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Materials and General Methods

Oligonucleotides were obtained from Integrated DNA Technologies. Enzymes and
reagents used for cloning were obtained from New England BioLabs Inc. All other
chemical reagents and solvents were obtained from chemical suppliers (Acros, Fisher
Scientific, or Sigma-Aldrich) and used without further purification. DNA sequencing was
performed by Genewiz. Protein LC-MS analysis was performed on an Agilent 6520
Accurate Mass QToF LC-MS ESI positive in high resolution mode. THE LC-MS was
equipped with a Restek Viva C4 column (5 pm, 2.1 x 150 mm) see Table S1 - 3. MALDI
mass spectrometry was performed on a SCIEX TOF/TOF 5800. ITC experiments were
performed using a Microcal AutolTC200 and CD spectra were obtained using an
Applied Photophysics Chiroscan Circular Dicroism Spectrophotometer. See detailed
procedures below.

Cloning and DNA and Protein Sequences

PULTRA-pCNPheRS! was obtained from the lab of Dr. Peter Schultz and is also
available from addgene (Plasmid # 48215). HP1 was cloned into a pET11a vector using
Ndel and BamHI restriction sites. Mutations to the HP1 gene were generated using
standard overlap PCR (primers available upon request). DNA sequences of cloned HP1
mutants from Ndel and BamHlI restriction sites are shown below. The underlined portion
of the sequence is the HP1 coding sequence. The 6XHis-tag is italicized. 24 and 48
positions have been bolded for clarity. Mutations to the Y24 position are shown in red
and mutations to the Y48 position are shown in blue.

HP1 wild type DNA sequence:

CAT ATG AAA AAA CAC CAC CAC CAC CAC CAC GCC GAA GAG GAG GAG GAG
GAG TAC GCC GTG GAA AAG ATC ATC GAC AGG CGG GTG CGC AAG GGA ATG
GTG GAG TAC TAT CTG AAA TGG AAG GGC TAT CCC GAA ACT GAG AAC ACG
TGG GAG CCG GAG AAC AAT CTC GAC TGC CAG GAT CTT ATC CAG CAG TAC
GAG GCG AGC CGC AAG GATTAAGGATCC

HP1 wild type Protein sequence:
MKKHHHHHHAEEEEEEYAVEKIIDRRVRKGMVEYYLKWKGYPETENTWEPENNLDCQ
DLIQQYEASRKD

HP1 Y24F DNA sequence

CAT ATG AAA AAA CAC CAC CAC CAC CAC CAC GCC GAA GAG GAG GAG GAG
GAG TTC GCC GTG GAA AAG ATC ATC GAC AGG CGG GTG CGC AAG GGA ATG
GTG GAG TAC TAT CTG AAA TGG AAG GGC TAT CCC GAA ACT GAG AAC ACG
TGG GAG CCG GAG AAC AAT CTC GAC TGC CAG GAT CTT ATC CAG CAG TAC
GAG GCG AGC CGC AAG GATTAAGGATCC

HP1 Y24F Protein sequence:
MKKHHHHHHAEEEEEEFAVEKIIDRRVRKGMVEYYLKWKGYPETENTWEPENNLDCQ
DLIQQYEASRKD
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HP1 Y24TAG DNA sequence

CAT ATG AAA AAA CAC CAC CAC CAC CAC CAC GCC GAA GAG GAG GAG GAG
GAG TAG GCC GTG GAA AAG ATC ATC GAC AGG CGG GTG CGC AAG GGA ATG
GTG GAG TAC TAT CTG AAA TGG AAG GGC TAT CCC GAA ACT GAG AAC ACG
TGG GAG CCG GAG AAC AAT CTC GAC TGC CAG GAT CTT ATC CAG CAG TAC
GAG GCG AGC CGC AAG GATTAAGGATCC

HP1 Y24TAG Protein Sequence: (* represents UAA)
MKKHHHHHHAEEEEEE*AVEKIIDRRVRKGMVEYYLKWKGYPETENTWEPENNLDCQ
DLIQQYEASRKD

HP1 Y48F DNA sequence

CAT ATG AAA AAA CAC CAC CAC CAC CAC CAC GCC GAA GAG GAG GAG GAG
GAG TAC GCC GTG GAA AAG ATC ATC GAC AGG CGG GTG CGC AAG GGA ATG
GTG GAG TAC TAT CTG AAA TGG AAG GGC CCC GAA ACT GAG AAC ACG
TGG GAG CCG GAG AAC AAT CTC GAC TGC CAG GAT CTT ATC CAG CAG TAC
GAG GCG AGC CGC AAG GATTAA GGA TCC

HP1 Y48F Protein sequence:
MKKHHHHHHAEEEEEEYAVEKIIDRRVRKGMVEYYLKWKGFPETENTWEPENNLDCQ
DLIQQYEASRKD

HP1 Y48TAG DNA sequence:

CAT ATG AAA AAA CAC CAC CAC CAC CAC CAC GCC GAA GAG GAG GAG GAG
GAG TAC GCC GTG GAA AAG ATC ATC GAC AGG CGG GTG CGC AAG GGA ATG
GTG GAG TAC TAT CTG AAA TGG AAG GGC CCC GAA ACT GAG AAC ACG
TGG GAG CCG GAG AAC AAT CTC GAC TGC CAG GAT CTT ATC CAG CAG TAC
GAG GCG AGC CGC AAG GATTAAGGATCC

HP1 Y48TAG Protein Sequence: (* represents UAA)
MKKHHHHHHAEEEEEEYAVEKIIDRRVRKGMVEYYLKWKG*PETENTWEPENNLDCQ
DLIQQYEASRKD

Protein Expression

For UAA-HP1 variants, pET11la-HP1-Y24TAG or -48TAG was co-transformed with
PULTRA-pCNPheRS into BL21-Gold(DE3) competent cells (Agilent Technologies). For
HP1 wild type, Y24F and Y48F, pET1la-HP1, -Y24F or -Y48F were transformed into
BL21-Gold(DE3) competent cells. Cells were rescued with 1 mL SOC broth and then
incubated for 45 min at 37°C with shaking. 50 uL of each rescue was plated as follows:
wild type/Y24F/Y48F on LB ampicillin (100 mg/L) agar plates; Y24TAG/Y48TAG
contransformed with pULTRA-pCNPheRS on LB ampicillin (100 mg/L) and streptomycin
(50 mg/L) agar plates. Plates were incubated overnight at 37°C. Single colonies from
the transformation plates were used to inoculate LB with appropriate antibiotic in baffled
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flasks (flask volume <4X larger than LB volume). Cultures were grown to saturation
overnight at 37°C with shaking at 225 RPM.

All proteins were expressed in 2.5 L Ultra Yield Flask™ (Thompson Instrument
Company) containing 500 mL of ZYP-5052 autoinduction media?® supplemented with 5
mM MgClz, 5 mM MgSOs4, and 1:5000 dilution of Antifoam 204 to increase oxygen
uptake and prevent foaming over. Each flask also contained appropriate antibiotics (100
mg/L ampicillin (pET-HP1s), 50 mg/L streptomycin (pUltra-pCNPheRS)). For wild type,
Y24F, and Y48F expressions, media was inoculated with 2.5 mL of saturated overnight
culture. For Y24TAG and Y48TAG expressions, autoinduction media was inoculated
with 5 mL of saturated overnight culture to account for the slower initial growth in the
presence of two antibiotics. After inoculation, cultures were incubated at 37°C with 310-
350 RPM shaking until reaching an ODsoo between 1 — 2. Dry UAA (Chem Impex
International) was added to the appropriate TAG cultures (2.5 mmol UAA for 5 mM final
concentrations. pNO2Phe was increased to 10 mmol for 20 mM final concentration to
compensate for lower affinity of the pCNPheRS for pNO2Phe). Incubator temperature
was then dropped to 18°C and the cultures were left to express for 24 hours. For
expressions containing Y24pNO:2Phe, the incubator was covered with aluminum foil to
prevent light degradation of pNO2Phe.

After expression, cultures were pelleted at 4500 RPM for 10 min and the supernatant
was decanted. Cell pellets were frozen overnight at -20°C and resuspended in 20 mL
lysis buffer (50 mM Tris, pH 8, 150 mM NaCl, 30 mM imidazole, 0.25 mg/mL lysozyme,
1mM phenylmethanesulfonyl fluoride, with cOmplete EDTA-Free Protease Inhibitor
Cocktail Tablets (Roche)). The resuspended pellet was incubated at 37°C with 225
RPM shaking for 30 min and cooled on ice for 10 min. Pellets were sonicated on ice for
7.5 min (20% amplitude, 0.5 s on, 0.5 s off) until the lysate appeared homogenous.
Lysate was clarified by centrifugation (19,000 RPM, Sorvall SS-34 rotor) for 45 min.
Supernatant was decanted and filtered through a 0.45 um syringe filter.

Protein Purification

Filtered lysate was purified on an AKTAPurifier UPC 10 (GE) equipped with a HisTrap-
5mL HP column (GE). HP1 was 6XHis-tag purified using the buffers previously
described* and eluted using a step gradient from 0 — 55 % buffer B. Eluted fractions
were pooled and concentrated on a 3 kDA Amicon Ultra-15 Centrifugal filter. The
concentrated sample was purified by size exclusion chromatography using a Superdex
200 10/300 GL size exclusion column equilibrated in SEC buffer (50 mM sodium
phosphate, pH 8, 25 mM NaCl, 2 mM DTT). Eluted fractions (eluted at 15.5 - 18 mL)
were pooled, concentrated, and quantified using a Cary 100 UV/Vis Spectrophotometer
(Agilent Technologies). Extinction coefficients for UAA proteins were calculated by
measuring the extinction coefficient of each free amino acid in solution and adding the
free UAA extinction coefficient to the extinction coefficient of wild type HP1 with one
tyrosine removed. The extinction coefficient of wild type HP1 with a tyrosine removed
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was calculated using the Scripps Protein Calculator (http://protcalc.sourceforge.net/).
Extinction coefficients are provided in Table S1.

Protein Characterization

Protein purity was confirmed by SDS-PAGE (Figure S1) and ESI-LCMS (Table S5,
Figure S2 — S14). Protein folding was confirmed by circular dichroism (Figure S15).

ESI-LCMS confirmation of UAA incorporation

1 mL of a 10 uM solution of each protein was exchanged into HPLC-grade water using
an Amicon Ultra-15 centrifugal filter and then filtered through glass wool. The samples
were run on an Agilent 6520 Accurate-Mass Q-TOF ESI positive LCMS (Table S2)
using one of two methods: A) or B). Details of each method can be found in Table S3
and S4.

All LCMS chromatograms show evidence of the appropriate UAA-incorporation with no
detectible canonical amino acid contamination (Table S5). Chromatograms from each
LCMS can be found in the Figure S2 — Figure S14. Although incorporation of tyrosine
or phenylalanine can be detected in TAG mutants expressed in the absence of
unnatural amino acid (Figure S8 and Figure S14), no evidence of tyrosine or
phenylalanine incorporation is detected in the presence of UAA.

Circular dichroism (CD) of HP1 mutants

CD experiments were performed using an Applied Photophysics Chiroscan Circular
Dicroism Spectrophotometer. Spectra were obtained with 30 yM chromodomain in 10
mM sodium phosphate buffer, pH 7.4 with 2 mM dithiothreitol (DTT) at 20°C. All scans
were corrected with buffer subtraction. The mean residue ellipticity was calculated using

signal 1

the equation 6 = ol - where 6 is MRE, signal is CD signal, | is path length, c is protein

concentration, and r is the number of amino acid residues. All spectra were measured
using a quartz cuvette with a path length of 0.1 cm.

Peptide Synthesis

H3K9me3 (ARTKQTARK(Me)sSTGGKAY) was synthesized using Fmoc protected
amino acids and Rink Amide AM resin on a 0.5 mmol scale. The amino acid residues
were activated with HBTU (O-benzotriazole-N, N, N’, N’,-tetramethyluronium
hexafluorophosphate) and HOBt (N-hydroxybenzotriazole) in the presence DIPEA
(diisopropylethylamine) in DMF (N,N-dimethylformamide). 4 equivalents of the amino
acid, HBTU, and HOBt were used for each coupling step, along with 8 equivalents of
DIPEA. Double couplings of 30 minutes were used for each residue. Deprotections of
Fmoc were carried out in 20% piperidine in DMF, twice for 15 minutes each.

Trimethyllysine was generated during the synthesis of the H3 peptide by first coupling
Fmoc-Lys(Me)2-OH-HCI for 5 hours with HBTU/HOBt activation. 2 equivalents of
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dimethyllysine, HBTU, and HOBt were used, along with 4 equivalents of DIPEA.
Immediately after coupling, the resin was washed with DMF and the residue was
methylated to form trimethyllysine with 7-methyl-1,5,7-triaza-bicyclo[4.4.0]dec-5-ene
(MTDB, 1.2 eq) and methyl iodide (10 eq) in DMF for 6 hours. The resin was washed
with DMF and peptide synthesis was continued with aforementioned conditions.

Peptides were cleaved with 95:2.5:2.5 trifluoroacetic acid (TFA):water:triisopropylsilane
(TIPS) for 4 hours. The TFA was evaporated and products were precipitated with cold
diethyl ether. The resulting peptides were extracted with water and lyophilized. Crude
peptide material were purified by reversed phase HPLC using a C-18 semipreparative
column and a gradient of 0 to 100% B in 60 minutes, where solvent A was 95:5
water:acetonitrile, 0.1% TFA and solvent B was 95:5 acetonitrile:water, 0.1% TFA. The
purified peptides were lyophilized. The peptide was desalted for ITC using a Sephadex
G-24 column from GE in water and lyophilized to a powder. Identity was confirmed by
MALDI mass spectrometry. Calculated M+H*: 1765.02 Da Observed: 1765.95 Da.

Isothermal titration calorimetry (ITC) binding measurements

ITC experiments were performed by titrating H3K9me3 peptide (2.5-7.47 mM) into HP1
mutants (160-290 uM) in 50 mM sodium phosphate, pH 7.4, 150 mM NaCl, 2 mM TCEP
at 25°C using a Microcal AutolTC200. Peptide and protein concentrations were
determined by measuring absorbance at 280 nm on a Cary 100 UV/Vis
Spectrophotometer (Agilent Technologies). Heat of dilution was accounted for by
subtracting the endpoint AH value from each prior injection. Data was analyzed using
the One-Site binding model supplied in Origin software. While the binding stoichiometry
is know to be 1:1, at the high concentrations used here active protein concentration may
differ from measured concentration. When ITC experiments were run under low c-value

conditions (c < 4, c =[prlo<ﬂ), the stoichiometry parameter (N) of the non-linear fitting
D

function was fixed to 1.6 Data shown in Table S6 is the average of 3 runs unless
otherwise noted.

Polarizability and Log P Values

Polarizability and Log P were calculated using Spartan 16 at the DFT B3LYP 6-31G*
level of theory.’

Protein Crystallography

HP1 Y24F and Y24pNO:2Phe protein was diluted to a concentration of 10 mg/mL in 10
mM potassium phosphate, pH 7, 2mM TCEP. The diluted protein was then spiked with
8.6 mg/mL H3K9me3 peptide (~70% pure) in a 4:1 peptide:HP1 ratio. Crystals were
grown by sitting drop vapor diffusion at 4°C. Cryschem Plates (Hampton Research)
were set up on ice by mixing 1uL of the protein-peptide dilution and 1 uL of reservoir
solution. Crystal growth was typically observed within 12 - 72 hours. Crystals were
harvested and flash-frozen in liquid nitrogen with no supplementary cryoprotectant
necessary.

S7



Reservoir solution for Y24Phe: 0.1 M MES, pH 6.3; 3.4 M (NH4)2SO4
Reservoir solution for Y24pNO2Phe: 0.1 M MES, pH 5.8; 3.0 M (NH4)2S0Oa4

X-ray Data Collection and Protein Structure Determination

X-ray diffraction data were collected at Southeast Regional Collaborative Access Team
(SER-CAT) at the Advanced Photon Source (Argonne National Laboratory) using
beamline 22-ID and a MAR300HS CCD detector. Data were collected at 100 K.
Statistics for data collection and refinement are listed in Table S6. Diffraction data sets
were integrated and scaled with the automated data processing software KYLIN
provided by SER-CAT.® Initial phases were determined by molecular replacement
against the wild type HP1 structure (PDB accession code 1KNE)° using Phenix
Phaser.'® Refinement was accomplished by iterative cycles of manual model building
with Coot!! and automated refinement using Phenix Refine.’® Model quality was
assessed with the Phenix Validation tool. All of the protein structure figures and
alignments were generated using PyMOL software (The PyMOL Molecular Graphics
System, Version 1.8, Schrodinger LLC.).

Verification of the Y24pNO2Phe Mutation in Protein Structure

For the Y24pNO:2Phe structure, a phenylalanine was first modeled in at the Y24 residue.
After refinement, the mFo-DFc map showed extra electron density near the para-
position of the phenylalanine ring (Figure S18A). When the phenylalanine is mutated to
pNO2Phe, the mFo-DFc density fits the UAA’s R-group well (Figure S18B). Once the
Y24pNO2Phe mutation model is refined, the 2mFo-DFc density fits the UAA well
(Figure S18C). The 2mFo-DFc density from the Y24F structure also matches the Y24F
mutation, but lacks the para-electron density of the Y24pNO:2Phe structure (Figure
S18D).

Analysis of Y24F and Y24pNOzF Structures vs. Wild Type

The HP1 wild type structure (1KNE) was overlaid with the Y24F (6ASZ) and
Y24pNOz2Phe (6ATO) structures (Figure S19 and 20). RMS values were calculated
using the align feature of PyMOL. Alignment of wild type and Y24F gave an RMSD of
0.216, wild type and Y24pNO2Phe gave a RMSD of 0.196, and Y24F and Y24pNO:zPhe
gave an RMSD of 0.098. Based on the RMSD values, differences in binding are not
likely due to changes in structure.

Computational Methods

Eint calculations between the wild type protein and trimethyllysine (Kme3)

The structure of the Y24-Y48-Kme3 complex was extracted and truncated from the
crystal structure of the wild type protein (PDB: 1KNE). Each terminus of the fragments
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was capped with a hydrogen atom at 1.09 A. The cation/T interaction for each of the
two tyrosine residues with the lysine ammonium ion was computed by single-point
energy calculations at the M06/6-31G(d,p) level of theory.}? M06/6-31G(d,p) was
recently shown to model cation/1r interactions well by Dougherty, et al.*® The interaction
energy is defined as the energy difference between the dimer and each amino acid
monomers: Eint = Edimer — (EKme3 + EY). All quantum chemical calculations were
performed using Gaussian 09.** All graphics on optimized structures were generated
with CYLview.'®

Table S1. Extinction Coefficients for UAAs and UAA HP1 variants

Mutant Extinction Coefficients at 280 nm MW

Name (cm*M) (Da)
8569.4

wild type 17780.0

Y24F or YA8F 16500.0 8553.4

Y24pCNPhe  or

Y48pCNPhe 17169.4 8578.4

Y24pNO2Phe or | 24817.3

Y48pNO2Phe 8598.4

Y24pCHsPhe or | 16632.8

Y48pCHsPhe 8567.5

Y24pCFsPhe or | 16504.4

Y48pCFsPhe 8621.4

UAA Free UAA Extinction Coefficients MW

pCNPhe 669.4 190.2

pNO2Phe 8317.3 210.2

pCHsPhe 132.8 179.2

pCHsPhe 4.4 233.2
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Table S2. ESI-LCMS instrument information

Column Restek Viva C4 5 ym 150 x 2.1 mm
Solvent A 0.1 % formic acid in water
Solvent B 0.1 % formic acid in acetonitrile
Temperature 35°C

lon Source Dual ESI

lon Polarity Positive

Abs. Threshold 200

Rel threshold (%) 0.01

Cycle Time 1ls

Gas Temp 350 °C

Drying gas 12 I/min

Nebulizer 50 psig

Fragmentor 200V

Skimmer 65V

OCT 1 RF VPP 750

Min Mass Range 100 m/z

Max Mass Range 3200 m/z

Acquisition Rate 1 spectra/s

Acquisition time 1000.2 ms/spectrum
Transients/spectrum | 9898
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Table S3. ESI-LCMS method information for method A

Method A

Solvent A Water
Solvent B Acetonitrile
Flowrate 0.4 mL/min
Gradient

Time (min) %B

0 5

2 5

8 30

22 60

23 60

35 70

40 95

42 95

44 5

Table S4. ESI-LCMS method information for method B

Method B

Solvent A Water
Solvent B Acetonitrile
Flowrate 0.3 mL/min
Gradient

Time (min) %B

0 5

15 95

20 95

20.01 5

25 5
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Table S5. ESI-LCMS data verifies UAA-incorporation

Expected Observed Difference | %
Sample Mass (Da) Masses (Da) (Da) Difference
Wild Type 8569.30 8569.67 0.29 3.4x10°
24F 8553.31 8553.78 0.29 3.4x10°
24pCHsPhe | 8567.46 8567.11 0.35 4.1 x10°
24pCNPhe 8578.43 8578.96 0.55 6.4 x 10°
24pCFsPhe | 8621.42 8622.13 0.71 8.2 x10°
24pNO2Phe | 8598.39 8598.80 0.41 4.8 x10°
48F 8553.31 8553.85 0.54 6.3 x10°
48pCHsPhe | 8567.46 8568.10 0.64 7.5x10°
48pCNPhe | 8578.43 8579.01 0.58 6.8 x 10
48pCFsPhe | 8621.42 8622.09 0.67 7.8x10°
48pNO2Phe | 8598.39 8598.71 0.32 3.7 x10°
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Table S6. Binding Constants for HP1 Mutants as Measured by ITC

Protein Cation-1r Energy? (kcal/mol) | Kg (UM)P (Ak(cagl /mol)
Wild Type 26.6 144+19 -6.6 +0.1
Y24pCHsPhe 28.3 195+1.3° |-64+0.1
Y24F 26.9 19.0+0.6 -6.4 +0.1¢
Y24pCFsPhe 194 51.8+5.2 -5.9 +0.1¢
Y24pNO2Phe 14.0 91.7+0.1¢ |-55+0.1¢
Y48pCHsPhe 28.3 16.7 £ 3.0 -6.5+0.1
Y48F 26.9 158+2.2 -6.5+0.1
Y48pCFsPhe 194 24.0+0.8 -6.3 +0.1¢
Y48pCNPhe 16.0 442 +1.7 -5.9 +0.1¢
Y48pNO2Phe 14.0 449 +14.3° | -59+0.2

aV/alues taken from Wheeler et al.’® PValues are an average of 3

calculated from error in fit given by Origin software.

runs unless otherwise
noted. Errors are calculated from standard deviation. ‘Average of 2 runs. 9Errors are
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Table S7. Data collection and refinement statistics for HP1 mutant crystals

HP1 Y24F HP1 Y24pNO2Phe

PDB accession # 6ASZ 6ATO
Data collection
Space group c2221 c2221
Wavelength 1.000 1.000
Cell dimensions
a, b, c(A) 34.52 76.78 75.51 34.42 76.86 76.48
a, b,g(°) 90 90

. 10.89 - 152 (1.57 - 1122 - 1.285 (1.33 -
Resolution (A) 1.52)* 1.285)*
Rmerge 8.0(47.4) 4.5 (46.86)
|/ ol 4.4(1.5) 12.8 (2.56)
Completeness (%) 98.2(99.8) 96.9 (93.9)
Redundancy 5.7(5.2) 5.36(4.14)
Refinement
Resolution (A) 1.57 - 1.52 1.33-1.285
No. reflections 15582 25417
Rwork / Rfree 0.25 / 0.27 0.24 / 0.26
No. atoms
Protein 448 483
Ligand/ion 49 56
Water 19 40
B-factors
Protein 26.6 27.9
Ligand/ion 29.5 30.8
Water 29.1 37.5
R.m.s. deviations
Bond lengths (A) 0.006 0.004
Bond angles (°) 0.76 0.75
Ramachandran outliers 0% 0%

*All data sets were collected from single crystals. Highest-resolution shell is shown in
parentheses.
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Figure S1. SDS-PAGE analysis of purified HP1 Mutants. 6XHis-Tagged purification
of Y24 (A) and Y48 (B) mutants. C) Impurities present after his-tag purification (1) are
removed after size-exclusion chromatography (2).

A0S SESITIC kP WT_| Bemc0is 4
L

01 f

asl Al

74 |

us

[

[T

a3

1]

1.1915"5ﬁﬁﬁﬁ_ﬁ"ﬂ_\"ﬁl‘sﬁ‘lﬁﬁﬁ?\ﬁﬁﬁ

W04 |4ES Soan 554 sl P20 0V HPTWT_12Mm00150 Dacorrvolied faotpe 'widhe1.0)
57

corresponding m/z deconvolution (B).
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Figure S3. LCMS of HP1 Y24F using method A. ESI scan (A) and corresponding m/z
deconvolution (B).
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Figure S5. LCMS of HP1 Y24pCF3Phe using method B. ESI scan (A) and
corresponding m/z deconvolution (B).
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Figure S7. LCMS of HP1 Y24pNO2Phe using method A. ESI scan (A) and
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Figure S8. LCMS of HP1 Y24TAG with no UAA added using method B. ESI scan
(A) and corresponding m/z deconvolution (B). Wild type HP1 and Y24F are produced in

the absence of UAA, but when UAA is added wild type and Y24F are not detected.
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Figure S9. LCMS of HP1 Y48F using method A. ESI scan (A) and corresponding m/z
deconvolution (B).
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Figure S10. LCMS of HP1 Y48pCHsPhe using method B. ESI scan (A) and
corresponding m/z deconvolution (B).
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Figure S11. LCMS of HP1 Y48pCFsPhe using method B. ESI scan (A) and
corresponding m/z deconvolution (B).
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Figure S12. LCMS of HP1 Y48pCNPhe using method A. ESI scan (A) and
corresponding m/z deconvolution (B).

Figure S13. LCMS of HP1 Y48pNO2Phe using method A. ESI scan (A) and
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Figure S14. LCMS of HP1 Y48TAG with no UAA added using method B. ESI scan
(A) and corresponding m/z deconvolution (B). Wild type HP1 and Y48F are produced in

the absence of UAA, but when UAA is added wild type and Y48F are not detected.
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Figure S15. Contaminant LCMS Peaks.

While LCMS traces shown in Figures S2 — S14 are intended to show the fidelity of
unnatural amino acid incorporation, other higher retention peaks are also observed.
Comparison of LCMS traces from representative protein samples (shown by the arrow;
Y48F (blue) and Y48pNO2Phe (orange)) and free buffer (red) show that these
impurities are independent of the protein sample and are likely highly ionizable
contaminants in the LCMS, including small molecule plasticizers.
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Figure S16. Circular Dichroism of HP1 Variants: (A) CD spectra of HP1 variants in
10 mM sodium phosphate, pH 7.4, 2 mM DTT. (B) While some variation in the intensity
of CD spectra is observed, the ratio between the characteristic double minima at 207

nm and 218 nm remains consistent between variants (< 15 % error from the mean

across all mutants). These data suggest that differences in CD spectra result from small

errors in protein concentration determination, and are not representative of altered

protein structure.
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Figure S17. ITC curves of H3K9me3 binding to HP1 mutants
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Figure S18. LFER plots of AGb vs. om (A), electrostatic potential (ESP, B), and sum
of through space interaction of substituent (HX) plus benzene (C).1®
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Figure S19. Density maps of HP1 Y24 mutants. A) mFo-DFc map of Y24pNO:2Phe
density with Y24F mutation shows additional density at para-position. B) When
Y24pNO2Phe mutation is modeled into the Y24pNO2Phe mFo-DFc density, the nitro
group fits the density well. C) 2mFo-DFc density map of the Y24pNO2Phe density with
Y24pNO2Phe mutation shows pNO2Phe mutation is present. D) 2mFo-DFc density of
Y24F shows the differences in density for the F and Y24pNO2Phe amino acids.
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Y24
F24

pNO,Phe24

Figure S20. Whole protein overlays of HP1 wild type (green), Y24F (magenta), and
Y24pNO2zPhe (cyan). Residues of the aromatic cage have been shown as sticks.
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Y24pNO,Phe D)  Y24pNO,Phe

F24
W Y48 Y48
\ -

Figure S21. Overlays of the aromatic cage of various HP1 mutants. A) Overlay of
Wild type (green), Y24F (magenta), and Y24pNO2Phe (cyan) shows minimal
perturbation of the aromatic cage. Wild type surface shown for orientation. B) Wild type
and Y24F cage overlay, RMS = 0.222 A, C) Wild type and Y24pNO2zPhe cage overlay,
RMS = 0.211 A, D) Y24F and Y24pNO2Phe cage overlay, RMS = 0.058 A.
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A) Y48

Y48

Y24F Y24pNO,Phe
D) Distance to 24 Distance to 48
Mutant Position (A) Position (A)
sz CIVIS Cs I\lz CIVI1 CIVI2 CM3 Ca I\lz
WT 40 /36 41 424532 |43 |55 4.2
Y24F 39 40|41 43 45 /35|45 58 44
Y24NO,Phe 41 | 40|42 |44 4433|4356 4.2

Figure S22. Cation-1r distances between Kme3 and 24-and 48-position
substituents. A) HP1 wild type (PDB 1KNE), B) HP1 Y24F (PDB 6ASZ), and C) HP1

Y24pNO2Phe (PDB 6AT0). D) Measured cation-1r distances between Kme3 and center
of the aromatic ring at positions 24 or 48.
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