

advances.sciencemag.org/cgi/content/full/4/7/eaao1167/DC1

Supplementary Materials for

Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO₂ measurements

Su-Jong Jeong*, A. Anthony Bloom*, David Schimel, Colm Sweeney, Nicholas C. Parazoo, David Medvigy, Gabriela Schaepman-Strub, Chunmiao Zheng, Christopher R. Schwalm, Deborah N. Huntzinger, Anna M. Michalak, Charles E. Miller

*Corresponding author. Email: sujong@snu.ac.kr (S.-J.J.); abloom@jpl.nasa.gov (A.A.B.)

Published 11 July 2018, *Sci. Adv.* **4**, eaao1167 (2018) DOI: 10.1126/sciadv.aao1167

This PDF file includes:

Table S1. Prior parameter value ranges.

Table S2. MsTMIP models in this study (BG1 simulations).

Fig. S1. Comparison between simulated NEE and observed ΔCO_2 .

Fig. S2. Comparison of net primary productivity and heterotrophic respiration between optimized model and MsTMIP terrestrial biosphere models.

Fig. S3. Posterior probability distribution of the ratio of effective Q_{10} temperature sensitivity parameters p_2 (NPP) and p_4 (Rhet) [see Materials and Methods (Retrieved residence time change and temperature sensitivities) and table S1 for details].

Fig. S4. Relationships between ΔCO_2 and soil temperature (0 to 40 cm).

Fig. S5. Lagged (0 to 3 months) relationships between summertime vegetation greenness and autumn ΔCO_{2} .

References (42, 43)

Parameter	Description	Prior range
p ₁	Productivity constant: equivalent to	$0.01 - 100 \text{ gC} \text{ m}^{-2}$
	NPP per unit leaf area (m^2/m^2) per unit	month ⁻¹
	solar radiation (MJ/m ² /day ⁻¹) at 0°C	
p ₂	Temperature dependence constant:	1 – 10
	NPP factor increase per 10°C	
p ₃	C turnover at 0°C.	$10^{-5} - 10^{-1} \text{ month}^{-1}$
p ₄	Temperature dependence constant: R	1 – 10
	factor increase per 10°C.	
C ₀	Total active ecosystem carbon on	$10^2 - 10^6 \text{ gC m}^{-2}$
	January 1 st 1979.	

 Table S1. Prior parameter value ranges.

Table S2. MsTMIP models in this study (BG1 simulations).

Model name	Affiliation	
Biome-BGC	NASA Ames	
CLASS-CTEM-N	McMaster University	
CLM4	Oak Ridge National Lab	
CLM4VIC	Pacific Northwest National Lab	
DLEM	Auburn University	
ISAM	University of Illinois Urbana Champaign	
TEM6	Oak Ridge National Laboratory	
TRIPLEX-GHG	University of Quebec at Montreal	

Fig. S1. Comparison between simulated NEE and observed ΔCO_2 . June (left) and September (right) observed ΔCO_2 (black circles) and modeled NEE (red/blue confidence range bands) normalized anomalies.

Fig. S2. Comparison of net primary productivity and heterotrophic respiration between optimized model and MsTMIP terrestrial biosphere models. Comparison of net primary productivity (NPP, left) and heterotrophic respiration (right) optimized model output (median, 5th, 25th, 75th and 95th percentiles) and MsTMIP terrestrial biosphere models (*39*).

Fig. S3. Posterior probability distribution of the ratio of effective Q_{10} temperature sensitivity parameters p_2 (NPP) and p_4 (Rhet) [see Materials and Methods (Retrieved residence time change and temperature sensitivities) and table S1 for details]. Based on the posterior parameter samples, we find that the probability of $p_4 > p_2$ is 54%.

Fig. S4. Relationships between ΔCO_2 and soil temperature (0 to 40 cm).

Correlation coefficients between detrended ΔCO_2 and detrended soil temperature for September and October, respectively. Regions with statistically significant correlations are only described. Soil temperature data comes from North American Regional Reanalysis (NARR) (42).

Fig. S5. Lagged (0 to 3 months) relationships between summertime vegetation greenness and autumn ΔCO_2 . Correlation coefficients between detrended NDVI (July to September) and detrended ΔCO_2 for September (A-C) and October (D-F), respectively. Regions with statistically significant correlations are only described. Positive coefficients indicate increase (or decrease) in summer/autumn vegetation greenness, leading to an increase (or decrease) in ΔCO_2 during autumn. High resolution (8 km) NDVI data sets come from the new Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g data from the Advanced Very High Resolution Radiometer (AVHRR) sensors (43) that has been widely used for evaluating climate and ecosystem changes.