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ABSTRACT

This file contains an appendix with supporting material of the main text. It reports the different measurements taken upon
Pareto optimal languages.

A Complexity of language networks along the Pareto front
In the Results section we reported a series of measurements taken over an even sample across the morphospace. Those results
are complemented here by measurements taken over a more exhaustive sample of the Pareto front which includes larger matrices
(with up to 1 000 signals and objects, as opposed to the n = 200 = m in the main text). In the following sections we analyze the
same measurements of vocabulary, network structure, matrix as a generative model, and goodness of fit to power-law that we
analyzed above.

The Pareto optimal manifold is just a straight line, which allows us to present simpler plots. We argued in the Methods
section that straight lines correspond to critical points if the model is studied from a StatMech perspective16, 17, hence we often
refer to the Pareto front as the critical point or critical manifold indistinctly. In all plots below, the horizontal axis reports the
value of Ωh ≡ H(R|S) along the front. This is, the one-to-one mapping lies at the leftmost part of the plot and the star graph at
the rightmost end.

A.1 Characterizing the vocabulary
By definition, Pareto optimal languages have no synonyms hence IS = 0. We report next vocabulary size (L) and polysemy
index (IP) along the front.

Figure S1 shows that the effective vocabulary size does not decrease linearly as we proceed from the one-to-one mapping
(L = n) to the star (L = 1). Furthermore, at most given points along the front, there seem to be several languages with the same
effort for both speaker and hearers, and yet with different vocabulary sizes. This indicates that there are different strategies to
achieve the same degree of optimality, or that being Pareto optimal leaves the diversity of languages largely unconstrained.

Regarding polysemy, we could also expect that it would build up uniformly as we approach the star code because words
take up more and mode meanings as they depart from the one-to-one mapping. Instead we see that at each point along the
front there are very different codes showing a range of polysemy (figure S1, inset). The maximum of this range does grow
with Hm(R|S). Eventually, IP has to be maximum and unique for the star graph (IP = 1, since a single signal is maximally
polysemic). The fact that similar Pareto optimal codes present such diverse IP (as well as L), even close to the star graph,
suggests a great diversity within the critical point of the model. We will find that this is a recurrent theme of Pareto optimal
languages for other measurements as well.

A.2 Network structure
We recall now the bipartite network structure (code graph) and the corresponding R- and S-graphs in object and signal space.
These are naturally induced by the A matrices as illustrated in figure 3 in the main text Associated to them, we report the size of
the largest connected component Cmax for each graph, and the entropy of the distribution of component sizes (HC) as introduced
in the Methods section.

For languages along the Pareto front, the largest connected component of the S-graph has trivially just 1 signal (because,
again, there are no synonyms). This implies that the largest connected component of the code and R-graphs are virtually the
same. Figure S2a shows the size (normalized to the maximum value possible) of the largest component of the code graph along



Supplementary Fig. S1. Vocabulary size and polysemy along the Pareto front. a Codes along the Pareto front keep a
relatively low vocabulary except close to the one-to-one mapping. Also, two branches seem noticeable around the middle of the
front, suggesting that similar Pareto optimal values of Hm(R|S) and of Hn(S) can be achieved with differently wired codes. b A
reduced vocabulary size does not result in a strictly monotonous increase of polysemy as we approach the star code. Instead,
languages with similar Hm(R|S) may present different polysemy levels. The range available grows as we approach the
maximally ambiguous code.
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Supplementary Fig. S2. Network connectivity along the Pareto front. a Along the front, the size of the largest
connected component grows from 1/m to 1 as we move from the one-to-one mapping to the start graph. b The entropy of
component size distribution shows a large degree of degeneracy even for single points along the front.

the front. It grows as we move from the one-to-one mapping to the star code, but this growth is again mostly non-linear and
often several possibilities coexist at each point of the front.

Regarding HC, we find no consistent pattern throughout the front (figure S2b). This is the measure for which we find less
correlation along any direction in Pareto optimal codes, again suggesting that the diversity of networks along the front is largely
unconstrained. Notwithstanding, this variability is perhaps not so salient: HC here is small as in most of the morphospace
(compare the scale in the color bar of panel 4d of the main text against the vertical axis of panel S2b). Moving apart from the
star graph, we know that several signals are involved in Pareto optimal languages (as the vocabulary size implies – figure S1)
and yet HC is kept low and relatively constant throughout. This suggests that, while a lot of disconnected components coexist to
make up a Pareto optimal language network, their sizes are similar resulting in just a few graphs similar to each other.

A.3 Complexity from codes as a semantic network
We turn our attention now to language matrices as generative toy models of semantic relationships. Therefore, we had
introduced a random walk over code graphs in Methods. These allowed us to capture, with a series of entropies (HR,S and
H2R,2S), whether the network structure somehow biased the sampling of signals or objects as it traversed the network randomly.
Large entropies in the distribution of sampled objects or signals implied networks that do not induce remarkable structures.
Meanwhile, noteworthy biases in object or signal sampling would result in lower entropies than expected.

By construction, HR must be maximum at both extremes of the front and non-trivial along it (figure S3a). In the one-to-one
mapping, a same object is always sampled repeatedly, resulting in a continuous reset of the random walk process as described
in Methods. Because the starting point is uniformly random, so must be the random walk and HR collapses to 1. This results in
a maximal entropy over signals as well (figure S3b). At the star graph, only one signal produces a valid sample of the code
graph, and again this sample is uniform over objects (resulting in HR = 1, figure S3a) but this implies a maximally asymmetric
sampling of words (HS = 0, figure S3b). Along the front, objects group up in clusters of different size, resulting in potentially
greater biases towards some objects than others. This results in the possibility of a lower HR, which is not always fulfilled. As
in other cases, we see that a same point along the front hosts several different language networks with diverse HR values. The
set of languages that produce a more remarkable structure (i.e. lowest HR) is very close to the star graph (figure S3a). Overall,
HR is large along the Pareto front as it was throughout the morphospace. The number of objects that a word links together
determines how often that signal can be sampled through the random walker without reseting the process. This results in a
smooth curve of decreasing entropy for HS (figure S3b). This suggests an explanation for the area of the morphospace with
lowest HS in figure 5b of the main text, near the star graph.

The entropy of 2-gram objects also has to be maximal at both ends of the front (figure S3c). It remains largely unconstrained
along the rest of the front, with little correlation and again large variability at any given point. The entropy of 2-gram signals
again decays to 0 as the start graph is approached, but the decay is now less smooth and the range of values of H2S at any given
point is larger than for HS.

A.4 Zipf, and other power laws
We computed the goodness of fit of word distribution to either Zipf or power-laws with arbitrary exponents. One of the caveats
is that our languages across the morphospace are relatively small (n = 200 = m). While this is partly alleviated here (thanks
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Supplementary Fig. S3. Complexity of codes as a random generative model along the Pareto front. a The entropy of
objects as sampled by a random walker (HR) over the language network is maximal at either end of the front and presents a
minimum close to the star graph. b The entropy of objects as sampled by a random walker (HS) decreases rather smoothly
along the Pareto front as we move from the one-to-one mapping to the star. c The entropy of 2-gram objects as sampled by a
random walker (H2R) presents less structure than HR and is still maximal at either extreme. d The entropy of 2-grams signals as
sampled by a random walker (H2S) also decreases as we move along the front, but in a less structured fashion.

4/8



Supplementary Fig. S4. Power laws from the least-effort model along the Pareto front. a Goodness of fit of the word
distribution from the toy, least-effort model to a Zipf law along the Pareto front. b Goodness of fit of the word distribution from
the model to an arbitrary power law along the Pareto front. c Exponent obtained along the Pareto front when fitting the word
distribution of the model to the arbitrary power law from panel b.

to languages with up to 1 000 signals), these are nevertheless meager numbers. The results in this section can again mount
evidence against the least-effort hypothesis as the origin of Zipf’s distribution in human language, but this must be taken with
extreme care given the computational shortages just mentioned and also considering the limitations of the model.

Regarding goodness of fit to Zipf, along the Pareto front we find again a great variety of codes even within single points
(figure S4a). This indicates, as pointed out above and already anticipated in?, 9, that least-effort alone would not be enough to
enforce Zipf’s distribution into word corpora – at least not within this very limited toy model. There is a clear minimum of
KS-score (i.e. maximum fitness to Zipf’s distribution, figure S4a) around Ωh ∼ 0.3 (hence Ωs ∼ 0.7). This is close to, but not
right at the value Ωh = 1/2 = Ωs put forward by21 for theoretical reasons. Also, the minimum KS-score (∼ 0.1) is larger than
scores reached deeper inside the morphospace (figure 6a in the main text). According to this, the observation of Zipf’s law in
natural corpora would be evidence against the least-effort principles captured by the model.

Regarding the goodness of fit to arbitrary power laws (figure S4b), we find a more shallow minimum suggesting a broader
region of interesting Pareto optimal languages. Looking at the exponents that come out of those fits (figure S4c), we find two
branches as we move in the direction of increasing Hm(R|S) (i.e. towards the star graph): i) a branch of roughly constant and
low exponents close to 1 (hence similar to Zipf’s law), ii) a branch of exponents that increase monotonously with Hm(R|S). It is
difficult to asses which of these branches is yielding the lowest KS-score (best fit) in figure S4b.
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A.5 Code archetypes along the Pareto front
Finally, as we did for the whole language morphospace, we analyzed possible archetypes clustering out of the measurements
across the Pareto front. We moved into PC space and tried building 3 and 5 language archetypes using k-means clustering. For
k = 3 we found three relatively stable clusters: i) a few codes near the one-to-one graph, ii) a few others near the star network,
and iii) all remaining codes along the front. However, the boundaries between the clusters changed notably after different
initializations of the algorithm, sometimes leaving the third group almost without elements. With k = 5, the clusters found were
not stable at all, meaning that different instantiations of k-means would lump codes together in very different ways. Those
clusters would also overlap when plotted along the Pareto front.

These results are very unlike the outcome for the whole morphospace. There, applying k-means several times with random
initializations would consistently yield the same broad classes, which were clearly segregated across the morphospace with
little overlap at their borders. Our inability to converge into well defined archetypes at the Pareto front is yet another indication
of its huge diversity. We should also be careful about the previous clustering of Pareto optima within groups I and V (see
Results section in the main text). Fortunately, those classes reach deeper inside the morphospace and do not seem to depend so
much on Pareto optimal solutions.
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2. Szathmáry, E. & Maynard Smith, J. Major Transitions in Evolution. (Oxford: Oxford University Press, 1997).

3. Deacon, T.W. The symbolic species: The co-evolution of language and the brain. (WW Norton & Company, 1998).

4. Bickerton, D. More than nature needs: Language, mind, and evolution. (Harvard University Press, 2014).

5. Berwick, R.C. & Chomsky N. Why Only Us: Language and Evolution. (MIT Press, 2015).

6. Suddendorf, T. The gap: The science of what separates us from other animals. (Basic Books, 2013).
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