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Appendix S1: MetaCell - Correcting and clustering single cell RNA-seq 

data using k-nn graph covering  

 

Summary 

Single cell RNA-seq (scRNA-seq) experiments probe the distributions of cellular 

mRNA in complex cell populations by implementing massively parallel schemes for 

sampling cells from tissues and molecules from cells. We describe a general 

computational methodology for analyzing scRNA-seq datasets by covering single 

cells cohorts with metacells, which are constructed as coherent and homogeneous 

groups of cells for use in downstream analysis. We show how to apply metacell 

covers for identification and removal of batch effects, ambient noise, and doublets. 

We also develop a bootstrap strategy for detecting robust clusters in the data through 

resampling and metacell cover, and a technique to derive 2D projections of scRNA 

data by drawing the metacells graph and overlaying cells over it. Metacells thereby 

facilitate a non-parametric pre-processing of scRNA-seq datasets, simplifying 

statistical analyses and downstream modeling of complex regulatory phenomena. 

We envisage that this approach will become increasingly effective as datasets scale 

from hundreds to millions of cells and metacells become increasingly precise.  

 

 

 

 

 

 

 

INTRODUCTION 

Single cell RNA-seq (scRNA-seq) is facilitating massively parallel acquisition of 

transcriptional profiles from heterogeneous cell populations. The derived cohorts of 

single cell profiles are analyzed in order to detect cell types, cell sub-types and 

continuous gene expression gradients. These phenomenological observations may 

be linked with different types of dynamics, including development and differentiation, 

cell cycle, response to stimuli and more1–8 (reviewed in 9). A key challenge in the 

analysis of scRNA-seq data is the discrete, sparse and variable nature of the cellular 

mRNA molecule census. In mammals, a total of 104-106 copies of mRNA represent 

over 20,000 potential transcripts and these transcripts show over four orders of 

magnitude variation in abundance between highly expressed (tens of thousands of 

molecules per cell) and lowly expressed (less than 1 molecule per cell) genes. The 
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scRNA-seq experimental procedure further samples these mRNA distributions to 

provide typically 10,000 unique molecule identifiers (UMI) per cell, but less than 1000 

molecules for many important populations of small cells. Moreover, even mRNA 

species that are sampled less than 0.1 times on average per cell (within a certain cell 

population) may represent an overall transcriptional output that sustains functional 

levels of key proteins. scRNA-seq analysis is therefore fundamentally different from 

classical gene expression analysis, and relies on inference of molecular behaviors 

based on a large number of partial observations rather than direct comparison of 

(perhaps noisy or biased, but otherwise comprehensive) profiles. 

 

The combination of discrete and sparse scRNA profiles, a poorly characterized 

biological distribution of transcription states in single cells, and multiple sources of 

experimental error and bias are together challenging the classical serial pipeline 

approach for analyzing gene expression data. In particular, it is difficult to implement 

effective filtering of low-level sources of technical noise in order to produce data with 

guaranteed high quality for downstream high-level analysis (identify clusters, infer 

dynamics, or test gene regulatory hypotheses). Conversely, it is difficult to analyze 

the results of these high-level analyses without revisiting potential sources of low-

level noise in the data. A series of computational and experimental advances were 

introduced to meet those challenges in recent years10–22, but effective and robust 

analysis of complex scRNA-seq data still involve substantial efforts by both 

computational and domain experts. 

 

Here we report on a set of computational tools that we developed to study complex 

scRNA-seq data. Our approach includes procedures for selecting informative genes, 

filtering background noise and outliers, clustering, and visualization. At the core of all 

these procedures are algorithms for covering the single cell dataset with metacells. A 

metacell is defined as a group of cells that are similar to each other given some 

simplified parametric hypothesis on cellular RNA distribution (e.g. assuming molecule 

counts are sampled from a multinomial sample), and that for a dense subgraph in a 

K-nn regularized similarity graph constructed over all cells. Each metacell pools 

together data from dozens to hundreds of cells, thereby allowing for accurate intra-

metacell inference of expression. Metacells can therefore be viewed as an 

approximation for the entire dataset. Locally, the expression within each metacell is 

modeled using a multinomial or other simple family of distributions that assume 

(precise or approximated) conditional independence among genes. Globally, the 

complex expression landscape is piecewise approximated in a non-parametric 
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fashion where cells are assumed conditionally independent given their metacell 

associations. Using metacells as approximations for the data, we can derive simple 

strategies for handling noise and bias. We can also use metacells as a basis for 

deriving cell clusters and assessing their robustness.  

 

Most of the ideas we introduce and use below are present in some of the recent 

literature on scRNA-seq analysis, but we believe that the details of our 

implementation and, in particular, the native handling of scRNA-seq data as 

multinomial samples from limited RNA pool are advantageous in practice. We 

demonstrate the computational principles discussed below by analyzing a data set 

including 8,500 peripheral blood cells (10X genomics) which represent a mixture of 

several blood cell types and was used before to illustrate scRNA-seq analysis. 

 

METHODS AND RESULTS 

Notation and pre-processing. We assume raw reads are mapped to genome 

sequences and assigned to cell barcodes and unique molecular identifiers (UMI) 

using robust pipelines that eliminate most of the UMI duplications induced by PCR 

and sequencing errors. We summarize all UMIs in the molecule count matrix � =
[���] on genes � ∈ 
  and cells � ∈ � .  Each cell may be associated with a batch 

identifier, that we represent using a vector 
� over the cells. 

We assume a set of gene features F ⊆ G is specified and focus our analysis of some 

normalized form of the features for each cell. This allow very direct statistical and 

biological interpretation of the molecule distribution per gene feature, while of course 

requiring us to work over a feature space in high dimension.  

For simplicity, we use the following conventions on matrices: Given a matrix � = ����� 
we denote marginalization over rows as �� and columns as ��. For example, �� is the 

total molecule count for gene g on the raw count matrix, and �� is the total number of 

molecule for a cell (sometime referred to as the cell’s depth, or the cell’s complexity). 

To define matrix multiplication, we use implicit summation over shared indices  �� =
[��� + 
��]. We also freely employ matrix subsetting. Given any subset of indices I’ in 

I, we denote by  �[��, ] = ��������∈��. 
The procedures below are designed to robustly define a metacell structure while 

filtering outliers and noisy cells, and we are therefore not assuming the count matrix 

to be completely devoid of problematic profiles (e.g. as those originating from empty 

wells or droplets). Nevertheless, we implicitly assume that the fraction of completely 
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noisy profiles is relatively low, and some initial threshold of minimal cell UMI count 

must be employed. 

Minimal cell filtering is applied at this initial phase. Cells representing empty 

wells/droplets, noisy wells/droplets or doublets are further analyzed and corrected 

downstream, based on richer models of the multivariate single cells gene expression 

distributions obtained once initial metacells are derived. Similarly, explicit 

normalization of cell depth is deferred to later stages, to allow downstream 

consideration of cell types with different depth distributions and minimize potential 

biases associated with early normalization.  

 

Selection of feature genes. The data matrix � contains a large number of genes 

with variable intensities (typically spanning 3-4 orders of magnitude) and degree of 

cell-to-cell heterogeneity. We select genes for modeling cell-to-cell similarity using a 

combination of several approaches that allow the analyst to determine a suitable 

strategy given the biological question at hand:  

 

- Normalized variance – we define a down-sampling threshold ���  using the 10th 

percentile of the ��	distribution. We then generate a normalized matrix  = �!��� by 

sampling from the list of molecules defined by each column in �[, �� 	" 	���] exactly 

��� molecules without replacement. Rows in the matrix W are defined by their mean 

UMI count #���  and by their variance  $���. The variance is expected to be affected by 

three components. First, since molecules are being sampled from each cell, the 

sampling variance is expected to be in the order of the mean number of sampled 

molecules, with a distribution that follows a binomial model (sampling variance). 

Second, RNA concentrations of a gene within homogeneous cell populations are 

subject to stochastic control that contributes additional variance to our sample 

(stochastic variance). Third, when observing heterogeneous single cell populations, 

genes that are differentially expressed will show additional strong variance 

Figure 1. Gene selection using normalized variance. For 
each gene, we compare the mean UMIs per cell in the 
down-sampled PBMC 8k dataset, to the log ratio between 
variance and mean. Genes with variance that is higher than 
a non-parametric trend line are marked in red, and selected 
as features for downstream analysis. For highly expressed 
genes, the variance is affected by a noticeable component 
of stochastic gene regulation, and it scales faster than the 
mean, requiring an empirical correction rather than a simple 
threshold on the normalized variance. 
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associated with the sampled sub-populations or cell types (regulatory variance). The 

variance in low expression genes (#���  < 1) will be dominated by the sampling 

component, but for genes with higher variance it is difficult to separate stochastic 

from regulatory variance (in fact, stochastic variance can even be regulated in a cell-

type specific fashion). We therefore choose to remove the sampling variance and 

assume in this context that the residual variance is entirely regulatory. We first 

normalize the sampling variance $�� = %&�2 ()*+,-*+,.  and then compute the empirical 

trend $′0#1 using a moving median with a window of 100 genes (using the median of 

the left-most and right most 100 genes for the edges). Finally, we recalibrate 

variance over this trend as $���� = $��� 2 $�3#�4. Genes with $���� " �)5 are selected 

as features, where �)5 = 0.1 by default (Figure 1). 

- Normalized depth scaling. Computing normalized variance forces us to down-

sample the matrix, which is problematic in cases where the 67 distribution is highly 

variable itself. Indeed, in many cases this cell depth distribution can range from a few 

hundreds to over 20,000 molecules. In such cases, we can compute for each gene 

�	the Pearson correlation with the cell depth 8��9 = :&83���, ��4. As genes increase in 

their expression, their correlation with the cell depth will increase, even if their 

expression is completely homogeneous within the population, simply due to the 

decreasing sampling variance of their concentrations. On the other hand, truly 

variable genes will show a lower correlation with the cell depth compared to genes 

with similar expression average. We therefore compute an empirical trend 	83��4 
using the median ;<=> correlation in a moving window of total gene expression, using 

a window of 100 genes. Then, we define the normalized depth scaling as 8�� = 8��9 2
83��4. Finally, we select genes with sufficiently high �� and 8�� ? ��@ (��@ = -0.1 by 

Figure 2. Gene selection using normalized depth 
scaling. For each gene, we compare the total UMIs (in 
log scale) to the Pearson correlation between the gene 
UMI count vector per cell and the total number of UMIs 
per cell (cell depth). Genes that are selected by the 
normalized variance scheme (Figure 1) are highlighted in 
red. Alternatively, we can select genes based on the 
reduction in size correlation compared to the global trend 
depicted here. Note the imperfect consistency between 
gene selection using variance and using depth 
correlation. The main cause for discrepancies is statistical 
linkage between cell size and UMI count, and between 
cell size and cell type, which make the depth scaling gene 
selection scheme biased against genes marking large cell 
types. Selection using variance is however biased against 
small cell types, since molecule down-sampling must be 
used for balancing the sampling variance across different 
single cells. 
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default). We note that there are datasets in which specific biological populations are 

characterized by larger cells and higher depth, which may result in high 8’ values for 

important genes. The analyst must make a decision on how to balance gene 

selection using variance and depth scaling depending on the biological application 

(Figure 2). 

 

- Batch features elimination. Optionally, we can filter genes that are differentially 

expressed between batches at the initial feature selection phase. One approach for 

detecting such genes is to perform chi square test on the table of total UMI count per 

gene per batch, and total UMI count per all genes per batch and manually review the 

list of genes detected as biased. It should be noted that in many applications, such 

early batch correction is inappropriate, since one cannot assume batches are 

reproducing the same cell type compositions precisely. We therefore recommend 

addressing batch biases in later stages of the algorithm (see below). 

 

- Blacklisting. We can define a list of genes (or putative transcripts) that are excluded 

from the candidate gene features, based on prior knowledge associating them with 

technical noise, or biological processes that are not at the primary focus of the 

analysis (e.g. stress or cell cycle). 

 

The above metrics allow us to identify a subset of the genes B that will subsequently 

be used to define similarities between cells and group them into metacells. We 

suggest that the feature selection process should be optimized and adapted to the 

biological question at hand, since the distinction between “interesting” and “less 

interesting” sources of variation in the data is hard to define without a biological 

context.  

 

Feature normalization and raw similarity matrix. We transform the raw UMI count 

�  on the gene features B  as C = �D��� = [%&�E3F + ���1��∈G .  The parameter F  is 

discussed below. We then compute the raw similarity matrix using Pearson 

correlations on the transformed features H = �83D��, D��4��� . We motivate this 

approach as follows: Two similar cells are ideally generated from the same 

probabilistic model that is defined by a log-normal distribution of concentrations for 

each gene. For simplicity we assume constant variance and variable mean for all 

genes. To sample single cell profiles from this model, we first draw from the log-

normal distributions to generate a multinomial parameters for each cell, and then 
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sample �� and �� molecules from these models respectively. Conversely, given data 

��� the Bayesian estimate for the multinomial parameter with a uniform prior is ��� +
F, and the log likelihood of ��� + F given the multinomial estimate on I and a log-

normal model with constant variance is up to a constant ∑ 0log3��� + F4 2�
log3��� + F41E. To determine the prior, we note that the posterior estimate of the 

mean expression level of a gene given 0, 1 or 2 sampled molecules will scale like 

log0F1 , log0F + 11 , log0F + 21 suggesting calibration of F such that log0F + 11 2 log0F1 
and log0F + 21 2 log0F + 11 expresses our belief on the expected fold change in gene 

expression when sampling zero UMI to one UMI, vs. case comparing two UMIs and 

one UMI.  

We note that a variation on the definition of M and R may involve normalizing the � 

matrix to fixed number of molecules per cell through sampling without replacement. 

When avoiding this, it is essential to employ alternative mechanisms that can 

compensate for the higher correlation between cells that are sampled more deeply 

as discussed below.  

 

The metacell balanced K-nn cell similarity graph. Next, based on the raw 

similarity matrix H  we perform a non-parametric transformation and compute N =
�O��� = �8�PQ�38��4�. Here 8�PQ is the ranking function, and each row represents the 

order of similarity between all cells R and a specific cell �. The N matrix is highly non-

symmetric, in particular when the similarities going from an outlier cell are linking it to 

members of a large and homogeneous cell group. In such cases, the outlier cell will 

not be among the most similar cells to any of its own neighbors. To better consider 

such effects, we symmetrize N and balance the resulting matrix through the following 

steps: 

[O��S ] 	= [D�T3UVE 	2 	O�� 	 ∗ 	O��, 04]	 
[O��E ] 	= [D�T3YV 2 8�PQ�0O��S 1	, 04]	 
����� 	= [D�T3V 2 8�PQ�0O��E 1	, 04]	 
Where V is the number of neighbors we aim to add to each node (depending on the 

size of the dataset, this is in the order of 100), � (10 by default) and Y (3 by default) 

are expansion parameters that allow more than K nearest neighbors for each node to 

be initially considered by the balancing process. A weighted directed graph 
  is 

constructed using ����� as the weighted adjacency matrix. The number of outgoing 

edges for each node in 
  is limited by V  and the number of incoming edges is 

bounded by YV. Nodes with lower degrees are however still possible, since outlier 
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cells may become disconnected or poorly connected during the balancing 

operations. 

 

Seeding and optimizing a graph cover. We next wish to cover all cells with disjoint 

and dense subgraphs (or metacells) on sizes that are on a scale of the user-defined 

parameter V used for building the balanced k-NN graph. The V parameter reflects 

our downstream analysis goals – it should allow for a sufficient accuracy for 

estimating the UMI distribution within each metacell, but still provide sufficient 

flexibility to capture multiple sources of variation in the data. Metacells differ 

conceptually from clusters, since there is no attempt to ensure strong separation 

between them but only to maximize their coherence. Our algorithm, which is an 

adaptation of kmeans++ to graphs, starts with a seeding phase that derive an initial 

set of metacells �S ⊂ �, . . , �5 ⊂ � . We denote by \0�1  the set of graphic outgoing 

neighbors of � , and start by defining an empty assignment of cells to metacells 

D:0�1 = 21.  During seeding iterations, we define the set of covered nodes as ] =
{�	|	D:0�1 " 	21}  and the cover-free score for each node is defined as a0�1 	=
	|\0�1– 	]|. We sample seeds as follows: 

 

While max� 	a0�1/V 	" 	O�g#_D�P do: 

    sample a new seed R by drawing a sample from cells in � 2 ] with weights a0�1i 
    update D:0�1 = 	R	a&8	�	 ∈ \0R1 2 ] 

 

When we meet the stop criterion, cells that are not associated with a seed metacell 

(i.e. cells for which D:0�1 = 21) have at most V ∗ O�g#_D�P uncovered neighbors, and 

in particular will almost always has at least one covered neighbor (degree in the 

balanced graph is typically K, although recall it can be smaller).  

 

Next, define the metacell groups C� =	 {�	|	D:0�1 = Q}. The association between a 

cell and a metacell subgraph is based on edges to and from the cell, in a potentially 

non-symmetric fashion. The outgoing weight vector for each cell is defined as 

!&�5 = ∑ ���{�∈	j0�1∩lm} . We define \�n0�1 as the set of incoming neighbors for cell i, 

and the incoming weight vector is set to !��5 = ∑ ���{�∈	jop0�1∩lm} . We score metacell 

association by multiplying these two weights and normalizing by module size, setting 

!�5 = !��5	!&�5/|C�|E . We can now re-assign cells to metacells iteratively until 

convergence:   
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Until convergence: 

 Select a cell i 

 Reassign D:0�1 	= 	�8�D�T5	!�5 

 Update weights 

 

These iterations can be done very efficiently when omitting unnecessary 

recomputation of weights, but the heuristic is not guaranteeing convergence into 

locally optimal metacell assignment (i.e. where all cells are assigned to their 

maximum weight metacell).  We enforce convergence by employing a cooling 

strategy: We define a cooling profile :&&%0:1 = 	1 + D�T00, : 2 :qr@n1 ∗ Q, where by 

default :_
�8P	 = 	10, and Q = 0.05. We record the total number of metacell change 

for each cell as :0�1, and modify the weights of the currently assigned metacell to 

wu,vw0u1 = 3wu,vw0u14xyyz3x0�14	. Using this approach convergence is guaranteed to occur 

after a limited number of iterations. 

 

After convergence, there are no formal guarantees on the size of the metacells 

reported by the algorithm. But, empirically, the seeding process and the connectivity 

of the graph (V  outgoing edges) promote a relatively uniform metacell size and 

prevent convergence toward solutions with very large subgraphs. The algorithm 

convergence may be problematic when a large subset of cells (i.e. larger than V) are 

very homogeneous, which may result in unstable exchange of nodes between 

several modules covering this subset. In such cases, the cooling strategy described 

above forces convergence, but some of the modules derived will need to be grouped 

into more robustly defined clusters in downstream analysis. 

 

Metacell summary statistics. A metacell cover CS, . . C� , . . C5 can be studied as a 

set of meta-transcriptional states by pooling UMI counts: 

��� ={ ���{�∈lm}
 

�� ={���
�

 

More precisely, given general assumptions on transcriptional states as sampling from 

log-normal distributions, and in order to reduce the effect of outliers, we summarize 

metacells using log transform statistics:	
|�� = #T| } 1|C�|{ log	00F + ���1/0F
 + ��11{�∈lm}

~ 
���� = |�� ∗ �� 
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To compare metacell gene expression (Figure 3) we define the log fold change 

enrichment score: 

%a|�� 	= 	%&�E0|��/D#���P�0|��11  

 

Removing background noise using metacells. The UMI distribution represented 

by the matrix U is known to be affected by several sources of noise. A background or 

ambient noise model can be written as: 

��� = 31 2 F�4���@-�z + F�0��
q
\q1 

where 
 is the batch of cell �, ��q  is the total number of molecules observed for the 

gene in the batch, ���@-�z is number of molecules of gene g that were actually sampled 

from cell	�, and F�		is a gene-specific noise parameter. This model assumes that the 

molecules within each cell switch with probability F�	their cellular identity uniformly, 

Figure 3. Meta-cells and their marker genes in the PBMC data. Shown are cells 
(columns), organized into meta-cells (groups of columns), and a set of marker genes (five 
genes with top fold-change in each meta-cell) with their expression footprint across cells. 
Color-coding of the bars at the bottom is based on selected marker genes that are known 
to be associated with specific cell types (Blue – B-cells, Green – Monocyte, Brown – NK 
cells, Orange/Yellow- T cells, Cyan – DCs, Dark green – Sox4 cells). Cells that are part of 
a meta-cell with a mixed expression profile suggestive of doublets are marked by red 
arrows. A cluster of cells/barcodes with high mitochondrial gene expression (and low 
depths) is marked as “bad cells”. See more details on the meta-cell analysis of the PBMC 
dataset below. 
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but only within their batch. Such process may represent amplification and 

sequencing errors of the single cell libraries where barcoded oligonucleotides are 

priming PCR reaction for molecules that were initially labeled by other cell barcodes 

(“PCR recombination”). Different genes have different levels of susceptibility to such 

errors, as determined by their sequence characteristics. Alternatively, this process 

can account for a homogeneous background concentration of RNA molecules. These 

molecules are released from cells into the cell suspension during early processing 

steps and are subsequently labeled and captured as part of the single cell 

sequencing libraries. Given observations �, it is difficult to infer the noise parameters 

ε and to distinguish noise from original molecules. Inference of noise is especially 

difficult when the distribution of gene expression for a gene � is affected by high 

biological variance, since in this case the distribution ���@-�z is determined by many 

parameters and the difference between some inferred ���@-�z and the empirical UMI 

distribution becomes under-determined. The noise signature becomes clearer when 

leveraging metacell assignments, as aggregating cells across metacells stabilizes 

our estimates of the observed and expected-under-noise expression per gene and 

per cell. In this way the information collected across multiple genes and cells and 

stored in the metacell structure can help us estimate in what fraction of cells a given 

gene is spuriously expressed. To implement this idea we first compute the mean per-

cell UMI count for each gene in each batch as: 

#�q = ��
q
Pq 

where ��q is the total UMIs for gene � in batch 
, and Pq is the number of cells in 

batch 
. Our estimate for the expected background count of each gene in each 

metacell is then: 

#�5 = F{#�q0{
q�D�51
�q

 

where F is some initial guess on the noise level, � = [
q�] is the batch association 

matrix, set to 1 if cell �  is in batch 
, and C = [D�5]  is the metacell association 

matrix, defined similarly. The observed number of UMIs in a metacell is: 

&�5 =	{���D�5
�

 

and the deviation of the expression from the background expectation can be 

quantified as (using element-wise arithmetic here): 

g�5 = 0&�5 2 #�51/�#�5 
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We note that in practice we modify the raw U matrix to control the effect of outliers, 

so that ���@-� is used instead of ���	when computing &�D: 

���@-� = D�P0���, �#�q� + 3��#�q�1 
Rounding up is performed in order to consider low UMI count genes conservatively.  

 

We next introduce our main assumption regarding background/ambient expression. 

A gene is considered spuriously expressed if it is expressed in a level no higher than 

the noise prediction in a sufficiently large set of cells. Note that a uniformly expressed 

(i.e. housekeeping) gene is not expected to be expressed at F ∗ �  levels in any 

metacell, unless the expected expression is very small and sampling variance is 

dominating the signal even after pooling in metacells is performed. Specifically, we 

define for each gene the set of metacells that are compatible with the background 

model using the Boolean matrix: 


�:Q�5 = g�5 ? �  (�=2 by default) 

Then we test, for each gene, if the total number of cells with 
�:Q�5 = �H��	is at 

least α of the total number of cells, and if the total number of UMIs for the gene in 

such cells is at most 2 ∗ F ∗ �� . If this is the case, we mark the gene as a valid 

candidate for filtering ambient noise, generating a set 
�y��z�. To perform UMI filtering 

for such genes in practice, we set ��� = 0  for �  in 
�y��z�  and cells contained in 

metacells with 
�:Q�5 = 1. We are however not filtering outlier genes (those with 

���@-� ? ���). 

 

Figure 4. Filtering ambient UMIs. Shown are distributions of mean expression per cell over 
meta-cells for four highly expressed and heterogeneous genes in the PBMC dataset. Using 
the uniform ambient noise model introduced here, we identify clusters that show expression 
of these marker genes at levels consistent with a constant small fraction of the total UMIs 
being distributed uniformly (black colored part of the distribution). The marker UMIs in them 
are removed. This policy leads to simple and reliable filtering for very strong  markers (e.g. 
LYZ, IGKC, with a mean expression on positive meta-cells > 20). Weaker genes (e.g. 
LGALS2 and CD79A) may be more sensitive to such filtering, and in these cases a 
conservative threshold is being used. We note that ambient contamination is of particular 
impact on downstream analysis when analyzing together several batches, each with a 
different mixture of cell states/types. 
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The above procedure is sensitive to the initial parameters used. We use a minimal 

background subpopulation fraction α =1/8. In application to MARS-seq analysis, an 

initial guess of epsilon as F = 0.03 is appropriate. For the PBMC 10x data illustrated 

below, a higher level of noise is observed and we used F = 0.06 (Figure 4). We note 

that setting a higher initial epsilon is not affecting accuracy of filtering for high 

expression noise, but can result in too aggressive filtering in low expression noise. In 

general, cleaning ambient/background UMIs should be approached carefully to 

ensure no additional biases are introduced into the matrix. However, in cases of a 

multi-batch dataset, in which the cell population per batch is variable and contribute 

to variability in the background noise distribution, filtering noise using metacells can 

reduce batch bias without filtering key genes. 

 

Identifying batch-affected genes. Technical batch effects in scRNA data may be 

difficult to characterize when studying multiple samples coming from different 

sources. This is because the cell-type or cell-state composition in each batch may be 

different, representing a biological sample-specific variation that can combine with 

technical biases in ways that are difficult to decouple at the single gene level. 

However, once cells are grouped into metacells we can increase the robustness of 

batch effect estimation by aggregating information across cells within metacells, 

analogously to our strategy for removing background noise. Again � = [
�q] is the 

batch association matrix,	C = [D�5]  is a module association matrix and we compute 

the fraction of each gene in each metacell as:  

a�5 =	{���D�5/�5
�

 

where um is the number of UMIs per metacell. The total number of UMIs per batch 

per metacell is: 

�5q =	{��D5�
�q
�

 

Assuming a null model in which genes are expressed at metacell-specific levels with 

no batch effects, our estimate for the expected number of UMIs per gene per batch 

is: 

#�q ={a�5�5q
5

 

and the observed number is: 

&�q =	{���
�q
�

 

giving a ratio of: 
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8�q = 0&�q + �@-�1/0#�q + �@-�1 
where �@-� is a regularization constant, set to 10 UMIs by default. 

 

Genes with high levels of |%&�23
8�q4|  may be considered for blacklisting during 

feature selection as discussed above. Consideration of batch bias is otherwise done 

as part of downstream analysis, when testing specific hypotheses on gene regulation 

within and between metacells. We generally avoid direct normalization of the sparse 

UMI matrix given the 
8 ratios, to avoid introduction of systematic bias (normalizing 

by constant factors) or additional sampling noise in the � matrix (if sampling the 

batch effects out). 

 

Resampling for detection of robust clusters and filtering poorly clustered cells. 

The greedy graph cover algorithm we outlined above is designed to dissect complex 

single cell populations efficiently, but it provides no guarantees on the robustness of 

the derived metacells. In particular, when aiming to detect strongly separated 

clusters of cells in the data, the grah cover provide us with only building blocks from 

which clusters can be built. To assess metacell robustness we use a bootstrap 

approach, in which we repeatedly compute graph covers for random subsets (e.g. 

75%) of the cells. We summarize the resampled metacells for each cell subset 

sample in matrices � = [&��]  and ] = [:��]   that specify how many times the pair of 

cells �, R were sampled and how many times they were both assigned to the same 

metacell, respectively.  Given any set of metacells  C = [D�5], we can assess the 

consistency of metacell association for a cell �	using the probability of co-clustering � 
with D: 

:�5 = ∑ xo�5��
xo�    

 

here ci is the total number of co-cluster observations for cell �. Given a robust set of 

metacells we expected :�5 values to be close to 1, and we can filter cells with weak 

association to their cluster by setting a minimal threshold on :�5. We note that the 

graph cover algorithm discussed above will split large strong clusters into several 

metacells, decreasing probability of co-clustering for each individual metacell even 

when the set of metacells is highly robust as a group. 

 

We can also rely on the resampling approach for identifying well-separated cell 

clusters. We generate the co-clustering similarity matrix: 

Nqyy� 	= 	]	/	�	 (element-wise division) 
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Figure 5. Assessing meta-cell robustness using resampling. Shown are results from 
500 iterations of resampling 75% of the PBCM data and recomputing graph cover 
solutions. The matrix on the left summarizes for each pair of cells the probability of co-
occurrence in a meta-cell. The matrix on the right shows the correlation between the co-
occurrence vectors of each cell, which can be used to re-cluster cells hierarchically and 
derive cell clusters. In this case, 80 clusters were identified in the data and used for 
visualization and downstream analysis below. 

and use the Pearson correlations between columns in Nqyy� to re-cluster cells in a 

simple hierarchical clustering scheme, or through other standard clustering 

approaches (e.g. louvain modularity). When this approach is used, the final clustering 

resolution depends on user decision since several levels of robust clustering may be 

present in the data. User choice will greatly depend on the biological goals of the 

analysis, since the maximal resolution that is robust given the data is not always the 

resolution most appropriate for further characterization. Figure 5 shows the 

bootstrap co-clustering matrix derived for the PBMC dataset, which we used in order 

to extract 80 robust clusters.  

The non-parametric robustness analysis that we described above can be 

supplemented with a heuristic for filtering cells that are incompatible with their 

metacell’s gene expression signature. This is done by first identifying for each 

metacell the set of enriched genes (
5 	= 	�	 s.t.  a|�5 	" 	2), and then computing 

the distribution of total number of UMIs of genes 
5 in each cell. We divide the 
5 

expression by a the median over all cells, and assign each cell in the metacell with 

an enrichment ratio. Small enrichment ratios are indicative of poor linkage between 

the cell and the metacell transcriptional signature, and can be used for filtering cells 

even when their a-parametric co-clustering score is high. For the PBMC data 

illustrated here we used the hierarchical clustering of the co-clustering bootstrap 

matrix Nqyy� to define 80 clusters. We used these clusters for visualization below. 
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Filtering doublets and outlier cells.  A bootstrap scheme for testing metacell 

robustness does not control for cases where a cell is robustly linked by k-nn 

similarities to a metacell, but also expressed significantly genes that are not 

observed in the other neighboring cells and is therefore violating the rationale 

underlying the metacell concept, aiming at groups of transcriptionally homogeneous 

cells.  Such a scenario can be indicative of rare cell types or subtypes that combine 

with more frequent cell states to form an inappropriately heterogeneous metacell. It 

can also represent cell doublets that become associated with a single barcode due to 

various technical errors. We can search for cellular outliers that do not adhere to their 

metacell’s expression distribution by first estimating the multinomial UMI distribution 

in each metacell: 

|�5 ={���D�5/�5
�

 

here �5  is the total number of molecules in all cells of the metacell, and 

normalization is done per column. We then estimate the expected number of 

molecules per cell and gene, under the null hypotheses of equal expression in all 

cells per metacell: 

#�� = ��{|�5D�5
5

 

and test for outliers using either a regularized Z-score: 

g�� = 0��� 2 #��1/�#�� + 8#�  (e.g., reg=1) 

 

or fold change 

&���� = 0��� + 11/0#�� + 11  
 

The maximum Z score or fold change for each cell can be used to detect significant 

outliers. Figure 6 illustrates outlier detection in the PBMC dataset, using a threshold 

of &���� " 10 , highlighting several cases of likely doublet barcodes merging 

megakaryocytes/platelets with different cell types, rare immunoglobulin patterns and 

several additional outliers. We note that a threshold of 10 fold is used to ensure we 

detect only extreme cases of genes that are highly over-expressed over the expected 

metacell’s expression level, and that we do not aim to enforce a strictly multinomial 

distribution within each metacell in a dataset of only 8,000 cells. As the number of 

cells increase, more rigorous (e.g. lower fold change threshold) testing for outliers 

would become desirable 
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Metacell regularized force directed 2D projection. Large scRNA-seq datasets can 

give rise to complex metacell covers that must be further interrogated for higher 

order structures. Projection of metacells (and the cells belonging to them) in 2D 

space can provide one avenue for exploring the similarities between cells and 

metacells. To derive a metacell 2D projection, we use the balanced similarity graph 
 

and summarize the total number of (unweighted) edges linking metacells : 

� = 
5z = VE
|C5| ∗ |Cz| { ����/V�

{�∈l�,�∈l�}
 

V = D#���P0P51  is a scaling constant. See Figure 7 for an illustration of such 

matrix. 

We normalize B rows and columns: 

Figure 6. Detecting outlier cells. Shown are cells detected as meta-cell outliers (columns) 
and the genes that defined their statistical divergence from the predicted UMI distributions of 
their meta-cell (rows). Cells and genes are clustered hierarchically, but as expected, the 
emerging structure is of multiple combinations of unrelated marker genes, reminiscent of the 
distribution expected from rare doublets. In this case, megakaryocyte-associated genes 
(PF4, PPBP) are frequently co-expressed with markers specific to diverse other cell types 
(e.g. IGKC, S100A9), suggesting doublets are affected by specific cell type tendency to form 
physical pairings. We note that combinations of cell types that are more frequent in the data 
are likely to form their own specific meta-cells, and these “doublet” meta-cells must be 
detected separately and not as individual cells (specific doublet meta-cells that were 
detected manually are highlighted in Figure 3). 
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5 =	∑ 
5zz 
5zyr� = q��q� , 
z =	∑ 
5z5 	,	
5z�n = q��q�  

 

And define the score for connecting two metacells as 
5z� = 
5z�n + 
5zyr�. We retain as 

candidate edges only pairs for which 
’_D%	 " 	�_#��#. We then construct a graph 


l = 0C, �l1 on metacells C=(1,..,m), by adding the D highest scoring candidate 

edges (if such edges exists) for each metacell. Note that any metacell in the graph 

can be completely disconnected if its cells are highly connected to themselves but 

not to any other metacell. We project the metacell graph into 2D using a standard 

force-directed layout algorithm, derive coordinates for each metacell 0T� , ��1. We 

also position each cell � using average position of the metacells of neighboring cells : 

 

T� = 1� { T{5x0�1}
��	|	�o���������,05x0�1,5x0�1∈���

, �� = 1� { T{5x0�1}
��	|	�o��������	05x0�1,5x0�1∈���

	 

 

Figure 7. Connecting meta-cells by common K-nn neighbors. The matrix is indicating the 
fraction of K-nn cell-cell adjacencies that bridge any pair of meta-cells in the PBMC dataset. 
The diagonal represent the robustness of the meta-cell on the K-nn graph. The labels on the 
bottom are based on identification of a specific list of markers associated with the major cell 
types in the data. 
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Figure 8. Meta-cell graph-based 2D layout. The meta-cell graph is visualized using 
numbered color coded circles and edges that connect them. Cells are depicted as small 
color coded dots around meta-cells, positioned according to the coordinates of the meta-
cells associated with their K-nn cells. Color coding is done using a list of marker genes, 
where each meta-cell is associated with the color of the marker showing the highest 
enrichment in its cells. The color codes correspond to those used in Figure 7. 

Where  z��yr� is a parameter determining how many edges we will use to position a 

cell (0 will imply using all edges). In practice we add some Gaussian noise to both 

coordinates to minimize cell overlap. Note that a metacell with perfect clustering will 

imply all of its cells will be positioned precisely on one specific center.  

 

 

Projecting metacells, cells and genes in 2D. We project the metacell graph into 

2D using a standard force-directed algorithm. We note that the graph is constructed 

such that the dependency structure is simplified and the projection is more likely to 

remain coherent. Given the projected metacell graph coordinates and the original cell 

graph 
, we position each cell �	relative to its metacell D&�� coordinates. This is done 

by counting the number of edges linking � with cells in each of the metacells that are 
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connected to D&��  in the metacell graph (including D&��  itself), computing the a 

weighted average respective graph nodes coordinates, adding Gaussian noise to 

avoid overlaps. Figure 8 shows the projected module cover for the PBMC dataset. 

 

To plot the distribution of genes in the projected 2D space, we position each 

molecule in ���  according to the computed �  coordinate and use a kernel density 

function to derive densities for 2D bins given all molecule coordinates. We normalize 

this density by the density of all cells in the metacell (assuming each cell contributes 

one molecule) (Figure 9). 

 

DISCUSSION 

We described an integrated approach for analyzing single cell RNA-seq data, which 

addresses the sparse characteristics of single cell profiles through the identification 

of metacells – groups of cells with coherent expression distributions. Metacells can 

be regarded as a non-parametric piecewise approximation of the complex gene 

expression space, or as a way to compute meta-states that represent single cells 

quantitatively at higher resolution than possible using the raw data. Since each cell 

contributes to at most one metacell the statistics of molecule distributions between 

and within metacells are easily interpretable. The loss of accuracy due to grouping of 

cells with potential variable expression has been decreasing as more cells are being 

analyzed in a typical study, and through accumulating cells from multiple studies. 

Figure 9. Projecting genes on 2D meta-cell map. Examples visualizing the distribution of 
six marker genes on the PBMC projected 2D map. 
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When viewed as an approximation for the expression distribution, a metacell cover 

facilitates robust procedures for identifying background noise, for finding outlier cells 

and batch effects, and is a useful component in a boostrap approach for finding 

clusters. The approach also allows visualization of the data by summarizing the most 

important similarity relationships into a graph structure that can be projected in 2D. 

 

Several existing approaches for scRNA-seq analysis implement elements of the 

pipeline described here. In particular, several algorithms model single cell cohorts 

using a K-nn similarity graph and transform the resulting graph structure in order to 

project cells in 2D and to infer possible dynamical processes from stationary 

observations. The metric used to constructed the graph vary between tools, but in 

most cases there is a preliminary stage of dimensionality reduction (e.g. using PCA). 

In some of these algorithms, the model is applied to individual cells, resulting in a 

massive statistical object (the full K-nn graph) that is difficult for application of simple 

statistical tests on model fitting or noise as described here for Metacells. Standard 

clustering approaches are being applied to scRNA data as well, but in many cases, 

clustering the raw data directly is affected by multiple (and sometime contrasting) 

biological effects (differentiation, stress, cell cycle, batch effects) and this may lead to 

ambiguous outcomes. Our approach avoids assumptions on the parametric 

relationship between metacells, and utilizes metacells as a generic statistical device 

rather than as a component in a modeling scheme. This provides us with a powerful 

tool for taking the multivariate distribution of gene expression into account when 

addressing low-level questions on noise, duplications, outliers and bias. We believe 

that a multivariate approach for these questions is significantly more powerful than 

algorithms using parametric assumptions on individual genes. Approaches for 

detecting block structures23 and micro-clustering24 provide additional avenues for 

further developing bottom up algorithms for modelling complex single cell RNA-seq 

datasets, employing further hierarchical and/or parameteric assumptions that are not 

used in the present work. 

 

We hypothesize that in the coming years, exciting questions and modeling strategies 

that aim at inferring developmental dynamics, comparing samples, building spatial 

maps and much more will be ideally approached by replacing raw single cell data by 

meta-states that combine data from multiple (hundreds) of single cell observations. 

Such meta-states would ideally be supported by multiple replicated experiments and 

can be organized systematically and exchanged between studies and groups. 

Robustly inferred meta-states can allow us to separate low-level questions on data 
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processing and noise filtering from biological questions on temporal and regulatory 

processes. While the graph cover strategy we introduce here can serve as a starting 

point in developing such strategies for meta-state inference, it will be important to 

expand and improve the algorithms generating such covers, such that their 

performance will scale favorably as the single cell genomics community continues to 

chart unknown territories of cellular transcriptional programs at single cell resolution. 

 

 

LITERATURE CITED 

1. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell 

RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 

155–160 (2015). 

2. Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell 

types. Nature 525, 251–255 (2015). 

3. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free 

decomposition of tissues into cell types. Science 343, 776–9 (2014). 

4. Kumar, R. M. et al. Deconstructing transcriptional heterogeneity in pluripotent stem 

cells. Nature 516, 56–61 (2014). 

5. Levin, M. et al. The mid-developmental transition and the evolution of animal body 

plans. Nature 531, 637–641 (2016). 

6. Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual 

Cells Using Nanoliter Droplets. Cell 161, 1202–1214 (2015). 

7. Reinius, B. et al. Analysis of allelic expression patterns in clonal somatic cells by 

single-cell RNA–seq. Nat. Genet. 48, 1430–1435 (2016). 

8. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-

cell RNA-seq. Science 347, 1138–1142 (2015). 

9. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to 

mechanism. Nature 541, 331–338 (2017). 

10. Bendall, S. C. et al. Single-Cell Trajectory Detection Uncovers Progression and 

Regulatory Coordination in Human B Cell Development. Cell 157, 714–725 (2014). 

11. Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene 

set overdispersion analysis. Nat. Methods 13, 241–244 (2016). 

12. Grün, D. et al. De Novo Prediction of Stem Cell Identity using Single-Cell 

Transcriptome Data. Cell Stem Cell 19, 266–277 (2016). 

13. Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-

cell analysis of differentiation data. Bioinformatics 31, 2989–2998 (2015). 

14. Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome 

Biol. 17, 29 (2016). 

15. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level 

analysis of single-cell RNA-seq data with Bioconductor. F1000Research 5, 2122 



 23

(2017). 

16. Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differential 

expression analyses of single-cell RNA-seq data. Biostatistics 18, 451–464 (2016). 

17. Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-

cell data. Nat. Biotechnol. 34, 637–645 (2016). 

18. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges 

in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015). 

19. Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. 

Methods 14, 381–387 (2017). 

20. Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-

cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 

(2017). 

21. Satija, R., Farrell, J. a, Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of 

single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015). 

22. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with 

single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016). 

23. Peixoto, T. P. Hierarchical Block Structures and High-Resolution Model Selection in 

Large Networks. Phys. Rev. X 4, 11047 (2014). 

24. Zheng, S., Papalexi, E., Butler, A., Stephenson, W. & Satija, R. Molecular transitions 

in early progenitors during human cord blood hematopoiesis. Mol. Syst. Biol. 14, 

e8041 (2018). 

 


