barcode swap
therefore moves a sequencing read into an unused barcode combination, not
into another cell library. This is an effective solution for the multiplexing of a
relatively low number of libraries for sequencing (e.g., Nugen provide sets of
96 pairs of indexes (https://www.nugen.com/content/nugen-introduces-unique-
indexing-solutions-illumina’s-high-capacity-sequencing-platforms)).

However, for single-cell RNA-seq, it may be desirable to sequence many
hundreds of multiplexed samples (i.e., cells) together, particularly as
sequencing facilities transition towards the use of higher-throughput machines.
Use of unique-at-both-ends indices may not be feasible in these experiments,
because of the loss of combinatorial complexity provided by the reuse of
barcodes in a multiplexed set of libraries. Consider the situation where we
have  unique barcode sequences. If barcodes are reused between cells in
unique combinations, the maximum number of samples that can be
multiplexed together is:

≥

ζ

,
2

https://www.nugen.com/content/nugen-introduces-unique-indexing-solutions-illumina%E2%80%99s-high-capacity-sequencing-platforms


assuming that  barcodes are exclusively used for 5’ or 3’ indexing. In
contrast, the maximum number of combinations for unique-at-both-ends
indexing is:

Clearly, unique-at-both-ends indexing severely restricts the throughput of
multiplexing strategies.

In practice, barcodes are often used in a 96-well plate (of dimension 12 x 8).
For every additional 20 barcodes that are available, assume that 8 are used to
index rows (say, 5’ indexing), and 12 are used to index columns (3’ indexing).
Here, the number of possible barcode combinations is:

Again, this approach allows the multiplexing of very many more samples than
unique-at-both-ends approaches. The difference in scaling of these values is
illustrated in Supplementary Figure 48.

Supplementary Figure 48: Maximum number of libraries that can be multiplexed under
different labelling schemes, as a function of the number of available barcodes.

Use of unique-at-both-ends barcoding is particularly problematic for methods
such as sci-Seq (Cao et al. 2017), where the reuse of barcodes between cells
generates the combinatorial complexity that allows massively high-throughput
generation of cell libraries. Additionally, the use of droplet-based protocols
(e.g. 10X Genomics) is increasingly popular. In these experiments, samples
are labelled with a single index, and so are not compatible with the unique-at-
both-ends indexing approach.

While we would encourage the use of experimental designs with unique-at-
both-ends indexing where possible, it is clearly not a suitable approach for all
experiments. This motivates our development of computational methods to
address barcode swapping, particularly for droplet-based scRNA-seq data.

Supplementary Note 8: Manuscript figures
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Larger versions of the figures used in the manuscript that were generated
using R are present below.

Supplementary Figure 2b

Supplementary Figure 2c



Supplementary Figure 2

Supplementary Figure 3a

Supplementary Figure 3c



Supplementary Figure 3d

Supplementary Figure 3
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