Science Advances

advances.sciencemag.org/cgi/content/full/4/7/eaar6830/DC1

Supplementary Materials for

Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech

Sebastian Ocklenburg*, Patrick Friedrich, Christoph Fraenz, Caroline Schlüter, Christian Beste, Onur Güntürkün, Erhan Genç

*Corresponding author. Email: sebastian.ocklenburg@rub.de

Published 11 July 2018, *Sci. Adv.* **4**, eaar6830 (2018) DOI: 10.1126/sciadv.aar6830

This PDF file includes:

Table S1. Correlations between VOL of PT and N1 latency during dichotic condition.

Table S2. Correlations between ODI of PT and N1 latency during dichotic condition.

Table S3. Correlations between ISO of PT and N1 latency during dichotic condition.

Table S4. Correlations between VOL of PT and N1 latency during noise condition.

Table S5. Correlations between INVF of PT and N1 latency during noise condition.

Table S6. Correlations between ODI of PT and N1 latency during noise condition.

Table S7. Correlations between ISO of PT and N1 latency during noise condition.

Table S8. Multiple regression analysis (alternative model 1) predicting left N1 latency during dichotic condition by structural predictors.

Table S9. Multiple regression analysis predicting left N1 latency during dichotic condition by structural predictors.

Table S10. Correlations between VOL of AF and N1 latency during dichotic condition.

Table S11. Correlations between INVF of AF and N1 latency during dichotic condition.

Table S12. Correlations between ODI of AF and N1 latency during dichotic condition.

Table S13. Correlations between ISO of AF and N1 latency during dichotic condition.

Fig. S1. Sagittal view of the left AF.

Supplementary material

Supplementary tables

VOL = gray matter volume, INVF = intra-neurite volume fraction, ODI = orientation dispersion, ISO = isotropic diffusion, p-values are two-tailed and Bonferroni-corrected for multiple comparisons.

Table S1. Correlations between VOL of PT and N1 latency during dichotic condition.

	VOL left planum temporale VOL right planum tempo			
Left N1 latency dichotic (C5)	r = .19, p = .24	r =02, p = .99		
Right N1 latency dichotic (C6)	r =05, p = .99	r =19, p = .24		

Table S2. Correlations between ODI of PT and N1 latency during dichotic condition.

	ODI left planum temporale	ODI right planum temporale
Left N1 latency dichotic (C5)	r = .05, p = .99	r = .16, p = .48
Right N1 latency dichotic (C6)	r = .03, p = .99	r = .00, p = .99

Table S3. Correlations between ISO of PT and N1 latency during dichotic condition.

	ISO left planum temporale	ISO right planum temporale
Left N1 latency dichotic (C5)	r = .10, p = .99	r = .08, p = .99
Right N1 latency dichotic (C6)	r =02, p = .99	r = .00, p = .99

Table S4. Correlations between VOL of PT and N1 latency during noise condition.

	VOL left planum temporale	• VOL right planum temporale
Left N1 latency noise (C5)	r =10, p = .99	r =18, p = .99
Right N1 latency noise (C6)	r =04, p = .99	r =03, p = .99

Table S5. Correlations between INVF of PT and N1 latency during noise condition.

	INVF left planum temporale INVF right planum temporale				
Left N1 latency noise (C5)	r = .01, p = .99	r = .19, p = .24			
Right N1 latency noise (C6)	r = .10, p = .99	r = .04, p = .99			

Table S6. Correlations between ODI of PT and N1 latency during noise condition.

	ODI left planum temporale	ODI right planum temporale
Left N1 latency noise (C5)	r = .03, p = .99	r =07, p = .48
Right N1 latency noise (C6)	r =02, p = .99	r =03, p = .99

Table S7.	Correlations	between IS) of P1	f and N1	latency	during	noise c	ondition.
-----------	--------------	------------	---------	----------	---------	--------	---------	-----------

	ISO left planum temporale	ISO right planum temporale
Left N1 latency noise (C5)	r = .20, p = .20	r =17, p = .99
Right N1 latency noise (C6)	r =04, p = .99	r =15, p = .52

Table S8. Multiple regression analysis (alternative model 1) predicting left N1 latency during dichotic condition by structural predictors. INVF = intra-neurite volume fraction, ODI = orientation dispersion, ISO = isotropic diffusion, VOL = gray matter volume.

Predictors	beta	t	p value
Left PT INVF	23	-2.27	.03
Left PT ODI	.07	.71	.48
Left PT ISO	.14	1.44	.15
Left PT VOL	.08	.83	.41
Sex	20	-1.90	.06
Laterality quotient (EHI)	02	17	.87
Dependent variable: left N1 lat	ency dich	otic (C5)	$R^2 = .15; p = .024$

Table S9. Multiple regression analysis predicting left N1 latency during dichotic condition by structural predictors. INVF = intra-neurite volume fraction, ODI = orientation dispersion, ISO = isotropic diffusion, THICK = gray matter thickness.

Predictors	beta	t	p value
Left planum temporale INVF	24	-2.33	.02
Left planum temporale ODI	.13	1.28	.21
Left planum temporale ISO	.13	1.29	.20
Left planum temporale THIC	07	-0.69	.49

Dependent variable: left N1 latency dichotic (C5)

 $R^2 = .10; p = .044$

	VOL left AF VOL right AF
Left N1 latency dichotic (C5)	r =05, p =04, p = .99
Right N1 latency dichotic (C6)	r =02, p = r = .16, p = .50

Table S10. Correlations between VOL of AF and N1 latency during dichotic condition.

Table S11.	Correlations	between	INVF	of AF	and N1	latencv	during	dichotic	condition.
						,			

	INVF left AF INVF right AF
Left N1 latency dichotic (C5)	r = .16, p = .50 $r = .06, p = .99$
Right N1 latency dichotic (C6)	r =06, p = .99 r =16, p =. 50

Table S12. Correlations between ODI of AF and N1 latency during dichotic condition.

	ODI left AF ODI right AF
Left N1 latency dichotic (C5)	r =04, p = r = .05, p = .99
Right N1 latency dichotic (C6)	r = .03, p = r = .13, p = .84

Table S13. Correlations between ISO of AF and N1 latency during dichotic condition.

	ISO left AF ISO right AF
Left N1 latency dichotic (C5)	r =09, p = .99 r =10, p = .99
Right N1 latency dichotic (C6)	r =09, p = .99 r =07, p = .99

VOL = white matter volume, INVF = intra-neurite volume fraction, ODI = orientation dispersion, ISO = isotropic diffusion, p-values are two-tailed and Bonferroni-corrected for multiple comparisons.

Supplementary Figure captions

Fig. S1. Sagittal view of the left AF. The arcuate fasciculus was tracked by in vivo spherical deconvolution DTI fiber tractography and overlaid onto the anatomy of a representative individual. The colors represent fiber orientations in different directions: right-left (red), anterior-posterior (green) and superior-inferior (blue).